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Abstract

Inspired by recent advances in the field of expert-
based approximations of Gaussian processes (GPs),
we present an expert-based approach to large-scale
multi-output regression using single-output GP
experts. Employing a deeply structured mixture
of single-output GPs encoded via a probabilistic
circuit allows us to capture correlations between
multiple output dimensions accurately. By recurs-
ively partitioning the covariate space and the output
space, posterior inference in our model reduces to
inference on single-output GP experts, which only
need to be conditioned on a small subset of the
observations. We show that inference can be per-
formed exactly and efficiently in our model, that
it can capture correlations between output dimen-
sions and, hence, often outperforms approaches
that do not incorporate inter-output correlations, as
demonstrated on several data sets in terms of the
negative log predictive density.

1 INTRODUCTION

Gaussian processes (GPs) are a popular class of stochastic
processes that can be understood as priors over functions.
Because of their expressiveness and interpretability—the
generalisation properties of a GP are solely determined
by choice of the kernel function; they have been heavily
used for various machine learning tasks, e.g., for regres-
sion or classification tasks [Rasmussen and Williams, 2006].
Moreover, GPs have been shown to be closely related to
other machine learning models, e.g., under certain assump-
tions they correspond to the infinite width limit of Bayesian
neural networks [Neal, 1994]. However, exactly computing
the posterior distribution of a GP, i.e., conditioning a GP
prior on D-dimensional observations, scales cubic in the
number of observations (N ), i.e., O(N3), and has quadratic

memory cost, i.e., O(N2 +DN), thus, limiting their use to
moderately sized data sets.

To enable posterior inference in GPs on large-scale prob-
lems, recent work (see e.g. Liu et al. [2020] for a detailed
review) mainly resorts to global approximations to the pos-
terior, e.g., using inducing points, or local approximations
that aim to distribute the computation of the posterior dis-
tribution onto local experts. Unfortunately, most of these
approaches only focus on single-output regression, i.e., the
dependent variable is univariate, and in the case of local
approximations, do not easily extend to multi-output re-
gression tasks, see Bruinsma et al. [2020] for a detailed
discussion on recent techniques on multi-output GPs.

Recently, Trapp et al. [2020] proposed a local expert-based
approximation to GPs that leverages probabilistic circuits
(e.g. Poon and Domingos [2011], Kisa et al. [2014], Peharz
et al. [2020], Choi et al. [2020]), which are a class of deep
tractable probabilistic models, allowing them to perform effi-
cient and exact posterior inference in their model. In contrast
to popular product-of-experts based approaches (e.g. Deis-
enroth and Ng [2015], Cohen et al. [2020]), their method
does not approximate the posterior predictive distribution
of a GP directly but instead is a model on its own, making it
more suitable for further extensions than product-of-experts
based approaches.

The contributions of this work are as follows:

1. We propose the multi-output mixture of Gaussian pro-
cesses (MOMoGP), an extension of Trapp et al. [2020]
for multi-output regression that scales in O(KM3),
where M << N is the number of observations per
expert, and K ≥ D is the number of local experts.

2. Moreover, we show that posterior inference in our
model can be done exactly and reduces to posterior
inference at the GP leaves of the networks.

3. Finally, we present a quantitative evaluation of our ap-
proach as well as an application to image upsampling,
indicating that MOMoGP is a promising model for
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 multi-output regression.

The rest of the paper is organised as follows. We start by
reviewing GP regression and probabilistic circuits in Sec-
tion 3. In Section 4, we present MOMoGPs for multi-output
regression and discuss posterior inference as well as hy-
perparameter optimisation. Finally, before concluding, we
present a quantitative evaluation of the proposed method in
Section 51.

2 RELATED WORK

Time Series Regression. Time series regression is a central
task in machine learning. We can categorise the existing
approach into parametric models, e.g., traditional machine
learning approaches such as random forest [Breiman, 2001],
Adaboost [Solomatine and Shrestha, 2004], XGboost [Chen
and Guestrin, 2016], and multi-layer perceptrons [Mur-
tagh, 1991]; and nonparametric models, with Gaussian pro-
cess [Rasmussen and Williams, 2006], which are distribu-
tion over functions, taking the central role in probabilistic
machine learning.

Multi-Output Regression. The methods mentioned above
can always be applied to multi-output regression by assum-
ing that all output dimensions are independent. However,
simply ignoring the correlations among output dimensions
will not lead to an accurate representation of the regression
task at hand. One solution is to employ a neural network-
based regression model, which can naturally model the out-
put space jointly. However, accurately quantifying the un-
certainties and interpreting the modelled dependencies is
often challenging or only possible to a limited extend.

Existing methods for multi-output regression can be cat-
egorized into two categories: problem transformation
methods and algorithm adaptation methods [Borchani
et al., 2015]. Problem transformation methods are mainly
based on transforming the multi-output regression prob-
lem into a single-target problem. Consequently, one ag-
gregates the predictions from each single-target regression
task to obtain the multi-output predictions. Single-Target
Method, Multi-Target Regressor Stacking, and Regressor
Chains [Spyromitros-Xioufis et al., 2012] are among prob-
lem transformation methods. Moreover, Zhang et al. [2012]
presented a multi-output support vector regression approach
based on problem transformation, which extends the ori-
ginal feature space and expresses the multi-output problem
as an equivalent single-output problem. On the other hand,
algorithm adaptation based methods [Kocev et al., 2009,
Breiman and Friedman, 1997, Similä and Tikka, 2007] ad-
apt a specific single-output method to handle multi-output
data sets directly. These methods generally achieve bet-
ter results as they consider the underlying relationships

1Source code is available at: https://github.com/
ml-research/MOMoGP

between the features and the corresponding targets and the
relationships between the targets. Existing approaches in-
clude reduced-rank regression [Izenman, 1975, Abraham
et al., 2013], multi-output support vector regression [Tuia
et al., 2011, Xu et al., 2013], kernel methods [Baldassarre
et al., 2012, Alvarez et al., 2011] and multi-target regression
trees [Stojanova et al., 2012, Appice and Malerba, 2014,
Levatić et al., 2014].

Williams et al. [2007] proposed a multi-task Gaussian pro-
cess, where the model learns a shared covariance function
on input-dependent features and a “free-form” covariance
matrix over tasks. Further, Platanios and Chatzis [2012]
presented a nonparametric Bayesian method for multivariate
volatility modelling and proposed a mixture of multi-output
heteroscedastic GPs to model the covariance matrices of
multiple assets. However, this approach is computationally
not tractable. More recently, Bruinsma et al. [2020] pro-
posed a linear mixing model, which scales linearly in the
number of output dimensions, and showed that their ap-
proach could be combined with variational approximations
to the GP posterior.

Probabilistic Circuits for Time Series. Probabilistic cir-
cuits (PCs) have previously been used for time series
modelling. Melibari et al. [2016] proposed dynamic sum-
product networks for density estimation of time series,
which was later extended to so-called recurrent sum-product
networks [Kalra et al., 2018, Duan et al., 2020] by utilizing
discriminative learning. Recently, Yu et al. [2021] proposed
to model the distribution of time series in the spectral do-
main, using Whittle sum-product networks. While these
approaches are able to model the joint distribution of the
time series, they often do not allow for straightforward com-
putation of the predictive distribution.

Trapp et al. [2020] proposed to define PCs for time series
modelling in terms of their induced measure and to equip
the PC with Gaussian measures induced by local GPs. The
resulting model – called deep structured mixture of Gaus-
sian processes (DSMGP) – is a deep mixture of naïve-local
experts. While DSMGPs aim to approximate GPs by a deep
mixture of GP experts, they are limited to single-output GP
regression, hence Trapp et al. [2020] had to resort to a full
factorisation for the multi-output regression.

Conversely, MOMoGPs offer a principled way of incorpor-
ating multiple output dimensions and model dependencies
between outputs through the parameters of the PC. For uni-
variate regression, MOMoGPs reduce to DSMGPs and can
therefore be understood as a generalisation of DSMGPs.

3 NOTATION AND BACKGROUND

Notation. We use the following notations throughout the
paper. D is the data set, where X is the set of covariates,
and Y is the set of target values. Bold font capitalised X,
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 and Y are sets of random variables. X is the set of random
variables in the covariate space (which is an uncountable set)
and Y the set of output random variables (RVs). The input
space has dimension D, the output space has dimension
P , and the number of observations is N . Furthermore, x
denotes the covariates of one observation and y the observed
multivariate target/output. We use yn to denote the nth

observed target/output value from the data set D, yp for the
pth dimension in the output space, and yn,p denotes the pth

dimension of the nth observed target/output value.

In a GP, as reviewed below, k(·, ·) denotes the covariance
function and K the covariance (Gram) matrix. A single-
output GP expert is parameterized by hyperparameters θL.

In a PC C, as reviewed in the next section, S represents a
sum node, Px represents a product node that partitions the
covariate space, Py represents a product node that partitions
the output space, L is a leaf node, and N denotes a general
node. Furthermore, KS denotes the number of children of
a sum node, and similarly, KPx , KPy denote the numbers
of children of a product node. The maximum number of
observations per leaf is denoted as M .

3.1 GAUSSIAN PROCESS REGRESSION

A Gaussian process (GP) is defined as an (uncountable)
collection of random variables X indexed by an arbitrary
covariate space R, where any finite subset of the RVs is
multivariate Gaussian distributed and overlapping finite sub-
sets are marginally consistent [Rasmussen and Williams,
2006]. Moreover, a GP is fully specified by its mean function
m : RD 7→ R and its covariance function k : RD×RD 7→ R.
Throughout the paper, we assume a zero-mean function
without loss of generality.

Let us assume a data set D = {(xn, yn)}Nn=1 consisting
of N observations and denote X = {xn}Nn=1 and Y =

{yn}Nn=1. Then the covariance matrix KX ,X is given as:

KX ,X =
k (x1,x1) k (x1,x2) · · · k (x1,xN )
k (x2,x1) k (x2,x2) · · · k (x2,xN )

...
...

. . .
...

k (xN ,x1) k (xN ,x2) · · · k (xN ,xN )

 . (1)

In single-output GP regression tasks, and assuming a Gaus-
sian likelihood model, the posterior mean and posterior cov-
ariance for a test datum x∗ can be obtained in closed-form,
i.e.,

mD(x∗) = Kx∗,XC
−1Y , (2)

and

VD(x∗) = Kx∗,x∗ −Kx∗,XC
−1KT

x∗,X , (3)

where C = [KX ,X + σ2I], with σ2 denoting the noise
variance and I denoting the identity matrix. However, com-

puting the posterior predictive distribution scales poorly
with the number of observations, as the matrix inversion
of C required in the computations has computational cost
cubic in N , if solved using a Cholesky decomposition.

3.2 PROBABILISTIC CIRCUITS

Probabilistic circuits (PCs) are tractable probabilistic mod-
els, defined as rooted directed acyclic graphs (DAGs), in
which leaf nodes represent univariate probability distribu-
tions and non-terminal nodes represent either a mixture (or
states of an observed variable in case of a deterministic
circuit) or an independence relation of their children.

More formally, a PC C over a set of RVs X is a probabilistic
model defined via a DAG, also called the computational
graph, containing input distributions (leaves), sums S and
products P; and a scope function sc(·). We refer to Trapp
et al. [2019] for further details.

For a given scope function, all leaves of the PC are density
functions over some subset of RVs U ⊂ X. This subset is
called the scope of the node, and for a node N is denoted
as sc(N). The scope of inner nodes is defined as the union
of the scope of its children. Inner nodes compute either a
weighted sum of their children or a product of their children,
i.e., S =

∑
N∈ch(S) wS,NN and P =

∏
N∈ch(P) N, where

ch(·) denotes the children of a node. The sum weights wS,N

are assumed to be non-negative and normalized, i.e.,wS,N ≥
0,
∑

N wS,N = 1, without loss of generality [Peharz et al.,
2015]. Further, we assume the PC to be smooth (complete)
and decomposable [Darwiche, 2003]. Specifically, a PC is
smooth if for each sum S it holds that sc(N′) = sc(N′′), for
all N′,N′′ ∈ ch(S). And the PC is called decomposable if it
holds for each product P that sc(N′) ∩ sc(N′′) = ∅, for all
N′ 6= N′′ ∈ ch(P).

Note that PCs are typically defined only for a finite set of
RVs, while Trapp et al. [2020] showed that it is possible to
extend PCs to the stochastic process case by defining them
based on their induced measure. We will, therefore, follow
the approach in [Trapp et al., 2020] and recursively define
our model as such.

4 MULTI-OUTPUT MIXTURE OF
GAUSSIAN PROCESSES

Now we have everything at hand to introduce our MOMoGP
model formally. We start off with the problem formulation,
introduce our MOMoGP model, and subsequently show
how to perform exact posterior inference as well as how to
perform predictions using MOMoGPs. Finally, we discuss
hyperparameter optimisation in MOMoGPs by maximising
the marginal likelihood.



 4.1 PROBLEM FORMULATION

Given a set of observations D = {(xn,yn)}Nn=1 with cov-
ariates xn ∈ RD and noisy target values yn ∈ RP , we aim
to infer the latent functions:

fp ∼ GP(0,K) , (4)

yp | fp ∼ N(fp(x), σ2I) , (5)

while aiming to account for the correlations between the
target values. One approach is to model the multi-output
targets by adopting a multi-valued latent function. How-
ever, such an approach scales cubic in the number of output
dimensions P , i.e., O(N3P 3) [Bruinsma et al., 2020]. Al-
ternatively, we exploit a simple observation, that is, we can
leverage a mixture of independent GP estimators to cap-
ture correlations between the output dimensions. This is
akin to the Instantaneous Linear Mixing Model by Bru-
insma et al. [2020] but explores recent work by Trapp et al.
[2020] to perform efficient and exact posterior inference
in a deep mixture over single-output GP experts to obtain
correlated multi-output predictions. Note that the approach
by Bruinsma et al. [2020] assumes that the outputs live on a
low-dimensional linear subspace and exploits an orthogonal
basis for efficient inference, while our approach assumes
weak independence between output dimensions and exploits
the multi-modality of the posterior to capture dependencies
between output dimensions.

4.2 MULTI-OUTPUT MIXTURE OF GPS

The multi-output mixture of Gaussian processes
(MOMoGP) can be recursively defined as follows:

1. A Gaussian measure induced by a GP [Rajput and
Cambanis, 1972] is a MOMoGP,

2. a product of MOMoGPs with disjoint covariate space
or disjoint output space is a MOMoGP, and

3. a convex combination of MOMoGPs over the same
covariate and output space is a MOMoGP.

The recursive definition of a MOMoGP is illustrated in
Fig. 1. Here, w1,1, · · · , w1,k, · · · , w1,KS

are KS many nor-
malized weights of the sum node S. The product node Px,
which is a child of the root, splits the (input) covariate space
X, by assuming certain regions of the input space to be
approximately independent. The second product node, Py,
partitions the output space Y into disjoint subsets. More spe-
cifically, its children are either MOMoGPs over a set of out-
put variables, e.g., Yl

1, or only a single variable, e.g., Yl+1.
For a univariate output, e.g., Yl+1 we construct a GP leaf L
on the respective covariate subspace and output subspace.
Otherwise, the process recurses by appending a new sum
node, resulting in a deep hierarchical structure.

+ S

. . . . . .× Px

× Py. . . . . .

GP. . . . . .

w1,1 w1,k w1,KS

Xt<i Xi≤t<j Xt≥j

Yl
1 Yl+1 YP

l+2

Figure 1: Illustration of the MOMoGP structure. w1,k rep-
resents for the normalized weight, Xi≤t<j ⊂ X represents
the subset of RVs Xt with index i ≤ t < j of the covariate
space, and Yl

1 denotes a subset of RVs of the output space,
respectively. Note that we randomly permute the index set
of the output space at each product node Py .

4.3 MOMOGP CONSTRUCTION

The structure of a MOMoGP can either be manually defined
or learned from data. To learn it from data, one can leverage
Algorithm 1. In short, we alternate between introducing sum
and product nodes and, finally, append GP experts as leaves
once any of the termination criteria is fulfilled.

As illustrated in Fig. 2, to create a sum node S, we first con-
structKS many children under the sum and then attach those
children with uniform weights. In the next step, a product
node Px is constructed by partitioning the covariate space.
For the kth product node, the covariate space is partitioned
by the KPx

-quantiles of the dimension with the kth largest
sample variance. Afterwards, a product node Py is created
by randomly partitioning the output space. To split the out-
put space one can also apply a conditional independence
test on y instead of random splitting. Product nodes either
enforce independence assumptions in the covariate space
(resulting in weak discontinuities) or independence assump-
tions in the output space (assuming sets of the dependent
variables are conditionally independent). The above sum and
product nodes are constructed recursively until the number
of observations in the subspace is smaller than a predefined
threshold M . If the output space is still multidimensional,
it will be directly factorized with a product node Py. Fi-
nally, we construct leaf nodes by placing single-output GP
experts at the respective covariate subspace parameterized



 Algorithm 1: Construction of a MOMoGP
Input: X,Y,D, KS, KPx, KPy , M Output: C
Function buildGP(X, Y,D)

Equip L with a single output GP expert on the
domain X and output space Y ;

Condition L on D ;
return L

Function buildSumNode(X,Y,D)
w ← { 1

KS
}KS

k=1;
Let d1, . . . , dD represent the dimensions of the

covariate space in increasing order of their sample
variance in D;

for k = 1, . . . ,KS do
Px ← buildProdNodeX(X,Y,D, dk);
S← S + wk Px;

return S
Function buildProdNodeX(X,Y,D, d)

l← lower bound of X for dimension d;
u← upper bound of X for dimension d;
v ← u− l ;
s1, . . . , sKPx−1 ←KPx-quantiles of the interval
[l, u];
l̃← l ;
for k = 1, . . . ,KPx − 1 do

ũ← sk ;
X̃← sub-domain of X such that upper and

lower bounds for d are equal to ũ, l̃,
respectively. ;
D̃← subset of D such that the covariate of
every (xn,yn) ∈ D̃ is defined on X̃. ;
Py ← buildProdNodeY(X̃,Y, D̃);
P← P× Py ;
l̃← sk ;

return P
Function buildProdNodeY(X,Y,D)

if Number of observations in D > M then
Y1, · · · ,YKPy−1 ← random partitions of

output space Y;
for k = 1, . . . ,KPy − 1 do

S← buildSumNode(X,Yk,D) ;
P← P× S ;

else
Y1, · · · , YKPy−1 ← each dimension of output
space Y;

for k = 1, . . . ,KPy − 1 do
L← buildGP(X, Yk,D) ;
P← P× L ;

return P
C← buildSumNode(X,Y,D) ;

by hyperparameters θL.

4.4 EXACT POSTERIOR INFERENCE

Both PCs and GPs allow for exact posterior inference, like-
wise, we can formalize the exact posterior inference for
MOMoGP as follows:

(Leaf node) If the MOMoGP is a leaf node L we can
obtain the posterior distribution analytically, assuming a
Gaussian likelihood.

(Sum node) If the MOMoGP is a sum node S, the likeli-
hood terms distribute to the children, i.e.,

pS(f | D) ∝
∏

(xn,yn)∈D

p (yn | fn)
∑

N∈ch(S)

wS,N pN (fn | xn)

=
∑

N∈ch(S)

wS,N

∏
(xn,yn)∈D

p (yn | fn) pN (fn | xn)

︸ ︷︷ ︸
=pN(f |D)

, (6)

simplifying the computation of the unnormalised posterior
distribution. Note that instead of being univariate as in Trapp
et al. [2020], yn is multidimensional in MOMoGP.

(Product node) If the MOMoGP is a product node P
decomposing either the covariate space or the output space,
we obtain:

pP(f | D) ∝
∏

(xn,yn)∈D

p (yn | fn)
∏

N∈ch(P)

pN (fn | xn)

=
∏

N∈ch(P)

( ∏
(xn,yn)∈D(N)

p (yn | fn) pN (fn | xn)

︸ ︷︷ ︸
=pN(f |D(N))

)
,

(7)
for the computation of the unnormalised posterior,
where D(N) denotes the set of observations in the
subspace for which N is an expert of. In the case
of the covariate space decomposition (Px), D(N) =
{(xn,yn) ∈ D |xn ∈ XN}, where XN is the subset of
covariates falling into the subspace at node N. While
for the output space decomposition (Py), D(N) contains
a subset of outputs for each observation, i.e., D(N) ={

(xn,yn) ∈ D |yn ∈ YPN

N ,YPN

N ⊆ YN, PN < P
}

. There-
fore, D(N) will either contain fewer observations,
i.e., #D(N) < #D, or fewer output dimensions, i.e., for
each n we have yn ∈ D(N) with yn ∈ RPN and PN < P . In
contrast to Trapp et al. [2020], product nodes in MOMoGPs
partition either the covariate space or the output space, while
DSMGPs [Trapp et al., 2020] only partition the covariate
space and assume the output space to be univariate.

To obtain the normalised posterior distribution of a MOMo-
GPs we employ the re-normalisation algorithm by Peharz
et al. [2015].



 

X = {Xt | t ∈ R}

Covariate space

Y = {Yp}Pp=1
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D
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×

. . .

×

. . .

. . .

×

. . .

. . .

#D(N) > M

Factorise Y and
create GP leaves.

. . .

Partition the covariate space X
and split the data set into subsets
according to the partition of X.

Partition the output space Y
if the number of observations in

D(N) is larger than M .

w1,1

w1,...

w1,KS

Xt<i

Xt≥i

Yl
1
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l+1

Xt<j

Xt≥j
No

Yes

recurse

recurse

Figure 2: Illustration of Algorithm 1 for learning MOMoGPs in a recursive fashion. Sum nodes have weighted children that
are product nodes. Product nodes either enforce independence assumptions in the covariate space (resulting in discontinuities)
or independence assumptions in the output space (assuming sets of the dependent variables are independent). Sum nodes
replace the independence assumptions made by product nodes through conditional independence. Finally, leaf nodes are
single-output GP experts at the respective covariate subspace. (Best viewed in color)

4.5 PREDICTIONS

The posterior predictive distribution of a MOMoGP for an
unseen datum x∗ is a mixture of multivariate Gaussian distri-
butions. To obtain a single prediction for x∗, we employ an
approximation to the posterior predictive distribution of the
MOMoGP using the first and the second moment. By this,
we approximate the posterior predictive distribution with its
closest multivariate Gaussian measured in Kullback–Leibler
divergence [Rasmussen and Williams, 2006].

Let L be the set of all leaves in a MOMoGP, and τi : RD 7→
L a function which maps an unseen datum x∗ to a leaf L
for each induced tree. Then the posterior mean and vari-
ance given x∗, are propagated bottom-up as follows. Let
mτi(x∗)(x

∗) and Vτi(x∗)(x
∗) denote the mean and variance

of the posterior distribution from the GP at leaf τi(x∗), re-
spectively. Now, a product node Py that partitions the output
space performs concatenation of the mean and variance
from its children:

mP(x∗) = [mN1(x∗), · · · ,mNk
(x∗)] , (8)

and VP(x∗) = diag(VN1(x∗) , · · · , VNk
(x∗)) . (9)

In contrast, a product node Px that partitions the covariate
space acts as a gate, i.e., we select exactly one child of the
product node. The selection of the child is dictated by the
partition of covariate space employed by the product node
and the location of x∗. For a sum node S, it computes the
first moment, i.e.,

mS(x∗) =
∑

N∈ch(S)

wS,NmN(x∗) , (10)

and the second moment ,i.e.,

VS(x∗) =
∑

N∈ch(S)

wS,NVN(x∗) +
∑

N∈ch(S)

wS,NmN(x∗)T mN(x∗)

+mS(x∗)T mS(x∗) ,
(11)

of the associated mixture distribution.

4.6 HYPERPARAMETER OPTIMISATION

To optimise the hyperparameters of a MOMoGP model, we
can maximize its log marginal likelihood. When using a
formulation in terms of a mixture over induced trees T and
following the argument from Section 4.4, we can see that the
marginal likelihood of a MOMoGP is obtained as follows:

p(Y |X , θ)

=

∫ ∏
(x,y)∈D

K∑
k=1

p(Tk)

P∏
p=1

∏
L∈Tk,V

p(yp |x, θL)1{Yp,L} df

=

∫ K∑
k=1

p(Tk)

P∏
p=1

∏
L∈Tk,V

∏
(x,yp)∈D(L)

p(yp |x, θL)1{Yp,L} df

=

K∑
k=1

p(Tk)
P∏
p=1

∏
L∈Tk,V

∫ ∏
(x,yp)∈D(L)

p(yp |x, θL)1{Yp,L} df

︸ ︷︷ ︸
=pYp (yp | XL,θL)

,

(12)
where D(L) = {(x, yp) ∈ D |x ∈ XL}, with XL being the
subset of covariates falling into the subspace at leaf L, and



 Data set N (train) N (test) D P

Parkinsons 4,112 1,763 16 2
scm20d 7,173 1,793 61 16
WindTurbine 4,000 1,000 8 6
Energy 57,598 14,400 32 17
usFlight 500,000 200,000 8 2

Table 1: Statistics of the multi-output benchmark data sets
used in our evaluation. A large variety of output dimensions
P were chosen, ranging from 2 to 17.

1{Yp,L} = 1{Yp∈sc(L)}.

We can now readily obtain the log marginal likelihood,
which is given as: log p(Y |X , θ) =

L
K

Σ
k=1

E

log p(Tk) +

P∑
p=1

∑
L∈Tk,V

log pYp
(yp | XL, θL)

 ,

(13)

where L
K

Σ
k=1

E denotes the log-sum-exp operation and the

marginal log likelihood of a GP expert is given as:

log pYp(yp | X , θ) = −1

2
(yTpC

−1yp+log |C|+N log 2π) ,

(14)
where C = [KX ,X + σ2I] and N is the number of observa-
tions the GP expert is conditioned on.

Note that we have assumed that each GP expert has its
own hyperparameters θL. Doing so allows us to capture
non-stationarities and heteroscedasticity, while potentially
increasing the risk of overfitting [Zhang and Williamson,
2019].

If the underlying process is believed to be stationary, it is
possible to tie the hyperparameters either by using one set
of global hyperparameters for each output dimension or by
adopting the approach described in Trapp et al. [2020] and
use a similarity matrix to incorporate dependence between
the otherwise independent local experts. Note that we con-
sistently used independent hyperparameters for each GP
expert in our experiments.

5 EXPERIMENTAL EVALUATION

In this section, we will examine the performance of MO-
MoGP on several benchmark data sets and compare it with
other state-of-the-art approaches. First, we describe the data
sets and then provide details about the experimental setup
and evaluation measures we used. Finally, we discuss the
experimental results obtained.

5.1 DATA SETS

We validate our model on several benchmark data sets for
multi-output regression. The number of observations in the
data sets varies from 4k to 500k, with output space dimen-
sions from 2 to 17. The statistics of the data sets used in the
evaluation are given in Table 1. The Parkinsons and usFlight
data sets, as well as their training/test splits, are from Trapp
et al. [2020]. Note that we applied Principal Component
Analysis (PCA) [Wold et al., 1987] on the scm20d data
set to reduce its input dimension from 61 to 30. Both MO-
MoGPs and DSMGPs recursively partition the covariate
space using axis-aligned splits. Therefore, applying PCA to
high-dimensional covariate spaces is essential for compu-
tational reasons for both approaches. For the Energy data
set, we select its subset “Adelaide” for our experiments. The
WindTurbine data set is simulated with the FAST simulator2.

5.2 EXPERIMENTAL PROTOCOL

To construct a MOMoGP for each experiment, we imple-
mented Algorithm 1. More specifically, the root node of our
hierarchy structure was a sum node, with KS product nodes
as children, initialized with uniform weights. Product nodes
that split the input space had KPx

children, and those that
decompose the output space used a random split strategy to
obtain KPy children. The structure construction terminated
with GP leaves when the output space was completely de-
composed and the number of observations in the subspace
is smaller than a predefined threshold of M .

In the experiments, we set KS = 2, KPy = 2, and
M ∈ {500, 1000, 5000} based on the size of data set. Each
GP leaf was equipped with a Matérn-3/2 covariance func-
tion with Automatic Relevance Detection (ARD), and a
zero-mean function. The initialized lengthscale paramet-
ers of the GPs were randomly sampled. The learning rate
and the number of training epochs were tuned to speed up
the training, and at the same time, avoid overfitting. That
is, when the training loss reached a plateau, the optimisa-
tion terminated. We used Adam to maximize the marginal
likelihood of the GP leaves.

The hyperparameters θL of all GPs in our experiments were
sampled from a Gamma distribution Γ(2, 3). Note that we
kept consistent settings for all the GP-related approaches,
e.g., covariance and mean functions. For MOSVGP, the
number of inducing points was setQ = 500, and the number
of latent functions corresponded to the number of output
dimensions.

Additionally, we tested our hypothesis that a mixture of inde-
pendent single-output GPs can model correlations between
the outputs by employing a shallow mixture of exact single-
output GPs denoted as sumGP. In fact, sumGPs are a sub-

2https://www.nrel.gov/wind/nwtc/fast.html

https://www.nrel.gov/wind/nwtc/fast.html


 Data Set LR GP MOGP MOSVGP DSMGP sumGP MOMoGP

RMSE 0.974 0.783 0.793 0.864 0.774 0.784 0.775↓
Parkinsons MAE 0.816 0.610 0.603 0.708 0.604 0.610 0.605↓

NLPD 2.787 2.389 1.766 2.515 2.319 2.388 2.208↑
RMSE 0.854 0.832 0.816 0.824 0.839 0.829 0.820↑

scm20d MAE 0.652 0.643 0.630 0.636 0.646 0.641 0.630↑
NLPD 21.876 21.013 21.310 17.319 19.059 14.859 11.416↑
RMSE 0.391 0.133 0.139 0.302 0.143 0.133 0.143

WindTurbine MAE 0.311 0.074 0.080 0.236 0.073 0.074 0.073
NLPD 1.435 -2.649 2.594 0.104 -8.749 -2.627 -7.467↓
RMSE 0.752 NA NA 0.659 0.547 NA 0.556↓

Energy MAE 0.605 NA NA 0.516 0.400 NA 0.398↑
NLPD 14.775 NA NA 14.169 11.745 NA 8.610↑
RMSE 0.983 NA NA 0.955 0.927 NA 0.934↓

usFlight MAE 0.529 NA NA 0.494 0.492 NA 0.505↓
NLPD 2.331 NA NA 2.251 2.178 NA 2.091↑

Table 2: Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Negative Log Predictive Density (NLPD) of
state-of-the-art approaches and MOMoGP (our work) on benchmark data sets with 4K to 500K observations. Smaller values
are better. The best result is indicated in bold and comparison to the DSMGP is indicated using arrows ↑ / ↓.

class of MOMoGPs which contain only sum nodes, product
nodes which split the output space, and GP leaves.

For quantitative evaluation, we compared the Root Mean
Squared Error (RMSE):

RMSE(y, ŷ) =
1

P

P∑
p=1

√√√√ 1

N

N∑
n=1

(yn,p − ŷn,p)2 , (15)

the Mean Absolute Error (MAE):

MAE(y, ŷ) =
1

N · P

N∑
n=1

P∑
p=1

|yn,p − ŷn,p| , (16)

and the Negative Log Predictive Density (NLPD):

NLPD(yn) = − log p(yn | D,xn, θ) , (17)

where ŷn is the ground truth of prediction yn for datum xn.

5.3 EXPERIMENT RESULTS

Herein, we investigate the performance of seven different re-
gression models, including linear regression (LR), exact GP
(GP), deep structured mixtures of GPs (DSMGP) [Trapp
et al., 2020], which all employ independence assump-
tion for the output space, and Multitask GP regression
(MOGP) [Williams et al., 2007], multi-output sparse Vari-
ational GP (MOSVGP) [Moreno-Muñoz et al., 2018],
sumGP and MOMoGP, which models the output space
jointly. Note that we use consistent settings for all the GP
approaches.

Table 2 reports the RMSE, MAE and NLPD on each data set.
Generally, the multi-output models provide smaller RMSE
and MAE values compared with the single-output mod-
els. This means by modelling the joint of the output space,
instead of assuming them to be independent, the models
achieve a smaller approximation error. Moreover, MOMoGP
captures predictive uncertainties better than expert-based
approaches and DSMGP, resulting in lower NLPDs. Note
that the NLPD gives rise to the output distribution, while the
RMSE and the MAE only account for the mean value of the
distribution. Thus, improvements in terms of the NLPD are
strictly more important than in terms of the RMSE or the
MAE. Additionally, MOMoGP provided the lowest NLPD
values for large-scale data sets such as Energy and usFlight,
and the corresponding RMSE and MAE values are also very
competitive.

Overall, we can conclude that MOMoGP can achieve com-
petitive regression results, and provides better predictive
uncertainties at the same time.

5.4 EXTRA RESULTS ON IMAGE UPSAMPLING

To deepen the performance evaluation, we envisioned a MO-
MoGP application to the field of image upsampling. The
horizontal and vertical locations of a pixel form the input
space, while the RGB channels of the pixel are defined as
the outputs. Therefore, we have D = 2 and P = 3 for the
image upsampling task. For a given image, this task aims at
enlarging the image via interpolation. The posterior mean
from a MOMoGP is taken as the new pixel value, given the



 

Original and ground truth Bilinear reconstruction Nearest neighbour reconstruction MOMoGP reconstruction

Figure 3: Image upsampling using MOMoGP and other methods. MOMoGP obtains the best reconstruction with an RMSE
of 1.289, while Bilinear has RMSE of 1.542 and Nearest neighbour of 1.855. (Best viewed in color)

location of the pixel to be interpolated. In this experiment,
the original image has the size of 64 × 64 and was down-
sampled to 32× 32. We then aim to reconstruct the original
image from the downsampled version. For MOMoGP, we set
KS = 2, KPx

= 2, KPy
= 2 and M = 256. As visualized

in Fig. 3, bilinear interpolation produces smooth and blurry
artefacts. The nearest neighbour approach brings blocks in
the image. MOMoGP as an interpolation approach achieves
the best performance, exhibiting a more appropriate balance
between colour flattening and salient edge.

6 CONCLUSION

We introduced the multi-output mixture of Gaussian pro-
cesses (MOMoGP), which leverages a probabilistic circuit
with single-output Gaussian process (GP) expert leaves to
model correlations between the dependent variables. In com-
parison to [Trapp et al., 2020] and other expert-based ap-
proaches, our approach models the output space jointly, i.e.,
our model is more general than the approach by [Trapp et al.,
2020], by utilising a recursive decomposition of the output
space. We have shown that this additional decomposition
enables MOMoGPs to retain exact posterior inference while
also allowing the model to capture dependencies between
the outputs without introducing a cubic cost in the number of
output dimensions. In particular, we have shown that we can
efficiently approximate the predictive posterior distribution
for an unseen datum with its closest multivariate Gaussian
distribution through an extension of the approach proposed
by Trapp et al. [2020]. Finally, we show that MOMoGPs
provide competitive results for both RMSE and MAE and
often outperform the model by Trapp et al. [2020] as well as
multi-output sparse variational GPs [Moreno-Muñoz et al.,
2018] in terms of the NLPD, indicating that MOMoGPs
provide a better estimate of the target distribution.

Our work provides several avenues for future work, e.g.,
exploiting the spectral representation of stationary GPs
[Rasmussen and Williams, 2006], combining MOMoGPs
with conditional sum-product networks for mixed multi-

output regression [Shao et al., 2020] and applying MOMo-
GPs to multi-task Bayesian optimisation [Swersky et al.,
2013].
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Jurica Levatić, Michelangelo Ceci, Dragi Kocev, and Sašo
Džeroski. Semi-supervised learning for multi-target re-
gression. In Proceedings of the International workshop
on new frontiers in mining complex patterns, pages 3–18.
Springer, 2014.

Haitao Liu, Yew-Soon Ong, Xiaobo Shen, and Jianfei Cai.
When gaussian process meets big data: A review of scal-
able gps. IEEE Trans. Neural Networks Learn. Syst., 31
(11):4405–4423, 2020.

Mazen Melibari, Pascal Poupart, Prashant Doshi, and
George Trimponias. Dynamic sum product networks
for tractable inference on sequence data. In Proceedings
of International Conference on PGM, pages 345–355,
2016.

Pablo Moreno-Muñoz, Antonio Artés, and Mauricio Al-
varez. Heterogeneous multi-output gaussian process pre-
diction. In Proceedings of NeurIPS, pages 6711–6720,
2018.

Fionn Murtagh. Multilayer perceptrons for classification
and regression. Neurocomputing, 2(5-6):183–197, 1991.

Radford Neal. Bayesian Learning for Neural Networks.
PhD thesis, University of Toronto, 1994.

Robert Peharz, Sebastian Tschiatschek, Franz Pernkopf, and
Pedro M. Domingos. On theoretical properties of sum-
product networks. In Proceedings of AISTATS, volume 38,
2015.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabil-
istic circuits. In Proceedings of ICML, pages 7563–7574,
2020.

Emmanouil A Platanios and Sotirios P Chatzis. Nonpara-
metric mixtures of multi-output heteroscedastic gaussian
processes for volatility modeling. In Working Notes of the
NeurIPS Workshop on Modern Nonparametric Methods
in Machine Learning. 2012.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In Proceedings of UAI, pages
337–346, 2011.

Balram S. Rajput and Stamatis Cambanis. Gaussian Pro-
cesses and Gaussian Measures. The Annals of Mathemat-
ical Statistics, 43(6):1944 – 1952, 1972.



 Carl Edward Rasmussen and Christopher K. I. Williams.
Gaussian processes for machine learning. MIT Press,
2006.

Xiaoting Shao, Alejandro Molina, Antonio Vergari, Karl
Stelzner, Robert Peharz, Thomas Liebig, and Kristian
Kersting. Conditional sum-product networks: Imposing
structure on deep probabilistic architectures. In Proceed-
ings of PGM, 2020.

Timo Similä and Jarkko Tikka. Input selection and shrink-
age in multiresponse linear regression. Computational
Statistics & Data Analysis, 52(1):406–422, 2007.

Dimitri P Solomatine and Durga L Shrestha. Adaboost. rt: a
boosting algorithm for regression problems. In Proceed-
ings of IJCNN, pages 1163–1168. IEEE, 2004.

Eleftherios Spyromitros-Xioufis, Grigorios Tsoumakas, Wil-
liam Groves, and Ioannis Vlahavas. Multi-label classific-
ation methods for multi-target regression. arXiv preprint
arXiv:1211.6581, 2012.

Daniela Stojanova, Michelangelo Ceci, Annalisa Appice,
and Sašo Džeroski. Network regression with predictive
clustering trees. Data Mining and Knowledge Discovery,
25(2):378–413, 2012.

Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams.
Multi-task bayesian optimization. In Annual Conference
on Neural Information Processing Systems (NIPS), pages
2004–2012, 2013.

Martin Trapp, Robert Peharz, Hong Ge, Franz Pernkopf, and
Zoubin Ghahramani. Bayesian learning of sum-product
networks. In Proceedings of NeurIPS, pages 6344–6355,
2019.

Martin Trapp, Robert Peharz, Franz Pernkopf, and Carl Ed-
ward Rasmussen. Deep structured mixtures of gaussian
processes. In Proceedings of AISTATS, pages 2251–2261,
2020.

Devis Tuia, Jochem Verrelst, Luis Alonso, Fernando Pérez-
Cruz, and Gustavo Camps-Valls. Multioutput support
vector regression for remote sensing biophysical para-
meter estimation. IEEE Geoscience and Remote Sensing
Letters, 8(4):804–808, 2011.

Chris Williams, Edwin V Bonilla, and Kian M Chai. Multi-
task gaussian process prediction. Advances in neural
information processing systems, pages 153–160, 2007.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal
component analysis. Chemometrics and intelligent labor-
atory systems, 2(1-3):37–52, 1987.

Shuo Xu, Xin An, Xiaodong Qiao, Lijun Zhu, and Lin
Li. Multi-output least-squares support vector regression
machines. Pattern Recognition Letters, 34(9):1078–1084,
2013.

Zhongjie Yu, Fabrizio Ventola, and Kristian Kersting.
Whittle networks: A deep likelihood model for time series.
In Proceedings of ICML, 2021.

Michael Minyi Zhang and Sinead A. Williamson. Em-
barrassingly parallel inference for gaussian processes.
Journal of Machine Learning Research JMLR, 20:169:1–
169:26, 2019.

Wei Zhang, Xianhui Liu, Yi Ding, and Deming Shi. Multi-
output ls-svr machine in extended feature space. In Pro-
ceedings of the IEEE International Conference on Com-
putational Intelligence for Measurement Systems and Ap-
plications (CIMSA), pages 130–134, 2012.


	Introduction
	Related Work
	Notation and Background
	Gaussian Process Regression
	Probabilistic Circuits

	Multi-Output Mixture of Gaussian Processes
	Problem Formulation
	Multi-Output Mixture of GPs
	MOMoGP Construction
	Exact Posterior Inference
	Predictions
	Hyperparameter Optimisation

	Experimental Evaluation
	Data Sets
	Experimental Protocol
	Experiment Results
	Extra Results on Image Upsampling

	Conclusion

