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Abstract

As the representations output by Graph Neural Net-
works (GNNs) are increasingly employed in real-
world applications, it becomes important to ensure
that these representations are fair and stable. In
this work, we establish a key connection between
counterfactual fairness and stability and leverage
it to propose a novel framework, NIFTY (uNIfying
Fairness and stabiliTY), which can be used with
any GNN to learn fair and stable representations.
We introduce a novel objective function that simul-
taneously accounts for fairness and stability and
develop a layer-wise weight normalization using
the Lipschitz constant to enhance neural message
passing in GNNs. In doing so, we enforce fair-
ness and stability both in the objective function
as well as in the GNN architecture. Further, we
show theoretically that our layer-wise weight nor-
malization promotes counterfactual fairness and
stability in the resulting representations. We in-
troduce three new graph datasets comprising of
high-stakes decisions in criminal justice and finan-
cial lending domains. Extensive experimentation
with the above datasets demonstrates the efficacy
of our framework.

1 INTRODUCTION

Over the past decade, there has been a surge of interest in
leveraging GNNs for graph representation learning. GNNs
have been used to learn powerful representations that en-
abled critical predictions in downstream applications—e.g.,
predicting protein-protein interactions [Gainza et al., 2020,
Huang et al., 2020], drug repurposing [Gysi et al., 2020, Zit-
nik et al., 2018], crime forecasting [Jin et al., 2020], news
and product recommendations [Ying et al., 2018]. As GNNs
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Figure 1: Our framework NIFTY can learn node representa-
tions that are both fair and stable (i.e., invariant to the sensi-
tive attribute value and perturbations to the graph structure
and non-sensitive attributes) by maximizing the similarity
between representations from diverse augmented graphs.

are increasingly implemented in real-world applications,
it becomes important to ensure that these models and the
resulting representations are safe and reliable. More specif-
ically, it is important to ensure that these models and the
representations they produce are not perpetrating undesir-
able discriminatory biases (i.e., they are fair), and are also
robust to attacks resulting from small perturbations to the
graph structure and node attributes (i.e., they are stable).

A myriad of GNN methods with various neighborhood
aggregation schemes have recently been developed (e.g.,
Kipf and Welling [2017], Hamilton et al. [2017], Xu et al.
[2018, 2019], Veličković et al. [2019]). While these meth-
ods achieve state-of-the-art performance in tasks such as
node classification and link prediction, these methods can
be prone to discrimination and instability [Dai and Wang,
2021, Rahman et al., 2019, Bose and Hamilton, 2019]. Fur-
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 thermore, prior work has argued that GNNs not only capture
the undesirable biases prevalent in the data, but may also ex-
acerbate them thanks to their message passing schemes [Dai
and Wang, 2021]. Generally, in graphs such as social net-
works, nodes with similar sensitive attribute (e.g., race, age)
values are likely to connect to each other [Dai and Wang,
2021]. Since GNNs compute node representations by prop-
agating and aggregating neural messages along edges in
graph neighborhoods, nodes with similar sensitive attribute
values are likely to share similar representations leading to
severe discriminatory biases, i.e., downstream predictions
may be highly correlated with sensitive attributes.

Recent research has treated fairness and stability in GNNs
as independent problems and proposed standalone solutions
for the same. For example, Dai and Wang [2021] proposed
FairGNN to promote fairness in GNNs through an objective
function that incorporates group fairness measures such as
statistical parity and equality of opportunity. On the other
hand, Zhu et al. [2019] aimed to make GNNs stable and
robust to adversarial attacks. While these techniques provide
a promising approach to study fairness and stability inde-
pendently, it remains an open question whether there are any
deeper connections between fairness and stability in GNNs,
and if these properties can be achieved simultaneously.

Present work. Here, we address the problem of learn-
ing node representations that are both fair and stable. To
tackle this problem, we first identify a key connection be-
tween counterfactual fairness and stability. While stability
accounts for robustness w.r.t. small random perturbations
to node attributes and/or edges, counterfactual fairness ac-
counts for robustness w.r.t. modifications of the sensitive
attribute. We leverage this connection to propose a novel
framework, NIFTY (uNIfying Fairness and stabiliTY), that
can be used with any existing GNN model to learn fair and
stable representations. Our framework exploits the afore-
mentioned connection to enforce fairness and stability both
in the objective function as well as in the GNN architecture.
More specifically, we introduce a novel objective function
which simultaneously optimizes for counterfactual fairness
and stability by maximizing the similarity between rep-
resentations of the original nodes in the graph, and their
counterparts in the augmented graph (Fig. 1). Nodes in the
augmented graph are generated by slightly perturbing the
original node attributes and edges or by considering counter-
factuals of the original nodes where the value of the sensitive
attribute is modified. We also develop a novel method for
improving neural message passing by carrying out layer-
wise weight normalization using the Lipschitz constant. We
theoretically show that this normalization promotes counter-
factual fairness and stability of learned representations. To
the best of our knowledge, this work is the first to tackle the
problem of learning node representations that are both fair
and stable.

We introduce and experiment with three new graph datasets

comprising of critical decisions in criminal justice (if a
defendant should be released on bail) and financial lending
(if an individual should be given loan) domains. Our results
show that NIFTY improves the fairness and stability of five
GNNs by 92.01% and 60.87% respectively (on an average)
without sacrificing predictive performance. We also observe
that the resulting representations become fairer not only
w.r.t. the notion of counterfactual fairness but also w.r.t.
other notions of group fairness such as statistical parity
and equality of opportunity. Further, our results establish
that enforcing fairness and stability both in the objective
function as well as in the GNN architecture can be incredibly
beneficial for learning fair and stable representations.

2 RELATED WORK

This work lies at the intersection of fairness and stability
in machine learning, and Graph Neural Networks (GNNs).
Below we discuss related work for each of these topics.

Fairness. Several competing and contrasting notions of fair-
ness have been proposed in recent literature. They can be
broadly categorized into: 1) group fairness, which empha-
sizes that minority groups should receive similar treatment
as that of advantaged groups [Berk et al., 2018, Hardt et al.,
2016], 2) individual fairness, which requires that similar
individuals should be treated similarly [Dwork et al., 2012],
and 3) counterfactual fairness, which captures the intuition
that a decision pertaining to an individual is fair if changing
the individual’s sensitive attribute value does not affect the
decision [Kusner et al., 2017]. Furthermore, various metrics
have been proposed to realize each of the aforementioned
notions of fairness. For example, statistical (demographic)
parity, equalized odds, equality of opportunity, and predic-
tive parity are metrics proposed to enforce group fairness.
These metrics have also been leveraged to develop new ob-
jective functions for constructing machine learning models
that are both fair and accurate [Zafar et al., 2017b,a]. Prior
research has also established that certain notions of fairness
(calibration and balance conditions) are fundamentally in-
compatible and cannot be simultaneously optimized [Klein-
berg et al., 2017, Chouldechova, 2017].

Graph Neural Networks. Deep learning on graphs and
GNNs, in particular, learn how to represent nodes in a
graph as points, i.e., embeddings, in a vector embedding
space, where the geometry of the embedding space is op-
timized to reflect topology of the graph as well as node at-
tribute information [Wu et al., 2020]. Motivated by spectral
graph convolutions [Hammond et al., 2011, Defferrard et al.,
2016], Graph Convolutional Networks (GCN) [Kipf and
Welling, 2017] specified deep transformation functions akin
to applying convolutional filters over local graph neighbor-
hoods. The subsequent methods, e.g., Gilmer et al. [2017],
Hamilton et al. [2017], Hu et al. [2020], Lee et al. [2019],
Alsentzer et al. [2020], developed efficient algorithms for



 rich types of graphs and larger structures, including edges,
subgraphs, and entire graphs by generating embeddings
through a series of transformations that exchange embed-
dings between neighboring nodes in the graph. For example,
Jumping Knowledge (JK) Networks [Xu et al., 2018] use
skip connections to leverage diverse local neighborhoods
and generate richer representations. Similarly, Graph Iso-
morphism Networks (GIN) [Xu et al., 2019] adaptively
adjust the importance weights of nodes and Deep Graph In-
fomax (DGI) [Veličković et al., 2019] relies on maximizing
mutual information between patch representations and high-
level graph summaries to produce node representations.

Fairness and Stability in GNNs. Recent studies addressed
the issues of fairness and stability in GNNs [Dai and Wang,
2021, Fisher et al., 2020, Geisler et al., 2020, Bose and
Hamilton, 2019, Rahman et al., 2019, Zhu et al., 2019,
Zhang and Zitnik, 2020]. To achieve fairness, existing work
de-biases embeddings with respect to sensitive attributes via
adversarial learning frameworks [Dai and Wang, 2021, Bose
and Hamilton, 2019]. These methods use regularization to
implement the notion of group fairness; however, they are in-
capable of achieving counterfactual fairness. To achieve sta-
bility, recent methods use adversarial training [Zügner and
Günnemann, 2019], robust message-aggregation [Geisler
et al., 2020], and attention mechanisms [Zhu et al., 2019]
to defend GNNs against a variety of attacks that perturb
discrete graph structure or node attributes. In contrast, our
unifying framework can learn graph embeddings that are
simultaneously fair and stable.

3 PRELIMINARIES

Notation. Let G = (V, E ,X) denote an undirected graph
comprising of a set of nodes V and a set of edges E . Let
X = {x1,x2, . . . ,xN} denote the set of node attribute vec-
tors corresponding to all the nodes in V . More specifically,
xv ∈ X is an M -dimensional vector which captures the
attribute values of node v ∈ V . Let N = |V| denote the
number of nodes in the graph and let A ∈ RN×N be the
graph adjacency matrix where element Auv = 1 if there ex-
ists some edge e ∈ E between nodes u and v, and Auv = 0
otherwise. We also use Nu to denote the set of immedi-
ate neighbors of node u, i.e., Nu = {v ∈ V|Auv = 1}.
Furthermore, let Iu ∈ {0, 1}N denote the binary incidence
vector which captures all the edges incident on node u, i.e.,
Iuv = 1 if an edge exists between nodes u and v otherwise
it is set to 0. Finally, we introduce bu to capture all the
information associated with node u, i.e., bu = [xu; Iu] de-
notes the concatenation of node attribute vector and binary
incidence vector corresponding to node u. We also generate
an augmented graph G′ = (V, E ′, X̃) as follows: for each
node u ∈ V in the original graph, we generate a correspond-
ing node in the augmented graph by slightly perturbing the
attribute values, incident edges, and/or modifying the value

of the sensitive attribute of node u. The adjacency matrix
and node attribute vectors corresponding to this augmented
graph G′ are denoted by Ã and X̃.

We consider a GNN withK layers and denote the representa-
tions output by each of these layers as h1

u,h
2
u, · · · h

K−1
u ,hKu

for a given node u. We use zu to denote the representa-
tion output by the last layer of the GNN for node u i.e.,
zu = hKu . Analogously, z̃u denotes the representation out-
put by the last layer of the GNN for node u in the aug-
mented graph G′. We assume that the (dis)similarity be-
tween any two node representations is given by a distance
metric D : Rd × Rd → R. Our goal is to learn an encoder
function ENC which maps a given node u to a representation
zu i.e., ENC(u) = zu. Lastly, let f denote a downstream
classifier that maps the node representation zu of a given
node u to a class label ŷu.

Graph Neural Networks. Many GNNs can be formulated
as message passing networks [Wu et al., 2020] specified
by trainable operators MSG, AGG, and UPD. In a K-layer
GNN, the operators are recursively applied on G, specify-
ing how neural messages (i.e., embeddings) are exchanged
between nodes, aggregated, and transformed to arrive at
final node representations in the last layer of transforma-
tions. Typically, a message between a pair of nodes (u, v)
in layer k is defined as a function of hidden representa-
tions of nodes hk−1u and hk−1v from the previous layer:
mk
uv = MSG(hk−1u ,hk−1v ). In AGG, messages from Nu

are aggregated as mk
u = AGG(mk

uv|u ∈ Nu). In UPD, the
aggregated message mk

u is combined with hk−1u to produce
u’s representation for layer k as hku = UPD(mk

u,h
k−1
u ).

Final node representation zu = hKu is the output of the last
layer.

Fairness and Stability. Our goal is to learn node represen-
tations that are fair and stable. More specifically, the notions
of fairness and stability that we consider in this work are
counterfactual fairness and Lipschitz continuity respectively.
Below, we provide definitions of these notions and formalize
them in the context of graph representation learning.

Counterfactual Fairness: A function is considered to be
counterfactually fair if its output is independent of the sen-
sitive attribute, i.e., changing the sensitive attribute value
of any given instance should not affect the output of the
function for that instance. In the context of graph representa-
tion learning, this notion can be interpreted as follows: node
representations output by encoders should be independent
of the sensitive attribute.

Definition 1. An encoder function ENC satisfies counterfac-
tual fairness if the following holds for any given node u:

ENC(u) = ENC(ũs) (1)

where ũs is a node in the augmented graph which is gener-
ated by modifying/flipping the value of the sensitive attribute
(s) of node u while keeping everything else constant.



 Stability via Lipschitz Continuity: A function is considered
to be stable according to the notion of Lipschitz continuity
if slightly perturbing any given instance does not drasti-
cally change the output of the function. In the context of
graph representation learning, this notion can be interpreted
as follows: small perturbations to node attributes and/or
incident edges should not drastically change the resulting
representations.

Definition 2. An encoder function ENC is stable according
to the notion of Lipschitz continuity if:

||ENC(ũ)− ENC(u)||p ≤ L||b̃u − bu||p, (2)

where ũ is a node in the augmented graph generated by
perturbing u’s attribute values and/or incident edges, bu and
b̃u capture the attribute and incident edge information for
nodes u and ũ respectively, and L is the Lipschitz constant.

4 OUR FRAMEWORK NIFTY

Next, we describe our framework NIFTY which aims to gen-
erate fair and stable graph embeddings. To achieve this goal,
NIFTY infuses fairness and stability in the objective func-
tion (Section 4.1) as well as in the architecture (Section 4.2)
of underlying GNN.

Problem formulation (Fair and Stable embeddings).
Given a graph G = (V, E ,X), NIFTY aims to generate
d-dim. embeddings zu ∈ Rd that are counterfactually fair
(Eq. 1) and stable to attribute and structural perturbations
of G (Eq. 2).

4.1 ENFORCING FAIRNESS AND STABILITY IN
THE OBJECTIVE FUNCTION

To infuse fairness and stability in the objective function, we
introduce a triplet-based objective that maximizes the agree-
ment between the original graph and its counterfactual and
noisy views. To this end, we build off the Siamese networks
to maximize this agreement, i.e., the two augmented net-
work neighborhoods and the augmented attribute vectors of
the same node should result in the same embedding [Chen
et al., 2020, Chen and He, 2020]. Next, we describe the
graph augmentation procedure.

Generating augmented views of graph structure and attribute
information is key for the Siamese learning approach. We
generate them using node-, sensitive attribute-, and edge-
level perturbations.

a) Perturbing node attributes. We draw a random attribute
masking vector r ∈ {0, 1}M from a Bernoulli distribution,
i.e., r ∼ B(pn), where pn is the probability of independently
perturbing each attribute (except for the sensitive attribute
s) in xu. The augmented attribute vector is then defined as
x̃u = xu + r ◦ δ, where δ ∈ RM is sampled from a normal
distribution.

b) Counterfactual perturbation of sensitive attribute.
We modify the value of sensitive attribute s in xu to gen-
erate a counterfactual. More specifically, we consider the
case where the sensitive attribute is a binary variable (i.e.,
s ∈ {0, 1}) and we create a counterfactual node ũs by flip-
ping the value of s from 0 to 1 or vice-versa.

c) Perturbing graph structure. We draw a random binary
mask from a Bernoulli distribution, i.e., Re ∼ B(1 − pe),
where Re ∈ {0, 1}N×N and pe denotes the probability
with which an edge is dropped from G. We construct the
augmented adjacency matrix as Ã = A ◦Re.

To learn embeddings that are invariant to the sensitive at-
tribute and stable against perturbations of the graph structure
and non-sensitive attributes, we train the GNN encoder ENC
using the Siamese framework [Bromley et al., 1994]. The en-
coder generates representations z̃u of the augmented graph
at every iteration. By generating augmented graphs, NIFTY
can induce appropriate bias into the underlying GNN to
learn embeddings that are invariant to the combination of
counterfactual nodes as well as to random perturbations in
the graph structure. A predictor t : Rd → Rd consisting of
a fully-connected neural layer is then used to transform and
match the representations with each other. Inspired by Grill
et al. [2020], we define a triplet-based objective function that
optimizes the similarity between the original graph and its
augmented (i.e., counterfactual and noisy) representations:

Ls = Eu
[1
2

(
D(t(zu), sg(z̃u))+D(t(z̃u), sg(zu))

)]
, (3)

where t(zu) and t(z̃u) are the transformed representations
of node u and perturbed node ũ respectively,D is the cosine
distance, and stopgrad (sg) prevents gradients from being
backpropagated. The stopgrad signifies that the node repre-
sentations z̃u are considered as constant when operating on
t(zu) and vice-versa.

Finally, the overall objective function for NIFTY is:

min
θENC,θt,θf

Eu
[
(1− λ)Lc] + λLs, (4)

where {θENC, θt, θf} denotes trainable parameters of ENC,
predictor t, and classifier f , Lc is the binary cross entropy
(BCE) loss, and the expectation is taken over training nodes
in G. The regularization coefficient λ controls the trade-off
between downstream node classification loss Lc and the
tripled-based objective Ls. Algorithm 1 summarizes the
overall training procedure of NIFTY.

4.2 ENFORCING FAIRNESS AND STABILITY IN
GNN ARCHITECTURE

Next, we describe how NIFTY infuses fairness and stabil-
ity in the architecture of the underlying GNN. In partic-
ular, NIFTY modifies the GNN’s routing of neural mes-
sages. Recall (Sec. 3) that a typical GNN layer is given by:



 hku = UPD(AGG(MSG(hk−1u ,hk−1v )|v ∈ Nu),hk−1u ). As
we will see in this section, NIFTY modifies the UPD step of
each GNN layer.

Without loss of generality, we can consider AGG operator
to be a fully-connected layer and UPD to be a non-linear
activation function σ. Using these specific parametriza-
tions, the message-passing step can be rewritten as: hku =
σ
(
Wk

a hk−1u +Wk
n

∑
v∈N (u) h

k−1
v

)
, where Wk

n is the
weight matrix associated with the neighbors of node u at
layer k and Wk

a is the self-attention weight matrix at layer
k.

Definition 2 tells us that as the local network neighborhood
and the node attribute vector of node u change from bu
to b̃u, the Lipschitz constant L provides an upper bound
on how much u’s node embedding can change. In fact, the
Lipschitz constant L represents the smallest value for which
Eqn. 2 in Definition 2 holds true. Leveraging this under-
standing, NIFTY bounds the change in u’s embedding by
appropriately normalizing the encoder’s weight matrices.
This is possible because of the slope-restricted structure of
the nonlinear activation function in the UPD step (see proof
in Sec. 5). Using our derivations in Sec. 5, at each layer
k, we calculate the Lipschitz constant L of term Wk

ah
k−1
u

as the spectral norm of the weight matrix. We use L to
normalize Wk

a as:

W̃k
a = Wk

a/σ(Wk
a). (5)

We use this Lipschitz-normalized weight matrix W̃k
a

to modify the UPD step as: hku = σ(W̃k
a hk−1u +

Wk
n

∑
v∈N (u) h

k−1
v ).

Lipschitz normalization of weight matrices is appealing for
two reasons. It bounds the difference between embeddings
of original and perturbed nodes (attributes). It also estab-
lishes a connection between the stability and counterfactual
fairness in a sense that similar inputs should yield similar
predictions. Next, we investigate this connection in detail.

5 THEORETICAL ANALYSIS OF NIFTY

Here, we provide detailed theoretical analysis of our frame-
work NIFTY. More specifically, we prove that representa-
tions generated by NIFTY are stable. We also provide a
theoretical upper bound on the unfairness of the resulting
representations. Lastly, we show that the downstream clas-
sifiers that leverage the representations output by NIFTY
satisfy counterfactual fairness as well.

Theorem 1 (NIFTY Stability). Given a non-linear activa-
tion function σ that is Lipschitz continuous, the represen-
tations learned by our framework NIFTY are stable i.e.,

||ENC(ũ)−ENC(u)||p ≤
K∏
k=1

||Wk
a||p||(b̃u−bu)||p, (6)

Algorithm 1: Overview of NIFTY algorithm
Input: Graph G = (V, E ,X); regularization λ; sensitive

attribute s; number of training epochs num_epoch
Output: Optimized model parameters {θENC, θt, θf}; fair and

stable representations zu for u ∈ G
for ep← 1 to num_epoch do

for layer k ← 1 to K do
Lipschitz-normalize ENC’s weights Wk

a (Eqn. 5)
end
for node u← 1 to |V | do

Perturb attributes and graph structure to get ũ
(Sec. 4.1)

Modify sensitive attribute value to get ũs (Sec. 4.1)
Encode zu = ENC(u), z̃u = ENC(ũ),
z̃su = ENC(ũs)

Transform embeddings: t(zu), t(z̃u), t(zsũ)
(Sec. 4.1)

end
Calculate triplet-based similarity (Eqn. 3)
Apply downstream classifier f as ŷu = f(ENC(u))
Update {θENC, θt, θf} according to the objective in Eqn. 4

end

where ũ is a node in the augmented graph which is generated
by perturbing the attribute values and/or incident edges of
node u, bu and b̃u capture all attribute values and incident
edge information for nodes u and ũ respectively, and Wk

a is
weight matrix associated with attributes of node u at layer
k.

Proof. Following Sec. 4.2, the node representation output
by layer k of the GNN for a perturbed node ũ is given by:

h̃ku = σ
(
Wk

a h̃k−1u +Wk
n

∑
v∈N (ũ)

hk−1v

)
, (7)

where N (ũ) is the neighborhood of node ũ which is ob-
tained after perturbing edges incident on node u. Now, the
difference between the node embeddings obtained after the
message-passing in layer k is:
h̃ku−hku =

σ
(
Wk

ah̃
k−1
u +Wk

n

∑
v∈N (ũ)

hk−1v

)
−σ
(
Wk

ah
k−1
u +Wk

n

∑
v∈N (u)

hk−1v

)
Taking the norm and assuming that σ is normalized Lips-
chitz, i.e., ||σ(b)− σ(a)||p ≤ ||b− a||p, we get:
||h̃ku−hku||p
≤ ||Wk

a(h̃k−1u −hk−1u )+Wk
n(
∑

v∈N (ũ)

hk−1v −
∑

v∈N (u)

hk−1v )||p (8)

The second term in the above inequality will be close to 0
since the probability of dropping an edge pe is very small.
So, we can drop the second term and then leverage Cauchy-
Schwartz inequality to get:

||h̃ku − hku||p ≤ ||W
k
a(h̃k−1u −hk−1u )

≤ ||Wk
a||p||(b̃u − bu)||p

(9)



 Note that the encoder ENC is essentially a sequential compo-
sition of message-passing functions applied at layers 1 · · ·K.
Furthermore, the composition of two Lipschitz continuous
functions with Lipschitz constants L1 and L2 is a new Lip-
schitz continuous function with L1 × L2 as the Lipschitz
constant [Gouk et al., 2021]. Putting it all together, we have:

||ENC(ũ)−ENC(u)||p = ||z̃u−zu||p = ||h̃Ku −hKu ||p

≤
K∏
k=1

||Wk
a||p||(b̃u−bu)||p,

(10)

where K is the last GNN layer. In the case of p = 2, the
Lipschitz constant in the above equation is equal to the
product of the largest singular values (i.e., spectral norm) of
weight matrices Wk

a and can be approximated with a small
number of iterations of the power method. We thus perform
spectral normalization on the weights of each layer and use
the normalized weights W̃k

a in the UPD step of each layer.

Theorem 2 (NIFTY Counterfactual Fairness). Given a
non-linear activation function σ that is Lipschitz continu-
ous and a binary valued sensitive attribute s, the (counter-
factual) unfairness of the representations learned by our
framework NIFTY can be bounded as follows:

||ENC(ũs)− ENC(u)||p ≤
K∏
k=1

||Wk
a||p (11)

where ũs is a node in the augmented graph which is gen-
erated by modifying (flipping) the value of the sensitive at-
tribute (s) of node u while keeping everything else constant.

Proof Sketch. In order to prove this theorem, we will first
prove the following:

||ENC(ũs)− ENC(u)||p ≤
K∏
k=1

||Wk
a||p||(b̃su − bu)||p

(12)
It can be seen that the above equation has a similar form as
that of Eqn. 6 in Theorem 1. Therefore, the above equation
can be proved analogously. Note that the node ũs in Eqn. 12
is exactly the same as the node u except that the value of the
sensitive attribute is flipped (either from 0 to 1, or from 1 to
0). Therefore, ||(b̃su − bu)||p = 1 and we obtain Eqn. 11.

Proposition 1 (Counterfactual Fairness of Downstream
Classifier). If the representations learned by our framework
NIFTY satisfy counterfactual fairness, then a downstream
classifier f : zu → ŷu which leverages these representa-
tions also satisfies counterfactual fairness.

Proof is provided in the Appendix A.

6 EXPERIMENTS

Next, we present experimental results for our NIFTY frame-
work. We address the following key questions: Q1) Does

NIFTY enable GNNs to learn fair and stable embeddings?
Q2) Can NIFTY achieve group fairness? Q3) How does the
interplay between fairness and stability affect downstream
performance? Q4) Are changes to GNN’s architecture and
objective function necessary for fair and stable predictions?

6.1 DATASETS AND EXPERIMENTAL SETUP

We first describe datasets designed to study fair and stable
network embeddings and then outline experimental setup.

Datasets. We construct three new datasets. 1) The German
credit graph has 1,000 nodes representing clients in a Ger-
man bank that are connected based on the similarity of their
credit accounts. The task is to classify clients into good
vs. bad credit risks considering clients’ gender as the sen-
sitive attribute [Dua and Graff, 2017]. 2) The Recidivism
graph has 18,876 nodes representing defendants who got re-
leased on bail at the U.S state courts during 1990-2009 [Jor-
dan and Freiburger, 2015]. Defendants are connected based
on the similarity of past criminal records and demographics.
The goal is to classify defendants into bail (i.e., unlikely to
commit a violent crime if released) vs. no bail (i.e., likely to
commit a violent crime) considering race information as the
protected attribute. 3) The Credit defaulter graph has 30,000
nodes representing individuals that we connected based on
the similarity of their spending and payment patterns [Yeh
and Lien, 2009]. The task is to predict whether an individual
will default on the credit card payment or not while consid-
ering age as the sensitive attribute. See Appendix for details
on dataset construction.

Performance evaluation. To measure predictive perfor-
mance of downstream binary node classification, we
use AUROC and F1-score. To quantify group fairness,
we use statistical parity (SP) [Dwork et al., 2012],
defined as: ∆SP=|P (ŷu=1|s=0)−P (ŷu=1|s=1)|, and
equal opportunity (EO) [Hardt et al., 2016], defined
as: ∆EO=|P (ŷu=1|yu=1, s=0)−P (ŷu=1|yu=1, s=1)|,
where probabilities are estimated on the test set [Dai and
Wang, 2021]. To measure counterfactual fairness, we de-
fine the unfairness score as the percentage of test nodes for
which predicted label changes when the node’s sensitive at-
tribute is flipped. Finally, the instability score represents the
percentage of test nodes for which predicted label changes
when random noise is added to node attributes.

GNN methods. To investigate the flexibility of NIFTY,
we incorporate it into five estabished and state-of-the-art
GNN methods: GCN [Kipf and Welling, 2017], Graph-
SAGE [Hamilton et al., 2017], Jumping Knowledge
(JK) [Xu et al., 2018], GIN [Xu et al., 2019], and Info-
Max [Veličković et al., 2019].

Baseline methods and implementation. We consider two
baseline methods: FairGCN [Dai and Wang, 2021] and Ro-
bustGCN [Zhu et al., 2019]; all hyperparameters are set
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Figure 2: Unfairness (top) and instability (bottom) error rates for five GNNs and their NIFTY counterparts. NIFTY-enhanced
GNNs give fairer and more stable predictions than their unmodified counterparts across all three datasets and five GNNs.

Table 1: Comparison of NIFTY to existing methods for improving fairness (i.e., FairGCN [Dai and Wang, 2021]) and
stability (i.e., RobustGCN [Zhu et al., 2019]) of GNNs. Shown is average performance across five independent runs. The
counterfactual fairness does not apply to FairGCN (i.e., N/A) as FairGCN cannot consider sensitive attributes. Arrows (↑, ↓)
indicate the direction of better performance. NIFTY outperforms baselines methods by a large margin.

Dataset Method AUROC (↑) F1-score (↑) Unfairness (↓) Instability (↓) ∆SP (↓) ∆EO (↓)

German credit graph
FairGCN
RobustGCN
NIFTY-GCN

75.21±0.36
71.06±1.48
70.32±4.42

81.52±0.68
78.85±6.39
81.98±0.82

N/A
7.68±4.69
1.12±0.77

7.84±2.20
4.48±1.07
4.48±3.23

38.12±4.87
25.78±10.92
15.08±8.22

26.70±4.27
18.47±9.87
12.56±8.60

Recidivism graph
FairGCN
RobustGCN
NIFTY-GCN

87.55±0.60
87.25±1.67
81.40±0.89

78.14±0.94
79.02±2.84
69.24±0.70

N/A
2.61±1.58
0.84±0.68

24.37±2.33
13.02±6.06
13.28±1.62

6.51±0.77
5.36±1.28
3.16±0.60

4.51±1.10
4.20±1.88
2.99±0.40

Credit defaulter graph
FairGCN
RobustGCN
NIFTY-GCN

72.69±1.23
72.98±0.26
71.92±0.19

80.16±2.03
81.79±0.60
81.99±0.63

N/A
0.94±0.60
0.63±1.28

5.73±0.60
1.68±0.83
0.95±1.16

15.86±5.16
12.41±0.54
12.40±1.62

14.43±6.06
10.16±0.49
10.09±1.55

following the authors’ guidelines. We use stop-gradient op-
eration for training the Siamese networks [Chen and He,
2020]. We set regularization coefficient to λ = 0.6 in all our
experiments and conduct a sensitivity analysis into the effect
of λ on NIFTY’s performance. See Appendix for details.

6.2 RESULTS

Next, we discuss experimental results that answer key ques-
tions highlighted at the beginning of this section (Q1-Q4).

Q1) NIFTY improves fairness and stability of GNNs.
Across three datasets and five GNNs, Fig. 2 shows that
NIFTY-augmented GNNs learn fairer and more stable em-
beddings than unmodified GNNs. On average, NIFTY im-
proves stability and fairness of GNNs by 60.87% and
92.01%, respectively. Further, NIFTY can promote fairness
and stability of GNNs without sacrificing their predictive

performance, as evidenced by AUROC and F1-scores in
Table 2. Finally, NIFTY outperforms baseline FairGCN and
RobustGCN methods by 62.07% and 57.26% on four fair-
ness and stability metrics (Table 1).

Q2) NIFTY achieves group fairness. Remarkably, while
NIFTY’s explicit aim is to capture counterfactual fairness,
our approach indirectly improves group fairness of GNNs
because it reduces information on protected attributes, and,
we argue, makes the multi-objective problem of satisfying
fairness and stability more tractable. Across three datasets,
five GNNs, and two group fairness metrics, NIFTY achieves
43.56% lower ∆SP and 34.70% lower ∆EO. Further, we
find that NIFTY achieves 36.05% lower ∆SP and 29.71%
lower ∆EO error rates than baseline methods (Table 1), sug-
gesting that in NIFTY, a node’s chance of being represented
as a particular point in the embedding space does not depend
on the node’s membership in a protected group.



 
Table 2: Results of NIFTY for five GNNs and three graph datasets. Shown is average performance across five independent
runs. Arrows (↑, ↓) indicate the direction of better performance. NIFTY keeps the predictive power (AUROC and F1-score)
of original GNNs while improving their fairness and stability (shaded area).

Dataset Method AUROC (↑) F1-score (↑) Unfairness (↓) Instability (↓) ∆SP (↓) ∆EO(↓)

German credit
graph

GCN
NIFTY-GCN

74.00±1.51
70.32±4.42

80.05±1.20
81.98±0.82

21.36±6.70
1.12±0.77

11.84±1.87
4.48±3.23

41.94±5.52
15.08±8.22

31.11±4.40
12.56±8.60

GIN
NIFTY-GIN

72.69±1.02
69.46±3.99

82.62±1.55
82.77±0.48

8.40±2.37
0.08±0.18

4.96±2.15
1.84±0.88

14.85±4.64
4.39±3.47

8.28±6.72
2.82±1.60

GraphSAGE
NIFTY-GraphSAGE

74.54±0.86
70.54±2.03

81.15±0.97
78.14±2.40

8.40±3.93
0.00±0.00

6.64±2.51
1.44±1.54

23.79±6.70
6.10±4.93

15.13±5.74
6.34±3.57

Infomax
NIFTY-Infomax

67.98±3.94
72.01±2.05

72.70±7.91
81.98±0.33

16.16±9.07
1.04±0.83

6.80±1.98
2.32±1.58

36.79±6.58
9.25±6.45

28.99±5.70
7.21±4.49

JK
NIFTY-JK

71.49±2.64
70.42±2.03

80.88±1.02
81.25±0.93

9.12±6.03
0.08±0.18

6.24±3.09
1.28±0.77

20.12±5.16
4.98±6.36

9.75±4.73
3.42±3.52

Recidivism
graph

GCN
NIFTY-GCN

86.52±0.42
81.40±0.89

77.50±0.87
69.24±0.70

9.02±3.04
0.84±0.68

21.97±1.63
13.28±1.62

8.49±0.73
3.16±0.60

5.93±0.56
2.99±0.40

GIN
NIFTY-GIN

81.32±1.61
84.28±1.42

70.97±2.48
72.07±6.14

12.40±5.42
1.09±0.49

24.82±1.16
19.29±2.67

9.91±3.24
6.57±1.77

6.83±3.02
5.17±2.15

GraphSAGE
NIFTY-GraphSAGE

91.29±0.95
92.43±0.44

81.58±1.52
82.08±2.40

6.39±1.24
0.46±0.32

41.24±6.67
25.66±5.90

1.82±1.51
6.43±0.67

2.16±0.24
5.23±1.26

Infomax
NIFTY-Infomax

89.24±0.08
79.67±0.44

80.11±0.16
67.77±1.47

6.34±0.57
0.56±0.27

14.69±0.75
13.03±0.88

7.41±0.48
4.04±0.24

3.04±0.46
3.43±0.38

JK
NIFTY-JK

88.60±0.45
81.73±0.38

79.61±0.82
70.20±1.20

4.20±2.14
0.64±0.65

13.64±1.09
11.79±0.88

7.60±0.71
4.28±1.17

4.25±0.25
3.65±1.03

Credit defaulter
graph

GCN
NIFTY-GCN

72.97±1.63
71.92±0.19

82.02±0.45
81.99±0.63

2.04±1.36
0.63±1.28

5.63±0.98
0.95±1.16

10.76±5.21
12.40±1.62

8.71±4.81
10.09±1.55

GIN
NIFTY-GIN

73.71±0.33
71.28±0.19

82.04±0.60
84.97±0.58

14.89±9.63
0.59±0.24

21.73±4.81
2.36±0.78

13.48±2.45
4.93±3.75

11.19±3.20
4.60±2.80

GraphSAGE
NIFTY-GraphSAGE

75.19±0.15
73.27±0.21

82.78±0.37
83.64±1.66

12.04±9.60
0.35±0.44

38.19±14.97
2.57±1.15

15.66±1.62
12.65±0.95

13.52±1.47
9.93±0.67

Infomax
NIFTY-Infomax

74.17±0.11
71.86±0.26

82.58±0.33
81.70±0.06

4.87±2.07
0.09±0.08

2.67±0.43
0.53±0.20

14.57±0.69
11.83±0.36

12.26±0.72
9.52±0.31

JK
NIFTY-JK

73.80±0.06
72.07±0.30

82.70±0.73
81.78±0.08

6.03±4.63
0.02±0.02

4.45±0.83
0.26±0.09

12.70±1.74
11.77±0.09

9.51±0.07
9.42±0.37
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Figure 3: The effects of regularization on the performance of
NIFTY. Shown are results for NIFTY-GIN and the German
credit graph (see Fig. 1 for other datasets). Over a wide range
of regularization strength (0.1 < λ < 0.5), NIFTY achieves
a near-perfect stability and fairness on the downstream task
without sacrificing the predictive ability of GIN.

Q3) Trade-offs between fairness, stability, and predic-
tive performance. As we increase regularization coefficient
λ in NIFTY (Fig. 3), we find that the error rates for counter-
factual fairness and stability steadily decrease. Interestingly,
even with a modest amount of regularization (λ = 0.1),
NIFTY achieves a 94.29% improvement in unfairness error
rate. As expected, a more strongly regularized NIFTY model
takes a hit on its predictive performance (higher error rate
for AUROC and F1-score). See Fig. 1 for similar trends on
the recidivism and credit defaulter graphs.

Q4) Ablation study. We conduct ablations on two key
NIFTY’s components, namely the objective function and
the layer-wise normalization of GNN’s architecture using
the Lipschitz constant. Results show that both components
are necessary to generate embeddings that are simultane-
ously fair and stable (Table 3). In particular, we observe
a 90.7% improvement in fairness of NIFTY-GCN as com-
pared to vanilla GCN, providing empirical evidence for our
theoretical analysis that the Lipschitz normalization can
improve both fairness and stability of graph embeddings
(Section 5).



 
Table 3: Ablation study on the recidivism graph. Shown is average performance across five independent runs, evidencing that
NIFTY’s changes in the GNN architecture and the objective function are complementary and improve fairness and stability.

Method AUROC (↑) F1-score (↑) Unfairness (↓) Instability (↓) ∆SP (↓) ∆EO(↓)
GCN [Kipf and Welling, 2017]
NIFTY-GCN w/o obj. changes (Sec. 4.1)
NIFTY-GCN w/o arch. changes (Sec. 4.2)
NIFTY-GCN

86.52±0.42

80.02 ±0.20

84.83 ±2.85

81.40 ±0.89

77.50±0.87

67.51 ±0.23

76.15±5.74

69.24±0.70

9.02±3.04

2.61±0.64

1.64 ±1.58

0.84±0.68

21.97±1.63

13.69±0.60

13.98 ±1.38

13.28±1.62

8.49±0.73

5.86±0.85

4.29 ±1.32

3.16±0.60

5.93±0.56

4.65±0.49

3.48 ±1.37

2.99±0.40

7 CONCLUSIONS & FUTURE WORK

We propose and address the problem of learning representa-
tions that are both fair and stable. To this end, we introduce
NIFTY, a unified framework which exploits a key connec-
tion between counterfactual fairness and stability to learn
representations that satisfy both these properties. At its core,
NIFTY, outlines a two-level strategy to modify an existing
GNN both at the architectural as well as the objective func-
tion level. We carry out detailed theoretical analysis to show
that the representations learned by NIFTY are both coun-
terfactually fair and stable. Further, results on new graph
datasets from domains such as criminal justice and financial
lending show that NIFTY can considerably improve fairness
(both in terms of counterfactual and group fairness) and
stability without sacrificing predictive performance. This
work paves way for several exciting future directions. For
instance, it would be interesting to extend NIFTY to generate
fair and stable representations of other graph components
(e.g., edges, subgraphs) and to cater to other downstream
tasks (e.g., link prediction, graph classification).
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