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Abstract

Node features and structural information of a graph
are both crucial for semi-supervised node classifi-
cation problems. A variety of graph neural network
(GNN) based approaches have been proposed to
tackle these problems, which typically determine
output labels through feature aggregation. This
can be problematic, as it implies conditional in-
dependence of output nodes given hidden repre-
sentations, despite their direct connections in the
graph. To learn the direct influence among output
nodes in a graph, we propose the Explicit Pairwise
Factorized Graph Neural Network (EPFGNN),
which models the whole graph as a partially ob-
served Markov Random Field. It contains explicit
pairwise factors to model output–output relations
and uses a GNN backbone to model input–output
relations. To balance model complexity and expres-
sivity, the pairwise factors have a shared compo-
nent and a separate scaling coefficient for each
edge. We apply the EM algorithm to train our
model, and utilize a star-shaped piecewise like-
lihood for the tractable surrogate objective. We
conduct experiments on various datasets, which
shows that our model can effectively improve the
performance for semi-supervised node classifica-
tion on graphs.

1 INTRODUCTION

We live in a world full of interconnections. For example,
publications are connected with citation links; Social media
users are connected when they follow each other [Qu et al.,
2019]; protein structures are interconnections of amino
acids. Modeling relational data is an important topic for ma-
chine learning. These relational data can be represented by
graphs, which model a set of objects with node features and

their relationships with graph edges [Zhou et al., 2018]. A
large number of systems, including social networks [Hamil-
ton et al., 2017], citation networks [Kipf and Welling, 2017],
physical systems [Sanchez-Gonzalez et al., 2018], protein
interactions [Fout et al., 2017], knowledge graphs [Ham-
aguchi et al., 2017], etc. can be represented as graphs. And
graph-based learning is receiving increasing attention from
researchers.

In this paper, we focus on the problem of classifying nodes
of a graph, such as a graph of a citation network. This
problem can be framed as graph-based semi-supervised
learning since the label information is available for only a
small subset of nodes.

For problems involving data which have grid-like graph
structures, e.g., images and videos, Convolutional Neu-
ral Networks (CNN) have achieved state-of-the-art results
[Veličković et al., 2018]. However, many problems involve
data such as 3D meshes and citation networks, which are
represented by graphs having a general structure. An in-
creasing number of researchers try to generalize the notion
of convolution for general graph structure, motivated by
its success in the domain of computer vision, to address
the problems involving general graphs. And there are many
attempts to extend neural networks to deal with graphs with
arbitrary structure: Graph Neural Networks (GNNs), such as
Graph Convolutional Networks (GCN) [Kipf and Welling,
2017] and Graph Attention Networks (GAT) [Veličković
et al., 2018] have been receiving increasing attention be-
cause of their effective node representation learning on gen-
eral graphs. These methods take into account the graph
structure and aggregate features from neighbor nodes.

However, one weakness of these methods is that they neglect
direct local dependency among output label nodes, which
can be important for node classification. To learn the inter-
dependency of connected node labels, we propose to model
the whole graph with a pairwise partially observed Markov
Random Field (MRF) and use explicit pairwise factors to
model direct dependencies between connected node labels.
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 To benefit from the representational power of GNNs, we
apply a GNN backbone to learn appropriate unary factors
that can reflect the influence from the node input features
on node output labels. To avoid overfitting, we use a shared
compatibility matrix to parametrize the pairwise factors,
which is further multiplied by an edgewise coefficient to
reflect the difference among the edges in a graph.

The partially observed MRF representation learns node rep-
resentation and node label interdependency simultaneously,
taking into account both observed and unobserved nodes.
However, the conventional learning objective of maximizing
observed data log-likelihood requires marginalizing unob-
served nodes, which has an exponential computational cost
and is thus intractable. To address this challenge, we use
the EM algorithm [Koller and Friedman, 2009] to learn
the MRF and maximize instead the evidence lower bound
with alternating E-steps and M-steps: in each E-step we
update the candidate distribution on the unobserved nodes,
which is then used in the subsequent M-step to maximize
the expected complete data log-likelihood.

This alternating training is still challenging because the in-
ference process on general loopy graphs is known to be
intractable [Koller and Friedman, 2009]. To remedy this
issue and perform training efficiently, we introduce a piece-
wise likelihood [Sutton and McCallum, 2009] based local
training method, which provides a surrogate objective that
makes the inference process more manageable. It divides
the graph into tractable subgraphs for easy inference, and
avoids the intractable global inference procedure.

Our contributions are:

• We propose the explicit pairwise factorized graph neu-
ral network (EPFGNN), which uses explicit pairwise
output–output factors to augment a graph neural net-
work backbone so that we can model direct dependen-
cies among output label nodes in graphs.

• We use a shared compatibility matrix to parametrize
pairwise factors and extend it with an edgewise mul-
tiplicative scaling coefficient. This ensures that the
model can aggregate the neighbor node features and
label information flexibly on both assortative graphs
and disassortative graphs, while simultaneously avoid
overfitting.

• We propose an EM-based learning procedure, and em-
ploy piecewise likelihood as surrogate objective to
make the training on MRF tractable while retaining
the structural information.

• We conduct a series of experiments 1, which shows that
our model, along with the proposed training procedure,
can effectively tackle semi-supervised node classifica-
tion on graphs, outperforming existing baselines.

1https://github.com/YuWang-1024/EPFGNN

2 RELATED WORK

Graph neural network Motivated by the effectiveness
of CNNs, an increasing number of researchers aim to de-
sign convolution operation on graphs to extract information
from connected neighbor node features. The resulting graph
neural networks are generally defined by a message-passing
scheme as follows:

hk+1
i = update(hki , aggregatej∈N (i)(h

k
i , h

k
j )), (1)

where hki is the hidden representation of a node at k-th
layer, N (i) is the set of neighbor nodes connected with
node i. The node representations are updated by weighted
aggregations of the features from each central node and its
neighbors. A variety of aggregation and update functions
have been proposed by different GNN variants.

An effective GNN model named Graph Convolution Net-
work (GCN) by Kipf and Welling [2017] reduces the com-
putational complexity of eigen-decomposition involved in
spectral graph convolution by introducing several approxi-
mations. The GCN layer is defined as follows:

Hk+1 = σ(D̃−
1
2 ÃD̃−

1
2HkW k), (2)

where Ã = A + IN is the adjacency matrix with self-
connections, and D̃ii =

∑
j Ãij indicates the degree of

node i. Since the graph has an arbitrary structure, the num-
ber of neighbors varies for different nodes, and can be large
in graphs of massive scale. It is then inefficient to aggre-
gate features from all neighbor nodes. To address this issue,
GraphSAGE [Huang et al., 2018] applies a layer-wise sam-
pler to control the size of neighbors. While GraphSAGE
assumes the contribution of neighbors to the central node
has equal importance, the method named Graph Attention
Network (GAT) [Veličković et al., 2018] applies an atten-
tion mechanism to weigh the different contributions from
neighbor node features to the central node.

While the aforementioned GNN models can effectively pro-
cess graph structured data for semi-supervised node clas-
sification, they neglect the direct interdependency among
output nodes despite their connections in the graph struc-
tures. To address this problem, graph Markov neural network
(GMNN) [Qu et al., 2019] proposes a pseudo-likelihood
based variational EM framework to model the interdepen-
dency among node labels. In the M-step, they optimize the
graph neural network by maximizing the pseudo-likelihood.
The pseudo-likelihood assumes the conditioning of con-
nected node labels This assumption deviates from typical
semi-supervised settings since many of the nodes are un-
observed. In E-steps, GMNN uses another graph neural
network to aggregate the information from connected node
labels. This implicitly assumes that the graph is assortative,
as typical feature aggregation operation in GNNs perform
smoothing. However, in case of disassortative graphs where
connected nodes tend to disagree with each other, the above
assumption no longer holds.

https://github.com/YuWang-1024/EPFGNN


 Surrogate objective function Given a graph representa-
tion G = (V,E), where V is the set of nodes, and E is
the set of edges. Denote the set of node features as X and
the corresponding node labels as Y . We employ a Markov
random field [Lafferty et al., 2001] [Koller et al., 2007] to
model the node classification problem. Since the inference
on the MRF with loops is known to be intractable [Koller
and Friedman, 2009], the common learning strategy of max-
imizing data likelihood is infeasible [Nowozin and Lampert,
2011]. This issue motivates the finding of a surrogate ob-
jective function papprox(y|x) that approximates the original
likelihood. There are two kinds of surrogate training objec-
tives named pseudo-likelihood (PL) [Koller and Friedman,
2009] and piecewise training (PW) objective [Sutton and
McCallum, 2009].

Pseudo-likelihood (pPL) consists of the product of node-
wise conditional likelihood given its Markov blanket. The
intuition is that we can obtain the probability density of
a node if its Markov blanket is observed. However, the
pseudo-likelihood is known to have difficulties modeling
longer-range dependencies [Koller and Friedman, 2009].

pPL(y|x) =
∏
n∈V

pPL(yn|yN (n), x). (3)

Piecewise training objective (pPW ) [Sutton and McCallum,
2009] is an alternative way to make the learning on MRF
tractable. It models the graph using a factor graph and split
the whole graph into tractable subgraphs called pieces. It
is inspired by the intuition that the global distribution will
be reasonable if all the local factors fit the data well. Given
the set of subgraphs P , the set of the factors F within each
subgraph R ∈ P , and the partition function ZR(x) of each
subgraph that normalizes the piecewise likelihood, the piece-
wise training objective can be formulated as

pPW (y|x) =
∏
R∈P

1

ZR(x)

∏
F∈R

φF (yF , x). (4)

Piecewise training objective typically yields better results
compared to pseudo-likelihood [Sutton and McCallum,
2009], as the factors in the original likelihood are conserved
in the piecewise training objective, and the interdependen-
cies among nodes are better retained.

3 METHODOLOGY

We denote a graph as G = (V,E) , where V is the set of
nodes, E is the set of edges. Under the framework of semi-
supervised node classification, the full node features xV
and a small subset of node labels YV are observed in the
graph. Thus, node labels are split into labeled and unlabeled
subset YV = (YL, YU ). Our goal is to learn a model that
can predict these unknown classes YU based on the full
input features xV , observed output labels yL, and the graph
structure.
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Figure 1: Model representation of EPFGNN. We use the
GNN backbone to learn the valid input–output factors that
reflect the influence of input node features on the node
output labels. The output of GNN backbone is used as the
input–output factor value. Furthermore, every connected
node pairs are connected with a pairwise factor. We use the
shared compatibility matrix of size c× c to parametrize the
pairwise factor, where c is the output dimension.

3.1 MODEL REPRESENTATION AND LEARNING
OBJECTIVE

To achieve our goal, we propose the explicit pairwise fac-
torized graph neural network (EPFGNN). We represent the
overall distribution P (YV |xV ) by a MRF and assume that
it admits the following factor decomposition:

P (YV |xV )

=
1

Z(xV )

∏
i∈V

φi(Yi, xV )
∏

(j,k)∈E,j<k

φj,k(Yj , Yk). (5)

In the above expression, all factors are constrained to be
positive, and Z(xV ) is the partition function that ensures
normalization of the distribution. As shown in Figure 1, this
factorization needs two kinds of factors to model the whole
distribution:
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Figure 2: EPFGNN training framework. The GNN backbone output is used as input–output factor value. We additionally
parametrized the pairwise factor with a compatibility matrix for every connected node pair. We apply EM alternating
training method to tackle the intractable challenge caused by partial observation on MRF. In the M-step, we split the graph
into star-shaped pieces and maximize the expected complete log-likelihood for every piece. To avoid overcounting, we
redistribute the factor values that appear in more than one piece. In the E-step, we merge the pieces back to the original
MRF and estimate the posterior distribution q with fixed factor values using the mean field inference method.

• The input–output factors φi(Yi, xV ) represent the in-
fluence of input node features xV on output node Yi.
These are high order factors since they involve all in-
put features, which make direct factor parametrization
intractable. To solve this issue, we use a single graph
neural network (GNN) backbone to parametrize all
these factors so their values can be obtained via feed-
forward inference: given an input xv, the GNN back-
bone should produce a prediction of φi(yi, xv) for each
output node i ∈ V and possible output label yi.

• The output–output factors φj,k(Yj , Yk) represent the
influence between connected node labels. They are
pairwise factors and model the direct dependency be-
tween labels for every connected node pair. To avoid
overfitting, we parametrize these factors with a single
shared symmetric compatibility matrix K of size c× c,
where c is the output dimension.

Thus our EPFGNN model is parametrized by parameters θ
of the GNN backbone and a compatibility matrix K. Our
learning objective is to find the parameters θ∗ and K∗ that
maximize the observed data log-likelihood of labeled output
ỹL given the input features x̃V :

θ∗,K∗ = argmax
θ,K

logP (YL = ỹL|x̃V ; θ,K). (6)

3.2 PIECEWISE EM TRAINING FRAMEWORK

Direct MRF learning under semi-supervised setting is in-
tractable because of the following two challenges:

Partial observation Since the output subset YU has no
observation, we are in the partial observation case where YU
are unobserved variables. There are two approaches [Koller
and Friedman, 2009] to tackle this problem in general: We
can either perform gradient ascent to maximize the observed
data likelihood directly or use the expectation-maximization
(EM) algorithm. In our case, computing the observed log-
likelihood directly is computationally infeasible, since we
need to marginalize the unobserved random variables YU ,
and complex graph structure makes the marginalization com-
putation grows exponentially. Therefore, we apply the EM
algorithm, which maximizes instead the expected complete
data likelihood w.r.t. estimated posterior distribution. We
will discuss the details in Section 3.2.1.

Intractable inference It is well known that the inference
process on a general MRF is intractable [Koller and Fried-
man, 2009] because of the complex graph structure. This
makes the learning process impractical beyond simplistic
settings. One approach to tackle this problem is to use ap-
proximate probabilistic inference methods. However, they
are commonly iterative procedures, which are unfriendly for



 auto-differentiation and hard to ensure convergence. We ap-
ply an alternative approach to replace the log-likelihood ob-
jective with a more manageable surrogate objective, which
makes it easy to do inference and learning. The surrogate
objective we use is the piecewise training objective [Sut-
ton and McCallum, 2009]. We will elaborate the details in
Section 3.2.2.

3.2.1 EM framework

In the semi-supervised node classification setting, many
nodes are unlabeled, which means factor values of the com-
plete data likelihood (Equation (5)) are undetermined. As
the direct maximization over the observed log-likelihood
logP (yL|xV ) involves intractable marginalization of un-
observed output nodes YU , we apply the EM framework
to leverage the information from unlabeled nodes. EM al-
gorithm maximizes a lower bound of the observed log-
likelihood: it finds a variational distribution denoted as
q(YU |xV ) to approximate the posterior distribution of un-
labeled nodes p(YU |yL, xV ; θ,K), and maximizes the ex-
pected complete log-likelihood over all nodes w.r.t. the dis-
tribution of q(YU |xV ). This lower bound comes from our
wish to fill in the missing values yU with a proposal dis-
tribution q(YU |xV ) and employ the (expected) complete
log-likelihood for optimization instead. So the objective
function is changed as follows, which is referred to as the
evidence of lower bound (ELBO):

L(q; θ,K) =Eq(YU |xV )[logP (YU , yL|xV ; θ,K)]

+
∑
YU

−q(YU |xV ) log q(YU |xV ). (7)

where the first term is the expected complete log-likelihood
and the second term is the entropy of the proposal distri-
bution q. It is guaranteed to be a lower bound of the ob-
served log-likelihood logP (yL|xV ) since their difference is
the KL-divergence DKL(q(YU |xv)‖p(YU |yL, xV )) which
is always positive.

logP (yL|xV )− L(q)

= DKL

(
q(YU |xv)‖p(YU |yL, xV )

)
≥ 0.

(8)

The EM algorithm is none other than an alternating maxi-
mization of ELBO with E-step and M-step. During E-steps,
we fix the learned parameters (θ,K) of posterior distri-
bution p(YU |yL, xV ; θ,K) and update variational distribu-
tion q(YU |xV ). During M-steps, we fix the proposal vari-
ational distribution q(YU |xV ) and learn parameters (θ,K)
that maximize the expected complete log-likelihood over all
nodes w.r.t. the distribution of q(YU |xV ).

E-Step In an E-step we fix parameters (θ,K) and update
q to maximize the ELBO L(q; θ,K), which according to
Equation (8) is equivalent to minimizing the KL-divergence

DKL(q(YU |xv)‖p(YU |yL, xV )) since logP (yL|xV ) does
not depend on q. So the update function during E-Step is

q∗(YU |xV ) = argmin
q

DKL(q(YU |xV )‖p(YU |yL, xV )).

(9)

The proposal distribution q has two desiderata: it should
closely approximate the true likelihood distribution of miss-
ing values p(YU |yL, xV ), and it should have a simple form
such that the ELBO can easily be maximized. Here we re-
strict the proposal distribution q to have a fully factorized
form

q(YU |xV ) =
∏
i∈U

qi(Yi|xV ), (10)

so that the proposal distribution q(YU |xV ) is a mean field ap-
proximation [Koller and Friedman, 2009] of p(YU |yL, xV ).

With the mean field approximation, there is a closed-form
expression for updating the proposal distribution q when
fixing the parameters θ and K: ∀i ∈ U , we have

qi(Yi|xV ) ∝ exp
(

log φi(Yi, xv)

+
∑

j∈NB(i)∩L

log φi,j(Yi, yj)

+
∑

k∈NB(i)∩U

∑
Yk

log φi,k(Yi, Yk)qk(Yk|xV )
)
.

(11)

Since the mean field update is essentially a message-passing
procedure, we could easily design a message passing layer
using the above function to update the proposal distribution
q.

M-Step In an M-step we fix the proposal distribution
q and update parameters (θ,K) to maximize the ELBO
L(q; θ,K), which is equivalent to maximizing the expected
complete log-likelihood Eq[logP (YU , yL|xV ; θ,K)] be-
cause the entropy term (second part in Equation (7)) only
depends on q. So the objective function during M-Step is

θ∗,K∗ = argmax
θ,K

Eq(YU |xV )[logP (YU , yL|xV ; θ,K)].

(12)

Computing the (expected) complete log-likelihood is also
infeasible since the random variable grows exponentially.
To make the learning procedure tractable, we apply the
piecewise learning method, which we will discuss in the
next section.

3.2.2 Piecewise surrogate objective for M-Step

The inference on MRF is intractable, and the computation
of partition function Z(xV ) in Equation (5) is infeasible for
graph data in practice. This hinders the learning process of
our model. To overcome this, we utilize a tractable surrogate
objective function to approximate the original likelihood.



 Star-shaped piecewise surrogate objective The piece-
wise training method provides an alternative local training
approach [Sutton and McCallum, 2009]. It breaks the whole
graphical model down into tractable subgraphs and performs
inference separately on each piece. The subgraphs can have
overlaps among them and should have tractable structures
for inference, e.g., trees. The factors contained in each sub-
graph are used to define its distribution. In our case, we want
to model the interdependency between the central node and
its neighbors. Thus, we star-wisely split the entire pairwise
factor graph of the MRF: As shown in Figure 2, for every
node i in the graph, we create a piece which groups this node
and its neighbors as a subgraph. So the objective function
approximates the original log-likelihood as

logP (YV |xV ; θ,K) ≈ `pw(YV |xV )

=
∑
i∈V

logP ∗i (Yi, YN (i)|xV ), (13)

where N (i) represents the neighbor nodes of central node
i. This star-shaped piece is a tree structure rooted at the
central node, and this piece is parametrized by the factors
from the original MRF and pairwise factorized following
Equation (5). Thus, the partition functions of the subgraphs
can be easily computed using belief propagation [Koller and
Friedman, 2009]. With this approximation, we can design
a message passing layer to estimate the surrogate objective
function.

Factor redistribution For every node, we group this node
and its connected neighborhood as a piece, which generates
overlaps among different pieces as shown in Figure 2. This
means the factors that are contained in intersecting regions
of different pieces will be overcounted. To avoid this issue,
we redistribute the overlapping factor values in every sub-
graph. An even redistribution of factors is formulated as
follows:

ψi(Yi, xV ) =
(
φi(Yi, xV )

) 1
d(i)+1

ψj,k(Yj , Yk)) =
(
φj,k(Yj , Yk))

) 1
2 .

(14)

With this redistribution, the distribution of each piece
P̄ ∗i (Yi, YN (i)|xV ) becomes

P̄ ∗i (Yi, YN (i)|xV )

=
1

Z̄∗i (xV )
ψi(Yi, xV )

∏
j∈N (i)

ψj(Yj , xV )ψi,j(Yi, Yj),

(15)

so that the redistributed piecewise log likelihood

¯̀
pw(YV |xV ) of the whole model has the following form:

¯̀
pw(YV |xV ) =

∑
i∈V

log φi(Yi, xV )

+
∑

(j,k)∈E,j<k

log φj,k(Yj , Yk)

−
∑
i∈V

log Z̄∗i (xV ).

(16)

Here we see that the factor overcounting issue is fixed. This
piecewise likelihood reasonably approximates the original
distribution P (YV |xV ) since the only difference between
Equation 5 is the partition function.

Edgewise scalar coefficient For our discussion so far, we
only considered a single c × c compatibility matrix K to
parametrize pairwise factors φj,k(yj , yk) of every connected
node pair, meaning that all connected node pairs share a
common parametrization (denote K(l,m) = Kl,m):

log φj,k(yj , yk) = K(yj , yk). (17)

This representation can be restricting since it does not differ-
entiate the edges in the graph. It is thus necessary to relax
this constraint in order to equip our model with more repre-
sentational power. However, if we parametrize every edge
with a different c × c matrix, the model will easily suffer
from overfitting. In order to balance these two aspects, we
introduce an additional scalar parameter αj,k for each edge
(j, k) that scales the shared compatibility matrix. Thus, the
parametrization becomes

log φj,k(yj , yk) = αj,k K(yj , yk) (18)

and the star-shaped piecewise log-likelihood becomes

¯̀
pw(YV |xV ) =

∑
i∈V

log φi(Yi, xV )

+
∑

(j,k)∈E,j<k

αj,k K(Yj , Yk)

−
∑
i∈V

log Z̄∗i (xV ).

(19)

4 EXPERIMENT AND RESULT

In this section, we compare our model with state-of-the-
art methods such as GCN [Kipf and Welling, 2017], GAT
[Veličković et al., 2018], and GMNN [Qu et al., 2019] for
semi-supervised node classification problems. We evaluate
our model on a wide variety of datasets, including both
assortative and disassortative graphs. We also conduct an
ablation study to analyze different components of our model.
We report average accuracy on 50 runs of experiments for
analysis.



 4.1 DATASET

In this section, we introduce the characteristics of graph
datasets including both assortative and disassortative graphs.

Citation networks The citation network is a graph where
nodes represent papers, edges depict the citation relation-
ship between two papers, and node features are the bag of
words of that paper. The node label is the topic of the cor-
responding paper. Cora, Citeseer and PubMed are common
benchmark datasets [Namata et al., 2012] [Sen et al., 2008]
of this type. We employ the same configuration as in Yang
et al. [2016], which randomly picks 20 samples out of every
class as training nodes, and randomly selects 500 and 1000
samples for validation and test, respectively.

Wikipedia networks Wikipedia networks are graphs
where nodes stand for websites, and edges represent the
mutual links of two pages. Node features are representa-
tive nouns of that page, and nodes are classified according
to their average monthly traffic. Chameleon and Squirrel
[Rozemberczki et al., 2021] are both examples of such net-
works. We split the graph to the train, validation, and test
according to the following ratio: 20%, 20%, and 60%.

Actor co-occurrence networks Actor co-occurrence net-
work is a graph extracted from film-director-actor-writer
network [Tang et al., 2009]. The Actor dataset is one of
the graph where nodes represent actors and edges indicate
co-occurrence relationship in the same website between
two actors. The node features are representative keywords
of an actor. We split the graph in the same manner as for
Wikipedia networks.

Table 1: Statistics of common datasets. β is defined in Sec-
tion 4.3 and indicates the graph homophily. Higher β means
the connected nodes in the graph tend to agree with each
other and have the same labels.

Dataset Nodes/Edges Features/Classes β
Cora 2708 / 5429 1433 / 7 0.83

Citeseer 3327 / 4732 3703 / 6 0.71
Pubmed 19717 / 44338 500 / 3 0.79

Chameleon 2277 / 36101 2325 / 5 0.25
Squirrel 5201 / 217073 2089 / 5 0.22
Actor 7600 / 33544 931 / 5 0.24

4.2 CLASSIFICATION ON GRAPHS

To evaluate the effectiveness of our method, we compare our
model with several baseline methods on semi-supervised
node classification tasks. We use the Cora, Citeseer, and
Pubmed datasets for comparison. For our EPFGNN model,
we utilize GCN as the graph neural network backbone to

learn the representation of input–output factors given in-
put features. We use the same hyperparameter setting as
described in [Kipf and Welling, 2017]. We employ a com-
patibility matrix to model the interdependency among node
labels and extend the pairwise factors with a scalar coeffi-
cient for every edge. The test accuracies of different models
on different datasets are collected in Table 2.

Table 2: Mean classification accuracy of the proposed
EPFGNN model compared with baseline methods on Cora,
Citeseer and Pubmed datasets.

Model Cora Citeseer Pubmed
GCN 81.56 70.37 78.69
GAT 82.08 71.44 77.52

GMNN 82.05 70.53 79.38
EPFGNN 83.54 73.13 80.15

As shown in Table 2, our method outperforms other state-of-
the-art baselines, especially on the Citeseer dataset, where
we observe a performance improvement for over 2%. These
results support our analysis that modeling the direct inter-
dependency among node labels will improve performance.
Also, a more significant performance increase is observed
on the Citeseer dataset, which has the lowest graph ho-
mophily β among three datasets. This shows the advantage
of the EPFGNN representation: contrary to other baselines
methods, it goes beyond feature smoothing.

4.3 ANALYSIS OF GRAPH HOMOPHILY

The citation networks are assortative graphs since the con-
nected nodes tend to have the same label. In contrast, the
Wikipedia networks and actor co-occurrence networks are
disassortative graphs where the assumption of graph ho-
mophily no longer holds. To quantify the degree of graph
homophily, we use the measure β from Pei et al. [2020]
defined as follows:

β =
1

V

∑
v∈V

Number of v’s neighbors with same label
Number of v’s neighbors

.

(20)

The measure β ranges between 0 and 1, where assortative
graphs like Cora have high β values above 0.5 while disas-
sortative ones like Chameleon have low β values below 0.5.
β value for various graph datasets are provided in Table 1.

We further experiment with disassortative graph datasets
Chameleon, Squirrel, and Actor. We report the test accuracy
results in Table 3.

As shown in Table 3, to a certain degree, our model managed
to adapt to disassortative graphs. Since we have a shared
compatibility matrix and every edge has one additional de-
gree of freedom from the edgewise scalar coefficient, the
explicit pairwise modeling in EPFGNN enables the model



 
Table 3: Mean classification accuracy on disassortative
graphs. We compare our model with GCN and GMNN on
Chameleon, Squirrel and Actor datasets which have small β
values.

Model Chameleon Squirrel Actor
GCN 34.66 24.56 26.85

GMNN 34.69 24.77 27.04
EPFGNN 35.31 25.12 26.66

to flexibly aggregate the neighbor node label information
when the neighboring nodes tend to disagree.

4.4 ABLATION STUDY

The proposed EPFGNN model learns the node representa-
tion and aggregates estimated label information from con-
nected neighbor nodes. The key components of this model
are the GNN backbone and the parametrization of pairwise
factors. In this section, we compare different model variants
to examine the contribution of each component.

GNN-Backbone The role of the GNN backbone in the
EPFGNN model is to model the influence of input features
on output labeling. It parametrizes the input–output factors
in the MRF. To find an appropriate choice, we consider two
commonly used GNN models, GCN and GAT, as backbones
for node representation learning, and evaluate their effective-
ness by conducting experiments on three standard datasets
Cora, Citeseer, and Pubmed.

Table 4: Comparison of classification accuracy with
EPFGNN using GCN and GAT backbones.

GNN backbone Cora Citeseer Pubmed
GCN 83.24 72.35 79.61
GAT 82.32 71.99 79.23

In Table 4, we observe that GCN outperforms GAT on all
three datasets. These results indicate that GAT, which has
more parameters compared to GCN, is likely to suffer from
overfitting as GNN backbone for EPFGNN.

Redistribution The star-shaped split of the whole graph
will cause overlaps among pieces and result in the overcount-
ing of factors when estimating the piecewise likelihood. To
address this problem, we redistribute the factor values as
described in Equation (14). We refer to this distribution
method as average redistribution. To verify whether this
redistribution is reasonable, we compare it with a different
redistribution method referred to as center redistribution.
For center redistribution, we assign each input–output factor
φi(Yi, xV ) entirely to the subgraph where i is the central
node. This yields a different estimation of the piecewise
likelihood. We compare these two redistribution methods

on the three standard datasets Cora, Citeseer, and Pubmed
and collect the classification accuracies in Table 5.

Table 5: Mean classification of EPFGNN with different
redistribution methods. For all experiments, we use GCN
as GNN backbone and do not use the additional edgewise
coefficient.

Factor redistribution Cora Citeseer Pubmed
average 83.24 72.35 79.61
center 82.42 72.46 78.67

The results in Table 5 show that average redistribution tends
to yield better results, possibly owing to the fact that the
input–output factors provided by the GNN backbone is ac-
cessible in all related subgraphs. It remains an interesting
future work to analyze other possible redistribution schemes.

Edgewise scaling coefficient To understand the effect of
introducing the edgewise scaling coefficient, we compare it
with two alternative settings. We name the setting that only
has shared parametrization for all output–output factors as
EPFGNN w/o coefficient and name the setting with both
shared compatibility matrix and shared scalar coefficient
for output–output factors on every edge as EPFGNN using
layer coefficient. We refer to the original setting, which has a
shared compatibility matrix and edgewise scalar coefficients,
as EPFGNN using edge coefficient. Their comparison is
summarized in Table 6.

Table 6: Mean accuracy of EPFGNN with different output–
output factor parametrization settings. For all experiments,
we use GCN backbone and average redistribution.

Scaling factor Cora Citeseer Pubmed
w/o coefficient 83.24 72.35 79.61
layer coefficient 83.03 72.33 78.95
edge coefficient 83.54 73.13 80.15

The results in Table 6 show that the edgewise coefficient
setting outperforms other alternative settings. Thus we can
conclude that the additional flexibility provided by the edge-
wise scaling coefficient is beneficial and can effectively
improve the representational power of the EPFGNN model.

5 CONCLUSION

This paper proposes the novel EPFGNN framework in which
explicit pairwise factors are defined to model direct depen-
dency between connected node pairs. In this way, the model
can simultaneously aggregate node input features and label
information from neighbor nodes. By introducing a shared
compatibility matrix and edgewise scaling coefficients, we
are able to effectively provide a flexible representation while
avoiding overfitting. With the application of the EM algo-
rithm and the surrogate piecewise objective in the M-step,



 we manage to leverage information from unobserved nodes
and make the learning procedure tractable. We validate our
analysis and model design with a series of experiments,
which shows that the EPFGNN framework can effectively
handle semi-supervised node classification problems for
various graph datasets.
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