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Abstract

In many real-world scenarios, such as gene
knockout experiments, targeted interventions
are often accompanied by unknown interven-
tions at off-target sites. Moreover, different
units can get randomly exposed to different
unknown interventions, thereby creating a mix-
ture of interventions. Identifying different com-
ponents of this mixture can be very valuable
in some applications. Motivated by such situ-
ations, in this work, we study the problem of
identifying all components present in a mix-
ture of interventions on a given causal Bayesian
Network. We construct an example to show
that, in general, the components are not iden-
tifiable from the mixture distribution. Next,
assuming that the given network satisfies a
positivity condition, we show that, if the set of
mixture components satisfy a mild exclusion

assumption, then they can be uniquely iden-
tified. Our proof gives an efficient algorithm
to recover these targets from the exponentially
large search space of possible targets. In the
more realistic scenario, where distributions are
given via finitely many samples, we conduct a
simulation study to analyze the performance
of an algorithm derived from our identifiability
proof.

1 INTRODUCTION

Motivation Causal Bayesian Networks (CBN) (Pearl
[2009], Spirtes [2010]), have become the popular choice
to model causal relationships in many real-world sys-
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tems. These models can simulate the effects of external
interventions that forcibly fix target system variables
to desired target values. The simulation is done via the
do() operator (Pearl [2009]) wherein the CBN is altered
by breaking incoming edges of the target variables and
fixing them to desired target values. Pre-estimating
the effect of interventions can help in decision making,
for example, interventions on a CBN describing gene
interactions can guide gene editing experiments.

However, real-world interventions are not always precise
and mistakenly end up intervening other unintended
targets. For example, gene knockout experiments via
the CRISPR-Cas9 gene-editing technology perform un-
intended cleavage at unknown genome sites (Fu et al.
[2013], Wang et al. [2015]). Moreover, the unintended
intervention targets1 can themselves be noisy i.e. differ-
ent individuals targeted by the same intervention might
undergo completely different off-target interventions.
For example, Aryal et al. [2018] demonstrated that
same gene editing experiment (using CRISPR-Cas9) on
mice embryos exhibited different unintended cleavage
for different mice. In such situations, units (samples)
that underwent different unintended interventions are
not segregated and therefore the generated distribu-
tion becomes a mixture of individual interventional
distributions. We ask the following natural question.

Question 1.1. Given access to a mixture of inter-

ventional distributions, under what conditions can one

identify all the intervention targets?

Our Contributions First, we model the situation of
identifying hidden off-target interventions as the prob-
lem of identifying individual components of a mixture
of interventions. We assume an underlying CBN and
model interventions via the do() operator described
above. Second, by constructing examples, we show
that, in general for a given CBN and an input mix-
ture distribution, components of the mixture might

1we use terms targets and components interchangeably
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 not be unique. Using this, we motivate the need for
a mild positivity assumption (Assumption 3.2) on the
distribution generated by the CBN and a mild and
reasonable exclusion assumption (Assumption 3.1) on
the structure of the intervention components present
in the mixture. Third, we prove that, given access to a
CBN satisfying positivity and any input mixture hav-
ing intervention components satisfying exclusion, such
intervention components generating the mixture can be
uniquely identified from its distribution. Fourth, given
oracle access to marginals of the distributions gener-
ated by the CBN and the mixture, our identifiability
proof gives an efficient algorithm to recover target com-
ponents from an exponentially large space of possible
components. Finally, in Section 5, we conduct a simula-
tion study to analyze the performance of an algorithm
(Algorithm 1 in Appendix D) directly inspired from
our identifiability proof, but with access to only finitely
many samples. Even though the goal of our paper is to
prove identifiability of these intervention targets, our
simulations indicate that our algorithm is promising in
the realistic situation of finitely many samples.

Related Prior Work Recently Squires et al. [2020]
considered the problem of causal discovery using un-
known intervention targets, and, as a crucial intermedi-
ate step, prove identifiability of these targets. They also
design two algorithms UT-IGSP and JCI-GSP (based
on the Joint Causal Inference framework in Mooij et al.
[2020]) to recover these targets from data. As discussed
in our motivation, in many real situations, such as Aryal
et al. [2018], the off-target effects are themselves noisy
and end up creating mixtures of multiple unknown in-
terventions. Since Squires et al. [2020] assumes separate
access to each unknown intervention, their algorithm
cannot be used in our situation. Another line of work
related to ours is the study of mixtures of Bayesian
Networks. Perfect interventions i.e. do() operators on
the CBNs create new interventional CBNs (Definition
1.3.1 in Pearl [2009]) and therefore the input mixture
in our setup is actually a mixture of Bayesian Networks.
This is a more general problem and was tackled first in
Thiesson et al. [1998]. They developed an Expectation-
Maximization (EM) based heuristic to find individual
Bayesian Network components. However, they do not
investigate identifiability of the components. In our
setting, we care about identifiability since the compo-
nents correspond to the unknown interventions. Along
with recovering the individual components of a mixture,
there is also growing interest in developing techniques
to understand conditional independence (CI) relation-
ships among the variables in the mixture data. For ex-
ample, some recent works try to build other graphical
representations, from which the CI relationships in the
mixture can be easily understood (Spirtes [1994], Ram-
sey et al. [2011], Strobl [2019a,b], Saeed et al. [2020]).

Even though these new representations can identify
some aspects of the components, none of these works
prove or discuss the uniqueness and identifiability of
the components, which is the main interest of our work.
Finally, we would like to mention that the general area
of causal discovery and inference using different kinds
of unknown interventions has received a lot of attention
lately (Eaton and Murphy [2007], Squires et al. [2020],
Jaber et al. [2020], Mooij et al. [2020], Rothenhäusler
et al. [2015]). Even though many of these do not align
with goal of our paper, the growing interest in this
area highlights seriousness of the issue of unintended
stochasticity in targeted interventions and the desire
to design algorithms robust to them.

2 PRELIMINARIES

Notation We use capital letters (e.g. X) to represent
random variables and the corresponding lower case let-
ter x to denote the assignment X = x. The set of values
taken by random variable X will be denoted by CX .
Unless otherwise specified, all random variables in this
paper are discrete and have finite support i.e. |CX | <∞.
A tuple or set of random variables is denoted by capital
bold face letter (e.g. X) and the corresponding lower
case bold faced letter x will denote the assignment
X = x. Let, CX =

∏
Xi∈X CXi

denote the set of all
possible values that can be taken by X. Probability of
X taking the value x is denoted by P(X = x) or equiv-
alently as P(x) and probability of X = x given Y = y
is denoted as P(X = x|Y = y) or equivalently with
P(x|y). We will use [n] to denote the set {1, 2, ..., n},
[m,n] to denote set {m,m+1, . . . , n}, calligraphic cap-
ital letters e.g. S to denote sets. Size of any set S is
denoted by |S|. R,R+ and R≥0 will denote the set of
real numbers, positive real numbers and non-negative
real numbers respectively.

Bayesian Network Let G = {V , E} be a directed
acyclic graph (DAG) with node set V = {V1, . . . , Vn}
where each node Vi represents a random variable. G is
called a Bayesian Network if the following factorization
of the joint probability of V holds.

P(v) =
∏

Vi∈V

P(vi|pa(vi))

where pa(Vi) are parent nodes of Vi.

A causal Bayesian Network is a Bayesian Network
where all edges denote direct causal relationships. It al-
lows for modeling effect of external actions called “inter-
ventions”, by appropriate modification of the Bayesian
Network. A formal definition of causal Bayesian Net-
works can be found in Definition 1.3.1, Pearl [2009].

Interventions: As mentioned above, these capture



 external actions on a system under consideration, for
example, dosage of medicines administered to a pa-
tient, providing subsidies to poorer sections of the pop-
ulation, etc. A natural way to model them in causal
Bayesian Networks is to perform the act of causal

surgery, wherein, incoming edges into the node(s) to
be intervened are removed and the node(s) is forcibly
fixed to the desired value. As described in Definition
1.3.1, Pearl [2009], the new network thus obtained is
treated as the Bayesian Network modelling effect of the
intervention. Formally, following the notation in Pearl
[2009], if we perform intervention on nodes X ⊆ V
with a desire to set it to value x∗ ∈ CX , then the
effect of this intervention (also known as interventional
distribution) is a probability distribution on V denoted
as P(v|do(x∗)) (or Px∗(v)). In the intervened Bayesian
Network, conditional probability distributions (CPD)
P(Xi|pa(Xi)) of all Xi ∈ X that are intervened and
set to x∗i , changes to the Kronecker delta function δxi,x∗

i

i.e. P(Xi = xi|pa(Xi)) = 1 if xi = x∗i else it is 0. The
CPD of the non-intervened nodes i.e. V \X remains
unchanged. Hence the interventional distribution fac-
torizes as:

Px∗(v) =
∏

Vi /∈X

P(vi|pa(vi))
∏

Vi∈X

δvi,x∗
i

Such interventions are called perfect interventions. They
capture many real-world situations like gene-editing-

experiments, where a certain target gene is spliced out
and replaced with the desired gene. Other kinds of
interventions such as imperfect, uncertain e.t.c. have
been defined in literature (Section 2 in Eaton and
Murphy [2007]). However, in this paper we only deal
with perfect interventions.

3 PROBLEM FORMULATION AND

MAIN THEOREM

As motivated in Section 1, the intended interventions
performed during an experiment often have hidden
off-target effects, which could themselves be stochastic,
leading to different hidden treatments on different indi-
viduals. We can model such a situation as an unknown
mixture of different off-target interventions. Here is a
formal definition.

Definition 3.1 (Mixture of Interventions). Let G =
{V , E} be a causal Bayesian Network. A probability dis-
tribution Pmix(V ) is called a mixture of interventions
if for some m ∈ N, there exist subsets T1, . . . ,Tm ⊆ V ,
corresponding values ti ∈ CTi

, and positive scalar
weights πi ∈ R+, i ∈ [m], such that

Pmix(V ) =
m∑

i=1
πiPti(V )

where ti 6= tj for all i 6= j ∈ [n]2. We allow Ti = ∅, in
which case, Pti(V ) is defined as P(V ). Note that for
Pmix to be a valid distribution

∑m
i=1 πi = 1. We refer

to the set T = {(ti, πi), i ∈ [m]} as a set of intervention
tuples generating the mixture.

Uniqueness and Identifiability : In our mixture
model, each of the targets ti, corresponds to an in-
tervention that intentionally or unintentionally tran-
spired in the experiment. Since our ultimate goal
is to recover them from the mixture distribution
(see Question 1.1), the problem only makes sense
if they “uniquely” define the mixture. Formally,
there should not exist two distinct sets of interven-
tion tuples T1 = {(t1

1, π
1
1), . . . , (t1

n, π
1
n)} and T2 =

{(t2
1, π

2
1), . . . , (t2

m, π
2
m)} which generate the same mix-

ture distribution, i.e.,

Pmix(V ) =
n∑

i=1
π1

i Pt1
i
(V ) =

m∑
j=1

π2
jPt2

j
(V )

An immediate next question is that of “identifiability”.
Given access to a causal Bayesian Network and the
joint distribution P(V ) it captures, does there exist an
algorithm, that takes as input the mixture distribution
Pmix(V ) and exactly recovers the unknown set of inter-
vention tuples that generated Pmix(V )? In the general
case, the answer to both these questions is no! Using a
very simple network, with just one node, we show that
mixture distributions need not be unique, motivating
the need for more assumptions. More complicated ex-
amples with multiple nodes can be easily created in
the same way, but, for a cleaner presentation we stick
to this example since its purpose is to only motivate
an assumption we make next.

Example 3.1. Consider a causal Bayesian Network
with a single binary variable V = {V1}, i.e. CV1 =
{0, 1} and denote P(V1 = 0),P(V1 = 1) by p0, p1 re-
spectively. Define the mixture,

Pmix(V1) = π0P0(V1) + π1P1(V1) + (1− π0 − π1)P(V1)

On setting V1 = 0 and then V1 = 1 in the above
equation, and rearranging the terms, we obtain[

1− p0 −p0
p0 − 1 p0

] [
π0
π1

]
=
[

Pmix(V1 = 0)− p0
Pmix(V1 = 1)− p1

]

The above 2× 2 matrix is singular and has rank 1 i.e.
the system does not have a unique solution. In fact,
when 0 < p0 < 1,

π0 = Pmix(V1 = 0)− p0 + p0t

1− p0
, π1 = t

2if ti = tj , then (πi + πj)Pti (V ) is one component.



 are all valid solutions whenever t ≤ 1− Pmix(V1 = 0)
and t ≥ max{p0−Pmix(V1=0)

p0
, 0}. Therefore, uniqueness

of intervention tuples does not hold in general.

Even though the example looks very simple, it captures
the main reason behind the non-identifiability of the set
of intervention tuples. Exactly like the above example,
for any mixture, we can obtain systems of linear equa-
tions by evaluating marginal probabilities of Pmix for
different settings of V . Our goal then would be to find
settings which help us solve these systems uniquely
and recover the set of intervention tuples. Unfortu-
nately, in this process, similar to the above example,
the linear systems will have dependent equations and
therefore infinitely many solutions. To get over this
issue, we focus our attention on sets of intervention
tuples, where, for each variable there exists some value
that is missing from all of it’s intervention targets. In,
our main theorem, we show that any mixture generated
by such a set cannot be generated by any other set of
this kind. Next, we formally state the assumption and
then discuss why it is extremely mild and reasonable
in most real situations.

Assumption 3.1 (Exclusion). Let T be a set of in-
tervention tuples as defined in Definition 3.1. We say
that T satisfies exclusion, if for all Vi ∈ V , there exists
v̄i ∈ CVi such that v̄i /∈ t for any target t belonging to
any tuple in T . We say that a mixture of interventions
Pmix(V ) satisfies exclusion if some set of intervention
tuples T generating it satisfies exclusion.

Remark. This assumption puts only a mild constraint

on the set of mixtures we consider. For example, in a

network with n nodes and each node having ≤ k possible

values, excluding a fixed value of each node, can still

generate arbitrary mixtures over Ω(kn) allowed targets.

Without exclusion, there are O((k+1)n) possible targets
that generate the mixtures. Therefore the reduction is

minimal compared to the size of the space of targets we

are searching in. In real-world applications, it’s common

for nodes to have a large number of possible values.

Therefore, for each node, the possibility of off-target

interventions impacting all values becomes unlikely. We

also emphasize that the values missing from the targets

can be different for different input mixtures and are not

known to our algorithms. Our identifiability algorithm

only uses existence of such missing values making its

interpretation even more general.

Even though the above assumption helps us tackle the
singularity problem outlined in Example 3.1, it is not
enough to guarantee uniqueness of intervention tuples
in general. We also assume a simple “positivity” assump-
tion on the causal Bayesian Network, which demands
that the joint probability P(v) > 0 for any setting

V = v. In fact, using the same example as above (Ex-
ample 3.1), we show that not assuming p0, p1 > 0, can
lead to multiple set of intervention tuples satisfying As-
sumption 3.1 and generating the same mixture. To see
this, we consider the input mixture Pmix(V ) = P(V ).
The set of intervention tuples T1 = {(∅, 1)} for it
clearly satisfies Assumption 3.1 as intervention targets
(V1 = a) and (V1 = b) are excluded. Now, if p1 = 0,
then P0(V1) = P(V1) and for any π0 ∈ [0, 1], we can
trivially write

Pmix(V1) = π0P0(V1) + (1− π0)P(V1)

implying that T2 = {(V1 = 0, π0), (∅, 1 − π0)} is an-
other set of intervention tuples for Pmix, implying non-
uniqueness. Here is the statement of our assumption.

Assumption 3.2 (Positivity). Let V be the set of
nodes in our causal Bayesian Network and P(V ) be
the corresponding joint probability distribution. We
assume that P(v) > 0 for all v ∈ CV .

Remark. As a straight forward consequence of this

assumption, for every random variable Vi ∈ V , we can

show that the conditional probability distributions are

positive as well i.e. P(vi|pa(vi)) > 0 for all vi ∈ CVi

and setting pa(vi) of the parents. This positivity as-

sumption is commonly assumed in many works related

to causal graphs. e.g. Hauser and Bühlmann [2012] as-

sume positivity throughout their discussion when char-

acterizing the Interventional Markov Equivalence class.

Having stated these assumptions, we are now ready to
state the main theorem of this paper. A detailed proof
is provided in Section 4.

Theorem 3.1. Let G = {V , E} be a causal Bayesian

Network and P(V ) be the associated joint probability

distribution satisfying Assumption 3.2. Let Pmix(V )
(Definition 3.1) be any mixture of interventions that

satisfies Assumption 3.1. The following are true.

1. There exists a unique set of intervention tuples

T = {(t1, π1), . . . , (tm, πm)} satisfying Assump-

tion 3.1, such that

Pmix(V ) =
m∑

i=1
πiPti(V ).

2. Given access to G, P(V ) and Pmix(V ), there exists
an algorithm, that runs in time n ∗ (m ∗kmax)O(1),
and, outputs the set of intervention tuples T (satis-

fying Assumption 3.1) generating it. Here n is the

number of nodes in G, m is the size of set T and

kmax is the maximum number of distinct values

that any node can take.



 Remark. Though Assumption 3.2 is a sufficient con-

ditions for Theorem 3.1, it is not necessary. In Example

B.1 (Appendix B), we give an example that does not

satisfy this assumption but is uniquely generated by a

set of intervention tuples satisfying Assumption 3.1.

4 PROOF OF MAIN THEOREM

In this section, we provide rigorous proof to both parts
of Theorem 3.1 together. Our uniqueness proof (for Part
1) is constructive and gives an algorithm as described
in Part 2. Our proof goes via an induction argument on
the number of nodes n present in the given Bayesian
Network. There are many lemmas stated throughout
the proof. For a cleaner exposition, all of their proofs
are provided in Appendix A.

4.1 BASE CASE (n = 1)

Consider a causal Bayesian Network G = (V, E) with
only one vertex V and no edges (i.e. E = ∅), such that
P(V ) satisfies Assumption 3.2. Let CV = {v1, . . . , vk}
be the set of values that V can take. Therefore, by
Assumption 3.2, P(vi) > 0 for all i ∈ [k]. Next, consider
any mixture of interventions Pmix(V ) that satisfies
Assumption 3.1. Writing the most general form of Pmix,
i.e. allowing for scalar weights to be ≥ 0, we can write,

Pmix(V ) = π0Pt0(V ) + π1Pt1(V ) + . . .+ πkPtk
(V ),

where t0 = ∅, t1 = v1, . . . , tk = vk. By the notation in
Definition 3.1, P∅(V ) = P(V ). Subtracting P(V ) from
both sides and setting π0 = 1−

∑k
i=1 πi, we get,

Pmix(V )− P(V ) =
k∑

i=1
πi(Pvi(V )− P(V )).

Recall, from the definition of interventions in Section
3, for any vj ∈ CV , Pvi(vj) = δvi,vj . Substituting
V = v1, . . . , vk and using Pvi(vj) = δvi,vj , gives us k
linear equations which can be written in the following
matrix form:

1− a1 −a1 . . −a1
−a2 1− a2 . . −a2
. . . . .
−ak −ak . . 1− ak



π1
π2
.
πk

 =


b1
b2
.
bk

 (1)

where bi = Pmix(vi) − P(vi) and ai = P(vi) > 0 (As-
sumption 3.2). Any set of intervention tuples T gen-
erating Pmix(V ) can be obtained as a solution to the
above system. Since, in Part 1, we restrict our focus to
T that satisfy Assumption 3.1, we know there exists
some i ∈ [k], such that πi = 0. In the following lemma,

we show that such a system under these assumptions
has a unique solution when π1, . . . , πk ∈ R≥0. Proof of
this lemma is presented in Appendix A.1.

Lemma 4.1. Consider the following linear system.
c− a1 −a1 . . −a1
−a2 c− a2 . . −a2
. . . . .
−ak −ak . . c− ak



x1
x2
.
xk

 =


b1
b2
.
bk


Assume that a1, . . . , ak > 0,

∑k
i=1 ai = c and it has at

least one solution. Then, rank of the above matrix is

k − 1 and there are infinitely many solutions. Under

the assumption that x ∈ R≥0 and xi = 0 for some

i ∈ [k], the solution becomes unique. Given access to

ais, bis and c, there exists an algorithm that computes

this solution in kO(1) time.

It’s easy to see that Equation 1 satisfies all requirements
of Lemma 4.1, implying the base case of our induction
proof.

Inductive hypothesis (n = N):Assume, Theorem
3.1 is true for all causal Bayesian Networks on N nodes,
that satisfy Assumption 3.2 and input mixtures that
satisfy Assumption 3.1.

4.2 INDUCTION STEP (n = N + 1):

Assuming the above inductive hypothesis, we show that
Theorem 3.1 is true for all causal Bayesian Networks
on N + 1 nodes, and mixture on interventions on it,
satisfying Assumptions 3.2 and 3.1 respectively. Let
V = {V1, . . . , VN+1}, P(V ) be the distribution of V
and Pmix(V ) be any mixture of interventions that
satisfies Assumption 3.1. We wish to show that there is a
unique set of intervention tuples satisfying Assumption
3.1 that generates Pmix(V ). Without loss of generality
let V1 ≺ . . . ≺ VN+1 be a topological order for G. We
will now marginalize on VN+1 to reduce our problem
to the n = N case, so that we can use the inductive
hypothesis. The following lemma is required to make
this argument. We present it’s proof in Appendix A.2.

Lemma 4.2. Let VN = {V1, . . . , VN},

1. P(VN ) is generated by the CBN GN = G \{VN+1}.
and satisfies Assumption 3.2.

2. Pmix(VN ) can be written as a mixture of interven-

tions on GN that satisfies Assumption 3.1.

3. Given access to P(V ),Pmix(V ), in O(kmax) time

we can create access to P(VN ),Pmix(VN ), by

marginalizing on VN+1.

Using the inductive hypothesis with this claim, we get
that there exists a unique set of intervention tuples



 S = {(s1, µ1), . . . , (sq, µq)}3 satisfying Assumption 3.1
that generates Pmix(VN ), i.e.,

Pmix(VN ) =
q∑

j=1
µjPsj (VN ),

The induction hypothesis also implies that S can be
computed in N ∗ (q ∗ kmax)O(1) time using access to
P(VN ) and Pmix(VN ). The next step in our proof then
is to show that, for a given G, P(V ) and Pmix(V ), the
set of intervention tuples S can be uniquely lifted to a
set T of intervention tuples that satisfies Assumption
3.1 and generates Pmix(V ). We also show that using
access to G, P(V ) and Pmix(V ), the lifting process
runs in (m ∗ kmax)O(1) time implying that T can be
computed in (N + 1) ∗ (m ∗ kmax)O(1) time.

4.2.1 Lifting S

In this section we lift the set of intervention tuples S
generating Pmix(VN ) uniquely to a set of intervention
tuples satisfying Assumption 3.1 generating Pmix(V ).
Let T = {(t1, π1), . . . , (tm, πm)} be any arbitrary set
of intervention tuples satisfying Assumption 3.1 that
generates Pmix(V ), i.e.

Pmix(V ) =
m∑

i=1
πiPti

(V ). (2)

First, we give a lemma that connects targets t1, . . . tm

inside T with targets s1, . . . sq inside S. We present
it’s proof in Appendix A.3.

Lemma 4.3. For every ti, i ∈ [m], there is some

sj , j ∈ [q] such that, either ti = sj or ti = sj ∪{v} for
some v in CVN+1 .

For j ∈ [q], we define sets Sj = {sj , sj ∪ {v1}, . . . sj ∪
{vk}} where CVN+1 = {v1, . . . , vk}. Since the targets
sj , j ∈ [q] are distinct, the sets Sj , j ∈ [q] are disjoint.
Lemma 4.3 implies that

{t1, . . . , tm} ⊂ S1 ∪ . . .Sq

Since T was arbitrary, for every such T , there exist
non-negative scalars πs, s ∈ S1 ∪ . . . ∪ Sq such that
Equation 2 can be written as,

Pmix(V ) =
q∑

j=1

∑
s∈Sj

πsPs(V ) (3)

Any solution of Equation 3 with πs ≥ 0 gives a set of
intervention tuples for Pmix. We show that there is a
unique such set which satisfies Assumption 3.1.

3For i ∈ [q], si are values taken by variables Si ⊂ V

Lemma 4.4. Let πs, s ∈ S1 ∪ . . . ∪ Sq be some

non-negative solution to Equation 3 and the set T =
{(s, πs) : πs > 0} be the corresponding set of inter-

vention tuples. There exists a unique T that satisfies

Assumption 3.1.

Proof. We show that enforcing Assumption 3.1
uniquely determines all πs as solutions to a sequence of
linear equations, implying that there is a unique T that
satisfies Assumption 3.1. To construct this sequence,
we need an ordering on s1, . . . , sq. So, without loss of
generality, we assume that for j1 ≤ j2, sj2 6⊆ sj1 . The
linear equations are created by using specific settings
for V in Equation 3 which enable us to decompose the
linear system into a sequence of simpler systems i.e. one
for each Si. We propose these settings next and explain
why and how they work. Since S satisfies Assumption
3.1, there exists v̄i ∈ Vi, i ∈ [N ] such that for all j ∈ [q],
v̄i /∈ sj . For j ∈ [q], we define s−j = {v̄i : Vi /∈ Sj}4

and for every l ∈ [k], create settings

vj,l = sj ∪ s−j ∪ {vl}

where CVN+1 = {v1, . . . , vk}. The following lemma is
used to decompose the system of equations into simpler
systems. Proof is presented in Appendix A.4.

Lemma 4.5. For i ∈ [q], l ∈ [k] and s ∈ Si+1∪. . .∪Sq,

Ps(vi,l) = 0

Using this in Equation 3, leaves us with the following
simpler system for every i ∈ [q],

Pmix(vi,l)−
i−1∑
j=1

∑
s∈Sj

πsPs(vi,l) =
∑
s∈Si

πsPs(vi,l) (4)

Suppose all πs, s ∈ S1∪. . .∪Si−1 have been determined.
Then the left had side of this equation is completely
known and has no unknown variables. We denote it
by ∆ going forward. Therefore, by varying l ∈ [k], we
have k equations in k + 1 variables πs, s ∈ Si. In the
next lemma, we will obtain a linear equation satisfied
by these k + 1 variables and reduce the system to k
equations in k variables. On marginalizing over VN+1
in Equation 3, we get

Lemma 4.6. For all i ∈ [q], the following holds.

µi =
∑
s∈Si

πs

Proof of Lemma 4.6 is presented in Appendix A.5. By
making the substitution from this lemma above into

4sj corresponds to set of variables Sj ⊂ V .



 Equation 4, we get the equation

∆−µiPsi(vi,l) =
∑
l∈[k]

πsi∪{vl}(Psi∪{vl}(vi,l)−Psi(vi,l))

(5)
that gives a system of k equations in k variables when
we vary l ∈ [k]. Clearly we are looking for non-negative
solutions for πsi∪{vl}, l ∈ [k]. When we enforce Assump-
tion 3.1, there is some l ∈ [k] such that πsi∪{vl} = 0.
In Lemma 4.7, we show that we can uniquely solve
Equation 5 for such πsi∪{vl}, l ∈ [k].

Lemma 4.7. For every i ∈ [q], Equation 5 has a

unique solution when we enforce that πsi∪{vl}, l ∈ [k]
are non-negative and at least one of them is 0.

We present a proof of this Lemma in Appendix A.6.
This lemma implies that under enforcement of Assump-
tion 3.1, all targets ∈ Si (and their respective mixing
coefficients) that appear in Pmix(V ) get uniquely iden-
tified. Using this technique from i = 1 to q, any set
of intervention tuples satisfying Assumption 3.1 that
generates Pmix(V ) gets uniquely identified. Therefore,
there is a unique set of intervention tuples T that
generates Pmix and satisfies Assumption 3.1.

The lifting of targets in Si is done in Lemma 4.7 using
technique from Lemma 4.1 which takes (kmax)O(1) time.
This is repeated for all i ∈ [q], therefore, we spend (q ∗
kmax)O(1) time. It’s easy to see that q < m and so using
the induction hypothesis the set of intervention tuples
is computed in (N+1)∗(m∗kmax)O(1) time, completing
the induction step. We describe our complete algorithm
in Algorithm 1. It’s correctness and time complexity
follows from the discussion in this section. For better
understanding, in Examples C.1 and C.2 (Appendix
C), we provide two worked out examples on small
problem instances, that illustrate important aspects of
our algorithm.

5 SIMULATION STUDY

We conduct a simulation study to experimentally ana-
lyze performance of Algorithm 1 (Appendix D) which
modifies Algorithm 1 (Section 4) to make it work with
finitely many samples from Pmix(V ), P(V ).

Simulation Setup For each simulation setting
(N,M)5 we randomly sample a directed acyclic graph
on N nodes (each having 3 categories), from the Scale-
Free (SF) model (Barabási and Albert [1999]), with
number of edges chosen uniformly randomly from
[N, 5N ]. For each graph, we model the CPD of each
node as a multinoulli distribution with Dirichlet priors

5N is number of nodes, M is number of samples

Algorithm 1: DISENTANGLE
input :Variables V = (V1, . . . , VN+1), CBN G,

Distributions P(V ),Pmix(V )
output : Set of intervention tuples T

1. When |V | = 1, setup the linear system in
Equation 1 and solve it using technique described
in Lemma 4.1 to obtain a set T of intervention
tuples. return T .

2. Let V1 ≺ . . . ≺ VN+1 denote a topological order
in G. Marginalize on VN+1 to create access to
Pmix(VN ) and P(VN ) where VN = (V1, . . . , VN ).
Construct GN = G \ {VN+1}. Recursively call this
algorithm with inputs GN , P(VN ), Pmix(VN ), to
compute the unique set of intervention tuples
S = {(s1, µ1), . . . , (sq, µq)} that satisfies
Assumption 3.1 and generates Pmix(VN ). Let
s1, . . . , sq be ordered such that i ≤ j implies that
sj 6⊆ si. For each i ∈ [N ], by inspecting
sj , j ∈ [q], identify v̄i ∈ CVi such that v̄i /∈ sj for
any j ∈ [q]. Define s−j = {v̄i : Vi /∈ Sj}. Let
CVN+1 = {v1, . . . , vk}. For each i ∈ [q] and l ∈ [k],
create setting vi,l = si ∪ s−i ∪ {vl}.

3. For each fixed i ∈ [q], evaluate distributions for
different vi,l, l ∈ [k], to setup the system of
equations described in Equation 5. Solve the
system using the technique outlined in proof of
Lemma 4.7 (which in turn uses Lemma 4.1). At
the end of this process collect all the intervention
tuples thus obtained (for all i ∈ [q]), in the set T .
return T .

having fixed parameter α = 2 for all categories. This is
done to conform with Assumption 3.2. This generates
our causal Bayesian Network G. We generate a set B of
M samples using ancestral sampling on this network
and use this as input for our algorithm. To create a mix-
ture, we first choose an integer m uniformly randomly
from the set [4, 16] and use it as the number of inter-
ventions in the mixture. Then we iterate from 1 to m
to build each intervention target of the mixture. First,
we choose the size of the target by picking an integer
r uniformly randomly from the set {0, . . . , N}. Then
we uniformly randomly choose an r−sized subset of
[N ], defining variables in the target. For each of these
variables, we choose a category uniformly randomly
and remove it from consideration (to satisfy Assump-
tion 3.1). From the remaining categories, we uniformly
randomly select one for each variable in the target and
use it to define the intervention. Finally, we generate
m scalar weights for mixing coefficients such that they
sum to 1. To make sure that these coefficients are not
too small, we generate them with Dirichlet priors with



 all parameter values fixed to 2. We create a set Bmix

containingM samples from this mixture model and use
it as input for the algorithm. We set parameters ε, δ re-
quired by our algorithm (see Appendix D) to 0.01 and
1/M respectively. The settings for N andM used in the
experiments are (N,M) ∈ {4, 8, 12} × {24, 25, . . . , 220}
where × is the direct product of sets.

Results Discussion: Figure 1 presents four plots that
demonstrate performance of our algorithm as sample
sizeM varies in {24, 25, . . . , 220}. We also vary the num-
ber of nodes N in {4, 8, 12} and show separate plots
for each N in each of the figures. The four plots in
Figure 1, demonstrate four different accuracy metrics
we describe in Appendix F. In Figure 1a, we plot the
average recall of intervention targets as M increases.
Recall for a single input instance is the number of in-
tervention targets in the input that are identified in
the output, as defined in Appendix F. Average recall
is the average of this over all random instances gen-
erated in the simulation. We observe a general trend
of increase in the recall as we increase the number of
samples. Also, a relatively larger number of samples are
required to achieve the same level of recall for mixtures
generated from CBN with a large number of nodes as
compared to smaller ones. This trend is expected as
Algorithm 1 (Appendix D) estimates the intervention
targets by sequentially adding nodes to them. Hence
for larger-sized CBNs, the error accumulated is larger
as compared to smaller ones.

In Figure 1b, we plot the average root-mean-squared
error (RMSE) between the estimated and actual mixing
coefficients. For each input, RMSE is calculated using
the definition supplied in Appendix F. Then it is aver-
aged over all the random input instances. We observe
a fast decrease in the average RMSE as M increases.
We also observe that the average RMSE is higher for
higher N . This is also expected since for distributions
on larger number of variables, more samples will be
needed to estimate marginal probabilities accurately.

In Figure 1c, we plot average False-Positive RMSE (Sec-
tion Appendix F) or FP-RMSE as M increases. For
each input instance, FP-RMSE computes the RMSE
in mixing proportions for components which are not
present in actual target set but predicted by our algo-
rithm. This is then averaged over all the random input
instances. For each value of N , we observe a similar
decreasing trend in this plot showing that incorrect tar-
gets in our output have very small mixing proportions
(as sample size increases) and therefore even if they are
present in the output their contribution is insignificant.

In Figure 1d, we plot average False-Negative RMSE
(Section Appendix F) or FN-RMSE asM increases. For
each input instance, FN-RMSE computes the RMSE

in mixing proportions for components present in the
actual target but not present in the output targets. This
is then averaged over all the random input instances.
Even though we observe a clear decreasing trend in
this situation as well, the rate is much slower as N
increases. This implies that the sample complexity of
our algorithm is high and it might need too many
samples to correctly identify the coefficients of targets
present in the input. Reducing the sample complexity
is an interesting research direction which we plan to
pursue in a future work.

In Figure 2 (Appendix E), we demonstrate and compare
performance of our Algorithm (as M,N increase), for
CBNs generated using different random graph models
(Scale-Free and Erdös-Rényi). We observe no signifi-
cant difference in performance and make a conjecture
that only high level graph parameters (such as number
of nodes, edges, in-degree etc.) might be having an
impact on performance and the topology (given these
parameters) might not be that crucial.

To further understand the performance of our algo-
rithm with respect to the number of nodes, in Figure 1
(Appendix E), we plot the Average Recall and Average
RMSE as number of nodes varies from 4 to 32, for
a fixed sample size of ∼ 106. We observe that recall
decreases and RMSE increases very quickly as number
of nodes increase. Even though this is expected since
error is accumulated as we successively add nodes and
find new intervention targets, such performance for
a very large sample size indicates bad dependence of
sample complexity on the number of nodes. Improving
this needs more exploration and is left for future work.

Limitations and Future Directions: The increas-
ing trend in recall and decreasing trend in RMSE of
mixing coefficients shows promise. But the current al-
gorithm appears to be expensive in terms of sample
complexity, especially for mixture generated from larger
graphs as seen in Figures 1a, 1d and Figure 1 (Appendix
E). Hence, it will be interesting to explore directions
which could reduce sample complexity. We leave this
for future work. Another limitation is the absence of
baseline works to compare to. Since, ours is the first
paper that proves identifiability of such mixtures and
gives the first such algorithm, there are no prior works
to compare against. In future, we plan to compare our
algorithm on a related or downstream task that might
have been explored in other works such as Thiesson
et al. [1998], Squires et al. [2020], Jaber et al. [2020].

6 CONCLUSION

In this paper, we investigated the problem of identi-
fying individual intervention targets from a mixture



 

(a) Recall (b) RMSE

(c) False-Positive RMSE (d) False-Negative RMSE

Figure 1: Performance of Algorithm 1 (Appendix D) as sample size and number of nodes increase

of interventions on a causal Bayesian Network. This
problem is well motivated from the real-world scenario
wherein experiments/interventions are accompanied by
stochastic hidden off-target effects. We modeled this
problem as a mixture of intervention distributions and
constructed examples to show that, in general, it is
impossible to identify all targets in it. Then, we pro-
posed a mild positivity assumption on the underlying
network and a very reasonable exclusion assumption on
the intervention targets that can appear in the mixture
distribution. Using these assumptions we proved that
given access to the underlying CBN and the mixture
distribution, there is a unique set of intervention tar-
gets that satisfies our exclusion assumption and also
generates the mixture. Our uniqueness proof also pro-
vides an algorithm that uses access to the underlying
distributions and efficiently identifies all the targets
along with their coefficients in the mixture. In order to
work with finitely many samples from the distributions,
we created a small modification to our algorithm and
validated it’s performance using simulated experiments.
We tested our algorithm and bench-marked its perfor-
mance as the number of samples and nodes increased.
As future work, we plan to investigate algorithms to
recover targets in such mixtures using a smaller num-
ber of samples. Another interesting direction is to use

limited access to the underlying CBN while recovering
the targets. This can be very useful in situations where
sufficient data or prior knowledge might not be avail-
able to pin down the CBN. Solving the identifiability
problem when the CBN has unobserved confounders
might be a good first step in this direction.
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