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Abstract

Unsupervised multi-object scene decomposition is
a fast-emerging problem in representation learning.
Despite significant progress in static scenes, such
models are unable to leverage important dynamic
cues present in videos. We propose PROVIDE, a
novel unsupervised framework for PRObabilistic
VIdeo DEcomposition based on a temporal exten-
sion of iterative inference. PROVIDE is powerful
enough to jointly model complex individual multi-
object representations and explicit temporal de-
pendencies between latent variables across frames.
This is achieved by leveraging 2D-LSTM, tempo-
rally conditioned inference and generation within
the iterative amortized inference for posterior re-
finement. Our method improves the overall quality
of decompositions, encodes information about the
objects’ dynamics, and can be used to predict tra-
jectories of each object separately. Additionally,
we show that our model has a high accuracy even
without color information. We demonstrate the de-
composition capabilities of our model and show
that it outperforms the state-of-the-art on several
benchmark datasets, one of which was curated for
this work and will be made publicly available.

1 INTRODUCTION

Decomposition describes the task of separating a scene into
a collection of objects with individual representations, simi-
lar to how humans break down scenes into a set of abstract
building blocks with their own properties. Learning to per-
ceive the world as a collection of individual components
(objects) with their own latent representations brings us
closer to human perception and constitutes a natural abil-
ity of an intelligent vision system [Johnson et al., 2017].

*Now at Google Research, Berlin, Germany

Unsupervised learning of visual object representations is
invaluable for extending the generality and interpretability
of such models, enabling compositional reasoning [Garnelo
et al., 2016, Lake et al., 2017] and transferability [Erhan
et al., 2010]. However, learning rich video representations
that, agnostic to occlusion and object quantities, can decou-
ple object appearance and shape in complex visual scenes
containing multiple moving objects has remained elusive.

Recent works that attempt to address this challenge can
be characterized as: (i) attention-based methods [Eslami
et al., 2016, Crawford and Pineau, 2019b], which infer la-
tent representations for each object in a scene using atten-
tion, and (ii) iterative refinement models [Greff et al., 2017,
2019], which decompose a scene into a collection of com-
ponents by grouping pixels. Importantly, the former have
been limited to latent representations at object- or image
patch-levels, while the latter class of models have illustrated
the ability for more granular latent representations at the
pixel (segmentation)-level. Specifically, most refinement
models learn pixel-level generative models driven by spatial
mixtures [Greff et al., 2017] and utilize amortized iterative
refinements [Marino et al., 2018] for inference of disen-
tangled1 latent representations within the VAE framework
[Kingma and Welling, 2014]; a prime example is IODINE
[Greff et al., 2019]. However, while providing a powerful
model and abstraction which is able to segment and disen-
tangle complex scenes, IODINE [Greff et al., 2019] and
other similar architectures are fundamentally limited by the
fact that they only consider images. Even when applied for
inference in video, they process one frame at a time. This
makes it excessively challenging to discover and represent
individual instances of objects that may share properties
such as appearance and shape but differ in dynamics.

1Disentanglement refers to a model’s ability to learn inter-
pretable latent factors; this is in contrast to decomposition which
only requires separation but does not necessitate interperability.
Ideally, however, one desires disentangled decomposition where
each dimension of an object’s latent representation encodes a se-
mantically meaningful factor, such as color, position, size, etc.
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 In computer vision, it has been a long-held belief that motion
carries important information for decomposing a scene with
many objects [Weiss and Adelson, 1996, Jepson et al., 2002].
Armed with this intuition, we propose a spatio-temporal
amortized inference model capable of not only unsupervised
multi-object scene decomposition, but also of learning and
leveraging the implicit probabilistic dynamics of each object
from raw video alone. This is achieved by introducing tem-
poral dependencies between the latent variables across time.
As such, IODINE [Greff et al., 2019] could be considered
a special (spatial) case of our spatio-temporal formulation.
Modeling temporal dependencies among video frames also
allows us to make use of conditional priors [Chung et al.,
2015] for variational inference, leading to more accurate
and efficient inference.

The proposed framework for PRObabilistic VIdeo DEcom-
position (PROVIDE)2, illustrated in Fig. 1, achieves superior
performance on complex multi-object benchmark datasets
(Bouncing Balls and CLEVRER) with respect to state-of-
the-art models, including R-NEM [Van Steenkiste et al.,
2018] and IODINE [Greff et al., 2019], in terms of decom-
position, prediction, and generalization. PROVIDE has a
number of appealing properties, including temporal extrapo-
lation, computational efficiency, and the ability to work with
complex data exhibiting non-linear dynamics, colors, and
changing number of objects within the same video sequence.
In addition, we introduce an entropy prior to improve our
model’s performance in scenarios where object appearance
alone is not sufficiently distinctive (e.g., greyscale data).

2 RELATED WORK

Unsupervised Scene Representation Learning. Unsuper-
vised scene representation learning can generally be divided
into two groups: attention-based methods, which infer la-
tent representations for each object in a scene using atten-
tion mechanisms, and more complex and powerful iterative
refinement models, which often make use of spatial mix-
tures and can decompose a scene into a collection of esti-
mated components by grouping pixels together. Attention-
based methods, such as AIR [Eslami et al., 2016, Xu et al.,
2019] and SPAIR [Crawford and Pineau, 2019b], decom-
pose scenes into latent variables representing the appear-
ance, position, and size of the underlying objects. However,
both methods can only infer the objects’ bounding boxes
and have not been shown to work on non-trivial 3D scenes
with perspective distortions and occlusions. MoNet [Burgess
et al., 2019] is the first model in this family tackling more
complex data and inferring representations that can be used
for precise and granular decomposition of objects. On the
other hand, it is not a probabilistic generative model and thus
not suitable for density estimation. GENESIS [Engelcke
et al., 2020] extends it and alleviates some of its limitations

2Code: https://github.com/BorealisAI/PROVIDE

by introducing a probabilistic framework and allowing for
spatial relations between the objects. DDPAE [Hsieh et al.,
2019] is a framework that uses structured probabilistic mod-
els to decompose a video into low-dimensional temporal
dynamics with the sole purpose of prediction. It is shown
to operate on binary scenes with no perspective distortion
and is not capable of separating objects from each other
well enough. Iterative refinement models started with Tag-
ger [Greff et al., 2016], which reasons about the perceptual
grouping of its inputs. However, it does not allow explicit
latent representations and cannot be scaled to more complex
images. NEM [Greff et al., 2017], as an extension of Tagger,
uses a spatial mixture model inside an expectation maxi-
mization framework but is limited to binary data. Finally,
IODINE [Greff et al., 2019] is a notable example of a model
employing iterative amortized inference w.r.t. a spatial mix-
ture formulation and achieves state-of-the-art performance
in scene decomposition.

Unsupervised Video Tracking and Object Detection.
SQAIR [Kosiorek et al., 2018], SILOT [Crawford and
Pineau, 2019a] and SCALOR [Jiang et al., 2020] are tempo-
ral extensions of the static attention-based models that are
tailored to tracking and object detection tasks. SQAIR is re-
stricted to binary data and operates at the level of bounding
boxes. SILOT and SCALOR are more expressive and can
cope with cluttered scenes, a larger numbers of objects, and
dynamic backgrounds, but they do not work on colored per-
spective3 data; accurate segmentation remains a challenge.

Unsupervised Video Decomposition. Models employing
spatial mixtures and iterative inference in a temporal setting
are, from a technical perspective, closest to the proposed
PROVIDE. Notably, there are only few models falling into
this line of work: RTagger [Prémont-Schwarz et al., 2017] is
a recurrent extension of Tagger and has the same limitations
as its predecessor. R-NEM [Van Steenkiste et al., 2018]
effectively learns the objects’ dynamics and interactions
through a relational module and can produce segmentations
but is limited to orthographic binary data.

Methods without Latent Modeling. GAN-based
ReDO [Chen et al., 2019] uses a model built around the
assumption that object regions are independent, guiding
the generator by drawing the objects’ pixel regions
separately and composing them after segmentation. Another
model [Arandjelović and Zisserman, 2019] employs the
same principles but guide the generator by copying a
region of an image into another one. Both architectures
are shown to operate on static images only and do not
have a clearly interpretable latent space or prediction
capabilities. Unsupervised segmentation of videos, which
often amounts to clustering, is an important area of
research which diverges from decomposition as it does not

3Perspective videos are more complex as objects can occlude
one another and change in size over time.
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Figure 1: Unsupervised Video Decomposition. PROVIDE allows to infer precise decompositions of the objects via
interpretable latent representations that can be used to decompose each frame and simulate future dynamics, all in an
unsupervised fashion. Whenever a new object enters a frame, the model adapts and assigns one of the slots to the new object.

explicitly model the latent space for each object. As such,
unsupervised segmentation models are unable to model or
decouple object factors (e.g., instances, shape, appearance)
or leverage priors over them, making them fundamentally
incomparable to decomposition methods.

3 DYNAMIC VIDEO DECOMPOSITION

We now introduce PROVIDE, our dynamic model for unsu-
pervised video decomposition. PROVIDE builds upon a gen-
erative model of multi-object representations and leverages
elements of iterative amortized inference. We briefly review
both concepts (§3.1) and then introduce our model (§3.2).

3.1 BACKGROUND

Multi-Object Representations. The multi-object frame-
work introduced in [Greff et al., 2019] decomposes a static
image x = (xi)i ∈ RD into K objects (including back-
ground). Each object is represented by a latent vector
z(k) ∈ RM capturing the object’s unique appearance and
can be thought of as an encoding of common visual proper-
ties, such as color, shape, position, and size. For each z(k)

independently, a broadcast decoder [Watters et al., 2019]
generates pixelwise pairs (m(k)

i , µ
(k)
i ) describing the assign-

ment probability and appearance of pixel i for object k.
Together, they induce the generative image formation model

p(x|z) =
D∏
i=1

K∑
k=1

m
(k)
i N (xi; µ

(k)
i , σ2), (1)

where z = (z(k))k,
∑K
k=1m

(k)
i = 1 and σ is the same

and fixed for all i and k. The original image pixels can
be reconstructed from this probabilistic representation as
x̃i =

∑K
k=1m

(k)
i µ

(k)
i .

Iterative Amortized Inference. Our approach lever-
ages the iterative amortized inference framework [Marino
et al., 2018], which uses the learning to learn princi-
ple [Andrychowicz et al., 2016] to close the amortization
gap [Cremer et al., 2017] typically observed in traditional

variational inference. The need for such an iterative process
arises due to the multi-modality of Eq.(1), which results in
an order invariance and assignment ambiguity in the approx-
imate posterior that standard variational inference cannot
overcome [Greff et al., 2019].

The idea of amortized iterative inference is to start with
randomly guessed parameters λ(k)

1 for the approximate pos-
terior qλ(z

(k)
1 |x) and update this initial estimate through

a series of R refinement steps. Each refinement step r ∈
{1, . . . , R} first samples a latent representation from qλ to
evaluate the ELBO L and then uses the approximate pos-
terior gradients ∇λL to compute an additive update fφ,
producing a new parameter estimate λ

(k)
r+1:

z(k)r
k∼ qλ(z

(k)
r |x),

λ
(k)
r+1

k←− λ(k)
r + fφ(a

(k),h
(k)
r−1), (2)

where a(k) is a function of z(k)r , x, ∇λL, and additional in-
puts (mirrors definition in [Greff et al., 2019]). The function
fφ consists of a sequence of convolutional layers and an
LSTM. The memory unit takes as input a hidden state h(k)

r−1
from the previous refinement step.

3.2 SPATIO-TEMPORAL ITERATIVE INFERENCE

Our proposed model builds upon the concepts introduced in
the previous section and enables robust learning of dynamic
scenes through spatio-temporal iterative inference. Specifi-
cally, we consider the task of decomposing a video sequence
x = (xt)

T
t=1 = (xt,i)

T,D
t,i=1 into K slot sequences (m(k)

t )t

and K appearance sequences (µ(k)
t )t. To this end, we intro-

duce explicit temporal dependencies into the sequence of
posterior refinements and show how to leverage this contex-
tual information during decoding with a generative model.
The resulting computation graph can be thought of as a
2D grid with time dimension t and refinement dimension
r (Fig. 2a). Propagation of information along these two axes
is achieved with a 2D-LSTM [Graves et al., 2007] (Fig. 2b),
which allows us to model the joint probability over the en-
tire video sequence inside the iterative amortized inference



 framework. The proposed method is expressive enough to
model the multimodality of our image formation process
and posterior, yet its runtime complexity is smaller than that
of its static counterpart.

3.2.1 Variational Objective

Since exact likelihood training is intractable, we formu-
late our task in terms of a variational objective. In con-
trast to traditional optimization of the evidence lower bound
(ELBO) through static encodings of the approximate pos-
terior, we incorporate information from two dynamic axes:
(1) variational estimates from previous refinement steps; (2)
temporal information from previous frames. Together, they
form the basis for spatio-temporal variational inference via
iterative refinements. Specifically, we train PROVIDE by
maximizing the following ELBO objective4:

LELBO(x) = Eqλ(z≤T,R|x≤T )

T∑
t=1

R̂∑
r=1

[
β log (p (xt|x<t, z≤t,r))

− KL(qλ(zt,r|x≤t, z<t,r) || p(zt|x<t, z<t))
]
,

(3)

where the first term expresses the reconstruction error of a
single frame and the second term measures the divergence
between the variational posterior and the prior. The relative
weight between terms is controlled with a hyperparameter
β [Higgins et al., 2017]. Furthermore, to reduce the over-
all complexity of the model and to make it easier to train,
we set R̂ := max(R − t, 1) (see Fig. 2 for an illustration).
Compared to a static model, which infers each frame inde-
pendently, reusing information from previous refinement
steps also makes our model more computationally efficient.
In the next sections, we discuss the form of the conditional
distributions in Eq.(3) in more detail.

3.2.2 Inference and Generation

Posterior Refinement. Optimizing Eq.(3) inside the it-
erative amortized inference framework (Section 3.1) re-
quires careful thought about the nature and processing
of the hidden states. While there is vast literature on the
propagation of a single signal, including different types of
RNNs [Hochreiter and Schmidhuber, 1997, Graves et al.,
2005, Cho et al., 2014, Chung et al., 2017] and transform-
ers [Vaswani et al., 2017], the optimal solution for multiple
axes with different semantic meaning (i.e., time and refine-
ments) is less obvious.

Here, we propose to use a 2D version of the uni-directional
MD-LSTM [Graves et al., 2007] to compute our variational

4For simplicity, we drop references to the object slot •(k) from
now on and formulate all equations on a per-slot basis.

objective (Eq.(3)) in an iterative manner. In order to do
so, we replace the traditional LSTM in the refinement net-
work (Eq.(2)) with a 2D extension. This extension allows the
posterior gradients to flow through both the grid of the pre-
vious refinements and the previous time steps (see Fig. 2a).
Writing zt,r for the latent encoding at time t and refinement
r, we can formalize this new update scheme as follows:

zt,r ∼ qλ(zt,r|x≤t, z<t,r),
λt,r+1 ← λt,r + fφ(a,ht,r−1,ht−1,R̂). (4)

Note that the hidden state from the previous time step is
always ht−1,R̂, i.e., the one computed during the final re-

finement R̂ at time t − 1. Our reasoning for this is that
the approximation of the posterior only improves with the
number of refinements [Marino et al., 2018].

Temporal Conditioning. Inside the learning objective we
set the prior and the likelihood to be conditioned on the pre-
vious frames and the refinement steps. This naturally comes
from an idea that each frame is dependent on the predeces-
sor’s dynamics and therefore latent representations should
follow the same property. Conditioning on the refinement
steps is essential to the iterative amortized inference pro-
cedure. To model the prior and the likelihood distributions
accordingly we adopt the approach proposed in [Chung
et al., 2015] but tailor it to our iterative amortized inference
setting. Specifically, the parameters of our Gaussian prior
are now computed from the temporal hidden state ht−1,R̂:

p(zt|x<t, z<t) = N (zt; µ̃t, diag(σ̃2
t )),

[µ̃t, σ̃t] = ξθ(ht−1,R̂), (5)

where ξθ is a simple neural network with a few layers.5

Please refer to the supplemental material for details. Note
that the prior only changes along the time dimension and is
independent of the refinement iterations, because we refine
the posterior to be as close as possible to the dynamic prior
for the current time step. Finally, to complete the condi-
tional generation, we modify the likelihood distribution as
follows6:

p(xt|x<t, z≤t,r) =
D∏
i=1

K∑
k=1

m
(k)
t,r,iN (xt,i;µ

(k)
t,r,i, σ

2),

[m
(k)
t,r,i, µ

(k)
t,r,i] = gθ(z

(k)
t,r ,h

(k)

t−1,R̂
), (6)

where µ(k)
t,r,i,m

(k)
t,r,i are mask and appearance of pixel i in slot

k at time step t and refinement step r. gθ is a spatial mixture
broadcast decoder [Greff et al., 2019] with preceding MLP
to transform the pair

(
z
(k)
t,r ,h

(k)

t−1,R̂

)
into a single vector

representation.

5In practice, ξθ predicts logσt for stability reasons.
6Since our likelihood is a Gaussian mixture model, we are now

referencing the object slot •(k) again.
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Figure 2: Model Overview. (a) Inference in PROVIDE passes through a 2D grid in which light gray cells (r, t) represent
the r-th refinement at time t, dark gray cells are where the final reconstruction is computed and no refinement is needed.
Each light gray cell receives three inputs: a refinement hidden state ht,r−1, a temporal hidden state ht−1,R̂, and posterior
parameters λt,r. The outputs are a new hidden state ht,r and new posterior parameters λt,r+1. (b) An example of the
internal structure of the highlighted cell from Fig.(a). We process the inputs with the help of a spatial broadcast decoder and
a 2D LSTM. The rest of the light gray cells have the same structure.

3.2.3 Learning and Prediction

Architecture. From a graphical point of view, we can
think of the refinement steps and time steps as being
organized on a 2D grid (Fig. 2a), with light gray cells
(r, t) representing the r-th refinement at time t. Accord-
ing to Eq.(4), each such cell takes as input the hidden
state from a previous refinement ht,r−1, the temporal
hidden state ht−1,R̂, and the posterior parameters λt,r.
The outputs of each cell are new posterior parameters
λt,r+1 and a new hidden state ht,r. At the last refine-
ment R̂ at time t, the value of the refinement hidden
state ht,r is assigned to a new temporal hidden state ht,R̂.

Training Objective. Instead of a direct optimization of
Eq.(3), we propose two modifications that we found to im-
prove PROVIDE’s practical performance: (1) similar to ob-
servations made by [Greff et al., 2019], we found that color
is an important factor for high-quality decompositions. In
absence of such information, we mitigate the arising ambigu-
ity by maximizing the entropy of the masks m(k)

t,r,i along the
slot dimension k, i.e., we train by maximizing the objective

LELBO + γ

D∑
i=1

K∑
k=1

m
(k)
t,r,i log(m

(k)
t,r,i), (7)

where γ defines the weight of the entropy loss. (2) In addi-
tion to the entropy loss, we also prioritize later refinement
steps by weighting terms in the inner sum of Eq.(3) with r

R̂
.

Prediction. On top of pure video decomposition, PROVIDE

is also able to simulate future frames xT+1, . . . ,xT+T ′ .
Because our model requires image data xt as input, which
is not available during simulation of new frames, we use
the reconstructed image x̃t in place of xt to compute the
likelihood p(xt|x<t, z≤t,r) in these cases. We also set the
gradients∇λL,∇µL, and ∇mL to zero.

Complexity. Our model’s ability to reuse information from
previous refinements leads to a runtime complexity of
O(R2 + T ), which is much more efficient than the O(RT )
complexity of the traditional IODINE model (where each
frame is inferred independently) in a typical case of T � R.

4 EXPERIMENTS

We validate PROVIDE on Bouncing Balls [Van Steenkiste
et al., 2018], an augmented version of CLEVRER [Yi et al.,
2020], and Grand Central Station [Zhou et al., 2012]. Our
experiments comprise quantitative studies of decomposi-
tion quality during generation and prediction, as well as an
ablation study.

The quality of a decomposition can be measured by the ac-
curacy of the individual objects’ reconstructions. The more
refined and precise they are, the better the model can distin-
guish one object from another and from the background. In
practice, this accuracy can be computed by comparing the
reconstructed objects with their ground truth counterparts,
e.g., by extracting them from the ground truth image with
the help of a segmentation mask and computing the MSE.



 One complication of this approach is that there is no natural
or prespecified ordering among the objects. On the other
hand, our model is designed to explicitly produce individ-
ual object masks first and then combine them into a scene.
Given this property, we focus on the masks and compute
metrics that are agnostic to slot permutations. For the sake
of clarity we refer to these mask predictions as a “segmen-
tation task” but note that this is just a proxy to measure the
quality of the scene decomposition. This evaluation process
is consistent with the literature and our baselines.

We demonstrate our model’s disentanglement properties
in Appendix F.5. In contrast to decomposition, which is
explicitly encoded into our model structure, disentanglement
describes the model’s implicit ability to learn interpretable
generative factors for each object. Because disentanglement
is difficult to quantify in general, we resort to qualitative
experiments. While not our primary focus, disentanglement
is important and we illustrate that we can maintain this
property, induced by the spatial broadcast decoder [Watters
et al., 2019], despite the added complexity of the temporal
domain.

4.1 SETUP

Datasets. Bouncing Balls consists of 50 frame, binary,
64 × 64 resolution video sequences. Each video shows
simulated balls with different masses bouncing elastically
off each other and the image border. We train PROVIDE
on the first 40 frames of 50K videos containing 4 balls in
each frame. We use two different test sets consisting of
10K videos with 4 balls and 10K videos with 6-8 balls.
We also validate our model on a color version of this
dataset that we generate using the segmentation masks.

CLEVRER contains synthetic videos of moving and collid-
ing objects. Each video is 5 seconds long (128 frames) and
has a resolution of 480× 320, which we trim and rescale to
64×64 pixels.7 For training, we use the same 10K videos as
in the original source. For testing, we compute ground truth
masks for the validation set using the provided annotations
and test on 2.5K instances containing 3-5 objects and on
1.1K instances containing 6 objects. In training, we set the
number of slots K to 6 for CLEVRER and to one more than
the maximum number of objects in all other cases.

Grand Central Station is a video feed from the main hall
of a busy train station, containing a high number of people
moving at various paces in different directions. It has a total
of 50010 frames in a resolution of 720 × 480. In order to
make the dataset more manageable, we have extracted a
portion of the feed of resolution 128× 128 and segmented
it into sequences of 20 frames each. Each sequence contains
approximately 10 people. We set K to 8 during training and

7Our method is robust enough to handle 128x128 resolution
as it is built on top of IODINE.

to 10 for testing. Since the dataset does not contain ground
truth segmentation masks, a quantitative evaluation was not
possible.

Please refer to Appendix A for more information about the
Bouncing Balls and CLEVRER datsets and Appendix B for
dataset-specific hyperparameters. Qualitative results on the
Grand Central Station dataset are discussed in Appendix F.4.

Baselines. We compare PROVIDE to recent baselines: R-
NEM [Van Steenkiste et al., 2018], IODINE [Greff et al.,
2019] and DDPAE [Hsieh et al., 2019]. R-NEM is a state-
of-the-art model for unsupervised video decomposition and
physics learning. While showing impressive results on sim-
ulation tasks, it is limited to binary data and has difficul-
ties with perspective scenes. IODINE is more expressive
but static in nature and cannot capture temporal dynam-
ics within its probabilistic framework. However, as noted
in [Greff et al., 2019], it can be readily applied to temporal
sequences by feeding a new video frame to each iteration of
the LSTM in the refinement network. We call this variant
SEQ-IODINE. Since our model can also perform simulation
of short sequences, we include a comparison of its predictive
power against DDPAE [Hsieh et al., 2019]. Please refer to
Appendix C for additional information about these baseline
models.

4.2 EVALUATION METRICS

ARI. The Adjusted Rand Index [Rand, 1971, Hubert and
Arabie, 1985] is a measure of clustering similarity. It is com-
puted by counting all pairs of samples that are assigned to
the same or different clusters in the predicted and true clus-
terings. It ranges from −1 to 1, with a score of 0 indicating
a random clustering and 1 indicating a perfect match. We
treat each pixel as one sample and its segmentation as the
cluster assignment.

F-ARI. The Foreground Adjusted Rand Index is a modifi-
cation of the ARI score ignoring background pixels, which
often occupy the majority of the image. We argue that both
metrics are necessary to assess the decomposition quality
of a video decomposition method; this metric is also used
in [Van Steenkiste et al., 2018, Greff et al., 2019].

MSE. The mean squared error between pixels of the recon-
structed frames x̂ and the ground truth frames x.

4.3 VIDEO DECOMPOSITION

We optimize our model using ADAM [Kingma and Ba,
2014] (see Appendix D for training details) and evaluate
it on a video decomposition task with different sequence
lengths. As shown in Table 1, PROVIDE outperforms the
baselines regardless of the presence of color information,
which further reduces the error. It performs at least 7% bet-
ter than R-NEM on all metrics and at least 20% better than



 
Table 1: Quantitative Evaluation (Scene Decomposition). We show our model’s ability to produce high-quality decomposition for
sequences with varying length. We test on sequences with 4 balls and two different types of data (binary, colored) for Bouncing Balls and
on sequences with 3-5 objects for CLEVRER. Note that R-NEM cannot handle color data, hence we only run it on binary data.

Bouncing Balls

ARI (↑) F-ARI (↑) MSE (↓)
Length 10 20 30 40 10 20 30 40 10 20 30 40

bi
na

ry

R-NEM 0.5031 0.6199 0.6632 0.6833 0.6259 0.7325 0.7708 0.7899 0.0252 0.0138 0.0096 0.0076
IODINE 0.0318 0.9986 0.0018
SEQ-IODINE 0.0230 0.0223 0.0021 -0.0201 0.8645 0.6028 0.5444 0.4063 0.0385 0.0782 0.0846 0.0968
PROVIDE 0.7169 0.7263 0.7286 0.7294 0.9999 0.9999 0.9999 0.9999 0.0004 0.0004 0.0004 0.0004

co
lo

r IODINE 0.5841 0.9752 0.0014
SEQ-IODINE 0.3789 0.3743 0.3225 0.2654 0.7517 0.8159 0.7537 0.6734 0.0160 0.0164 0.0217 0.0270
PROVIDE 0.7275 0.7291 0.7298 0.7301 1.0000 1.0000 0.9999 0.9999 0.0002 0.0002 0.0002 0.0002

CLEVRER

ARI (↑) F-ARI (↑) MSE (↓)
Length 10 20 30 40 10 20 30 40 10 20 30 40

co
lo

r IODINE 0.1791 0.9316 0.0004
SEQ-IODINE 0.1171 0.1378 0.1558 0.1684 0.8520 0.8774 0.8780 0.8759 0.0009 0.0009 0.0010 0.0010
PROVIDE 0.2220 0.2403 0.2555 0.2681 0.9182 0.9258 0.9309 0.9312 0.0003 0.0003 0.0003 0.0003

Figure 3: Qualitative Evaluation (Bouncing Balls). PROVIDE can generalize to sequences with 8 balls when trained on 4 balls.
Top-to-bottom: output masks, reconstructions, and ground truth video.

Figure 4: Qualitative Evaluation (CLEVRER). PROVIDE can generalize to sequences with 6 objects. We also demonstrate the ability to
handle a dynamically changing number of objects, ranging from 4 in the beginning to 6 at the end.

IODINE on ARI and MSE. Since R-NEM cannot cope well
with colored data or the perspective of scenes, it is only
evaluated on the Bouncing Balls dataset (binary), produc-
ing high-error results in the first frames, a phenomenon
not observed with PROVIDE. IODINE is not designed to
utilize temporal information. On both datasets, IODINE’s
results are therefore computed independently on each frame
of the longest sequence. By processing frames separately,
IODINE does not keep the same object-slot assignment,
which we ignore when computing the scores. SEQ-IODINE
tends to perform even worse than IODINE in many experi-
ments, which we attributed to exploding gradients caused by
limited refinement steps and a lack of dynamics modeling.
Qualitative results for IODINE and SEQ-IODINE can be
found in Figure 6 in the supplementary material.

4.4 GENERALIZATION

We investigated how well PROVIDE adapts to a higher num-
ber of objects, evaluating its performance on the Bouncing
Balls dataset (6 to 8 objects) and on the CLEVRER dataset
(6 objects). Table 2 shows that PROVIDE’s F-ARI and MSE
scores are at least 50% better than those for R-NEM, while
its ARI scores are only marginally worse and only on the
binary data. In comparison to IODINE, our model is at least
4% better across all metrics. For the Bouncing Balls dataset,
we also investigated the impact of changing the total num-
ber of possible colors to 4 and 8 (the former resulting in
duplicate colors for different objects and the latter in unique
colors for each object). The higher MSE scores for the 8
balls variant is due to the model not being able to reconstruct



 
Table 2: Generalization. At test-time, we change the number of
slots in the models from 5 to 9 for the Bouncing Balls test dataset
(6-8 balls), and from 6 to 7 for the CLEVRER test dataset (6
objects).

Bouncing Balls

ARI (↑) F-ARI (↑) MSE (↓)

bi
na

ry

R-NEM 0.4484 0.6377 0.0328
IODINE 0.0271 0.9969 0.0040
SEQ-IODINE 0.0263 0.8874 0.0521
PROVIDE 0.4453 0.9999 0.0008

co
lo

r

IODINE (4) 0.4136 0.8211 0.0138
IODINE (8) 0.2823 0.7197 0.0281
SEQ-IODINE (4) 0.2068 0.5854 0.0338
SEQ-IODINE (8) 0.1571 0.5231 0.0433
PROVIDE (4) 0.4275 0.9998 0.0004
PROVIDE (8) 0.4317 0.9900 0.0114

CLEVRER

ARI (↑) F-ARI (↑) MSE (↓)

co
lo

r IODINE 0.2205 0.9305 0.0006
SEQ-IODINE 0.1482 0.8645 0.0012
PROVIDE 0.2839 0.9355 0.0004

the unseen colors. Sample qualitative results are shown in
Fig. 3 and 4, while more can be found in Appendix F.

4.5 PREDICTION

We compare the predictions of our model (Section 3.2.3) to
those of R-NEM after 20 steps of inference on 10 predicted
steps on the Bouncing Balls dataset (Fig. 5 left). As we can
see from the results, PROVIDE is superior to R-NEM on
shorter sequences, however, for longer sequences we are
outperforming R-NEM only on colored data. Our model is
capable of more accurate frame prediction than R-NEM on
the Bouncing Balls dataset during the first few predicted
frames (5-7), with predictions slowly diverging over time
due to the temporal consistency. This behavior is also ob-
servable on the CLEVRER dataset (Fig. 5 right), albeit to a
lesser extent, likely because the scene dynamics are simpler
due to fewer moving objects, even if the motion itself is non-
linear. We refer to Appendix E for an extended discussion.
In Figure 6 we compute velocity vectors between bounding
box centroids and compare the cosine similarity to the pre-
dictions of DDPAE on the Bouncing Balls dataset. While
PROVIDE outperforms DDPAE on the first three frames,
its quality falls below DDPAE performance for longer sim-
ulations. This behavior is not surprising and in line with
the results in Fig. 5. We note that DDPAE uses a dedicated
RNN to capture the temporal dependencies and interactions
between the components of a scene (see Hsieh et al. [2019];
Figure 2). Similar to R-NEM, this allows DDPAE to learn

Table 3: Ablation Study. A 2D-LSTM extension of IODINE
trained on sequences of 20 frames is unstable and its output seg-
mentation lacks precision and consistency. Our efficient version of
a 2D-LSTM grid (Fig. 2a) and the conditional prior and generation
increase both segmentation and reconstruction quality. By training
these models on longer sequences of 40 frames we observe further
improvements.

Base Grid CP+G
Entr

op
y

Len
gth

ARI (↑) F-ARI (↑) MSE (↓)

B
B

X 20 0.0126 0.7765 0.0340
X X X 20 0.2994 0.9999 0.0010
X X X 40 0.3528 0.9998 0.0010
X X X X 40 0.7263 0.9999 0.0004

C
L

E
V

R
E

R

X 20 0.1900 0.8200 0.0011
X X 20 0.1100 0.9000 0.0005
X X X 20 0.2403 0.9258 0.0003
X X 40 0.1700 0.9100 0.0005
X X X 40 0.2681 0.9312 0.0003

[Base: base model using 2D-LSTM; Grid: efficient triangular
grid structure (Fig. 2a); CP+G: conditional prior and generation;
Length: sequence length; Entropy: entropy term (Eq.(7)]

3 5 7 10
Simulation steps

0.6

0.7

0.8

0.9

1.0

AR
I/F

-A
RI

Bouncing Balls
ARI Our
ARI Our (color)
ARI R-NEM
F-ARI Our
F-ARI Our (color)
F-ARI R-NEM

3 5 7 10
Simulation steps

0.2

0.4

0.6

0.8

1.0

AR
I/F

-A
RI

CLEVRER
ARI
F-ARI

Figure 5: Prediction. We show the (F-)ARI for 3, 5, 7, and 10
simulated frames after 20 inference steps.
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Figure 6: Velocity Prediction. Cosine similarity for 5 simulated
frames after 10 inference steps.

an explicit model of object-object interactions for the pur-
pose of prediction. PROVIDE, on the other hand, learns
disentangled latent representations which also encode dy-



 namics. It is thus not primarily designed to be a simulator
but allows the use of its latent representations for a variety
of downstream tasks, including prediction.

4.6 ABLATION

The quantitative results of an ablation study on the binary
Bouncing Balls dataset and CLEVRER are shown in Ta-
ble 3. We investigate the effects of the efficient grid, con-
ditional prior and generation, length of training sequences
and entropy term on the performance of PROVIDE; all con-
tributions are necessary and important. Note that the base
models are too large to be trained on 40 frames, which con-
firms the superiority of our model in terms of both runtime
and memory. The CLEVRER dataset is not binary, which is
why we do not include the entropy term (see Section 3.2.3).
We validate our choice of R̂ and compare it to alternative
options in a supplemental study discussed in Appendix F.1.

5 CONCLUSION AND DISCUSSION

We presented a novel unsupervised learning framework ca-
pable of precise scene decomposition in multi-object videos
with complex appearance and motion. Our temporal com-
ponent enables modeling of dynamics inside the amortized
iterative inference framework but also improves the quality
of the results overall. From the quantitative and qualitative
comparisons with IODINE and SEQ-IODINE, we see that
PROVIDE shows more accurate results on the decompo-
sition task. PROVIDE can also detect new objects faster
and is less sensitive to color, because it can leverage the
objects’ motion cues. For our experiments, we have chosen
a setup consistent with other SOTA methods and a focus on
the objects’ dynamics. PROVIDE is currently not targeting
complex textured datasets, as they are not designed for un-
supervised learning and impose additional challenges, such
as limited coverage of the input space as well as a superpo-
sition of the scene’s intrinsic components (object location,
articulation, motion, albedo, shading, etc.). We refer the
reader to Fig. 7 in the Appendix for a decomposition of a
real-world video stream and Appendix E for an extended
discussion and future work.
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