

Sketching Curvature for Efficient Out-of-Distribution

Detection for Deep Neural Networks

Apoorva Sharma1 Navid Azizan1,2 Marco Pavone1

1Stanford University, Stanford, California, USA,
2Massachusetts Institute of Technology, Cambridge, Massachusetts, USA,

Abstract

In order to safely deploy Deep Neural Networks
(DNNs) within the perception pipelines of real-
time decision making systems, there is a need
for safeguards that can detect out-of-training-
distribution (OoD) inputs both efficiently and ac-
curately. Building on recent work leveraging the
local curvature of DNNs to reason about epistemic
uncertainty, we propose Sketching Curvature for
OoD Detection (SCOD), an architecture-agnostic
framework for equipping any trained DNN with
a task-relevant epistemic uncertainty estimate. Of-
fline, given a trained model and its training data,
SCOD employs tools from matrix sketching to
tractably compute a low-rank approximation of
the Fisher information matrix, which characterizes
which directions in the weight space are most in-
fluential on the predictions over the training data.
Online, we estimate uncertainty by measuring how
much perturbations orthogonal to these directions
can alter predictions at a new test input. We apply
SCOD to pre-trained networks of varying architec-
tures on several tasks, ranging from regression to
classification. We demonstrate that SCOD achieves
comparable or better OoD detection performance
with lower computational burden relative to exist-
ing baselines.

1 INTRODUCTION

Deep Neural Networks (DNNs) have enabled breakthroughs
in extracting actionable information from high-dimensional
input streams, such as videos or images. However, a key
limitation of these black-box models is that their perfor-
mance can be erratic when queried with inputs that are
significantly different from those seen during training. To
alleviate this, there has been a growing field of literature

aimed at equipping pre-trained DNN models with a measure
of their uncertainty. These approaches aim to characterize
what a given DNN model has learned from the dataset it
was trained on, so as to detect at test time whether a new
input is inconsistent.

One appealing direction to this end has leveraged the cur-
vature of a pre-trained DNN about its optimized weights
[Madras et al., 2020, Ritter et al., 2018]. The second-
order analysis of the local sensitivity of the network to
its weights can offer a post-hoc approximation of the in-
tractable Bayesian posterior on the network weights. Known
as the Laplace approximation, this is an attractive approach
in its promise of adding a principled measure of epistemic
uncertainty to any pre-trained network. However, comput-
ing the required curvature matrix is quadratic in the num-
ber of weights of the network, and is still intractable for
today’s DNN models with millions of weights. Thus, the
literature has focused on methods to approximate this cur-
vature to yield scalable approaches, yet these approaches
have typically relied on imposing sparsity structures on
the curvature matrix, e.g., by ignoring cross terms between
layers of the network. Furthermore, these approaches tend
to focus on estimating the posterior predictive distribution
by marginalizing over the approximate posterior over the
weights, which often requires the computationally intensive
process of sampling weights and estimating the posterior
predictive through Monte-Carlo integration.

Contributions. In this work, we build from the frame-
work of the Laplace approximation to propose a novel,
architecture-agnostic method for equipping any trained
DNN with estimates of task-relevant input atypicality.
Rather than incorporate epistemic uncertainty into the prob-
abilistic prediction of the network, we propose augmenting
the network output with a scalar uncertainty measure that
quantifies the degree of atypicality for a given input. Our
specific contributions are as follows: (1) We leverage in-
formation geometry to translate curvature-informed weight
uncertainty in DNNs to a task-relevant measure of input

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:Apoorva Sharma <apoorva@stanford.edu>?Subject=SCOD

Low rank approximation
of trained DNN curvature

Offline OnlineDataset
out-of-dist in-dist

Figure 1: Offline, SCOD uses gradients Jf,w of the DNN on training data to build a low-rank estimate of the network
curvature, as defined by the Fisher information matrix, employing tools from matrix sketching to make this estimation
tractable and scalable. Online, SCOD produces a metric of atypicality Unc using gradient information at a test datapoint
x(t), and comparing this to the low-rank approximation of the Fisher. Derived from an approximation of the Bayesian
posterior over the weights, this metric can be viewed, for scalar regression DNNs, as measuring how orthogonal a new test
point gradient is from the gradients seen on training inputs.

atypicality; (2) we show how this measure can be computed
efficiently by leveraging backpropagation and a character-
ization of the top eigenspace of the Fisher matrix; (3) we
develop a technique based on matrix sketching to tractably
approximate this top eigenspace, even for large models and
large datasets; (4) we empirically demonstrate that this atyp-
icality measure matches or exceeds the OoD detection per-
formance relative to baselines on a diverse set of problems
and architectures from regression to classification.

2 PROBLEM STATEMENT

We take a probabilistic interpretation, and define a DNN
model as a mapping from inputs x ∈ X to probability
distributions over targets y ∈ Y . Typically, this is broken
down into the composition of a neural network architecture
f mapping inputs x and weightsw ∈ RN to the distribution
parameters θ ∈ Rd, and a distributional family P mapping
these parameters to a distribution over the targets:

θ = f(x,w), p(y) = P(θ).

We use pw(y | x) := P◦f as a convenient shorthand for the
conditional distribution that the DNN model defines. This
model is trained on a dataset of examples D = {xi,yi}Mi=1,
where we assume the inputs are drawn i.i.d. from some
training distribution ptrain(x, y), to minimize the Kullback-
Leibler (KL) divergence from the empirical distribution in
the dataset to pw(y | x). 1

Our goal is to take a trained DNN, and equip it with an OoD

1This general formulation covers almost all applications of
DNNs; for example, choosing P to be a categorical distribution
parameterized by logits θ recovers the standard softmax training
objective for classification, while choosing P to be unit variance
Gaussian with mean θ recovers the typical mean-squared error
objective for regression.

monitor which can detect if a given input is far from the
data seen at train time, and thus likely to result in incorrect
and overconfident predictions. Specifically, we assume we
are given the functional forms f and P , the trained weights
w∗, as well as a set of training dataD, and wish to construct
an uncertainty measure Unc(·) : X → R. Intuitively, we
wish for this measure to be low when queried on inputs
drawn from ptrain(x), but high for inputs far from this data
manifold. This can be thought of as providing a measure
of epistemic uncertainty due to an input not being covered
by the training set, or a measure of novelty with respect to
the training data, useful for detecting anomalies or out-of-
distribution inputs.

We wish to design a monitor that can provide a real-time
uncertainty signal alongside the DNN’s predictions. Thus,
we desire a function Unc(·) that is both computationally
efficient (to run at test time) as well as informative, pro-
viding a meaningful anomaly signal that can effectively
separate held-out validation inputs that are known to be
in-distribution, from inputs which we know to be out-of-
distribution and outside the DNN’s domain of competency.

3 BACKGROUND: CURVATURE AND
LAPLACE APPROXIMATION

Key to our approach is the curvature of DNN models: a
second-order characterization of how perturbations to the
weights of a DNN influence its probabilistic output. In this
section, we review tools to characterize DNN curvature, and
discuss the connections between curvature and epistemic
uncertainty estimates through the Laplace approximation.

 3.1 FISHER INFORMATION

A crucial aspect of our approach relies on understanding
how the parameters of the model influence its output dis-
tribution. To do so, we leverage tools from information
geometry. We can view the family of distributions defined
by the model P(θ) as defining a statistical manifold with
coordinates θ. The Riemannian metric for this manifold is
the Fisher information matrix

Fθ(θ) = Ey
[
(∇θ log pθ(y))(∇θ log pθ(y))T

]
(1)

= Ey
[
− ∂2

∂θ2
log pθ(y)

]
, (see note)2 (2)

where pθ(·) = P(θ), the pdf of the probability distribution
on Y defined by parameters θ. The Fisher information
matrix (henceforth referred to as the Fisher) represents the
second-order approximation of the local KL divergence,
describing how the output distribution of a model changes
with small perturbations to the distribution parameters θ:

DKL(P(θ)||P(θ + dθ)) ≈ dθTFθ(θ)dθ +O(dθ3). (3)

The subscript on Fθ serves to make explicit the Fisher’s
dependence on the model’s parameterization.

For many common parametric distributions, the Fisher can
be computed analytically. For example, for the family of
Gaussian distributions with fixed covariance Σ, parameter-
ized by the mean vector θ = µ, the Fisher information is
simply the constant Fθ(θ) = Σ−1. For a categorical distri-
bution parameterized such that θi represents the probability
assigned to class i, F (θ) = (diag(θ))

−1. In cases where
this analytic computation is not possible or difficult, one
can compute a Monte-Carlo approximation of the Fisher by
sampling y ∼ pθ(·) to estimate the expectation in (1).

3.2 FISHER FOR DEEP NEURAL NETWORKS

For DNNs, we can also consider the Fisher in terms of
the network weights w using a change of variables. Since
θ = f(x,w), we have

Fw(x,w) = JT
f,wFθ(f(x,w))Jf,w, (4)

where Jf,w is the Jacobian matrix with [Jf,w]ij = ∂fi
∂wj

,
evaluated at (x,w). Note that Fw is a function of both
w and the input x. We will henceforth use the shorthand
F

(t)
w∗ := Fw(x(t),w∗) to denote this weight-space Fisher

evaluated for a particular input x(t) and the trained weights
w∗.

From (3), we see that the Fisher defines a second-order
approximation of how perturbations in the weight space

2This equality holds under mild regularity conditions on P(θ)

influence the DNN’s probabilistic predictions:

δKL(x(t)) := DKL

(
pw∗(· | x(t))||pw∗+dw(· | x(t))

)
≈ dwTF

(t)
w∗dw.

We can also use the Fisher to consider the impact of weight
perturbations on the predictions over the entire dataset as

δKL(D) =
1

M

M∑
i=1

δKL(x(i)) =
1

M

M∑
i=1

dwTF
(i)
w∗dw

= dwT

(
1

M

M∑
i=1

F
(i)
w∗

)
︸ ︷︷ ︸

:=FD
w∗

dw.

3.3 CONNECTION TO THE HESSIAN

As is evident from (1), there are strong connections between
the dataset Fisher FDw∗ and the Hessian with respect tow of
the log likelihood of the training data. If we define L(w) =∑M
i=1 log pw∗(y

(i) | x(i)), the Hessian of L evaluated at
w∗ can be well approximated by the dataset Fisher3 [Ritter
et al., 2018, Martens and Grosse, 2015]:

HL =
∂2L

∂w2

∣∣∣∣
w=w∗

≈MFDw∗ .

Unlike the Hessian, the Fisher is always guaranteed to be
positive semidefinite. For this reason, this approximation is
common in the field of second-order optimization, where
preconditioning gradient steps with the inverse Fisher tends
to be more efficient and numerically stable than using the
Hessian [Kunstner et al., 2019].

3.4 THE LAPLACE APPROXIMATION OF
EPISTEMIC UNCERTAINTY

The Hessian of the log-likelihood has strong connections to
Bayesian ideas of epistemic uncertainty, the uncertainty due
to lack of data. From a Bayesian perspective, one can choose
a prior over the weights of a DNN, p(w), and then reason
about the posterior distribution on these weights given the
dataset, p(w | D). Often, due to the overparameterized na-
ture of DNNs, many values ofw are likely under this dataset,

3By application of the chain rule, HL = F̂Dw∗ + C(w∗),
where F̂Dw∗ is the empirical Fisher where the expectation in (1) is
replaced by an empirical expectation over the dataset, and C(w∗)
is a term involving first derivatives of the log likelihood and second
derivatives of the network f . For trained networks, we expect
the Fisher and the empirical Fisher to be closely aligned, and
C(w∗) ≈ 0 since the first derivatives of the log likelihood are
near zero at the end of training. Furthermore, for piece-wise linear
networks (e.g., with ReLU activations), the second deriviatves of
f are 0, and so, C(w∗) = 0.

 corresponding to different ways the DNN can fit the training
data [Azizan et al., 2019]. By characterizing the posterior,
and then marginalizing over it to produce a posterior pre-
dictive distribution p(y | x) =

∫
p(w | D)pw(y | x)dw,

one can hope to detect atypical data by incorporating uncer-
tainty due to lack of data into the network’s probabilistic
predictions.

While computing this posterior is intractable for DNNs, due
to their nonlinearity and high-dimensional weight space,
many approximations exist, leveraging Monte-Carlo sam-
pling, or by assuming a distributional form and carrying
out variational inference. One approximation is the Laplace
approximation [MacKay, 1992], which involves a second-
order approximation of the log posterior log p(w | D) about
a point estimate w∗. This quadratic form yields a Gaussian
posterior over the weights. If the prior on the weights is
p(w) = N (·; 0, ε2IN), the Laplace posterior is given by
Σ∗ =

(
HL + ε−2IN

)−1
. The Laplace approximation is

attractive as it uses local second-order information (the Hes-
sian HL) to produce an estimate of the Bayesian posterior
for any pretrained model. However, even computing this
approximation to the exact Bayesian posterior can be chal-
lenging for large models, where estimating and inverting an
N ×N matrix to compute Σ∗ is demanding.

4 PROPOSED METHOD: SKETCHING
CURVATURE FOR OOD DETECTION

In this section, we describe the main steps in our OoD
detection method. We build upon ideas from the Laplace
approximation, but using the dataset Fisher to approximate
the Hessian. Thus, our approximate posterior is given by

Σ∗ =
(
MFDw∗ + ε−2I

)−1
. (5)

As we are only focused on the downstream-task OoD de-
tection, we avoid the computationally expensive step of
marginalizing over this uncertainty to form a posterior pre-
dictive distribution, and instead, directly quantify how this
posterior uncertainty on the weights impacts the networks
probabilistic predictions. A natural metric for that purpose
is the expected change in the output distribution (measured
by the KL divergence) when the weights are perturbed ac-
cording to the Laplace posterior distribution, i.e.,

Unc(x(t)) = E
dw∼N (0,Σ∗)

[
δKL(x(t))

]
≈ E
dw∼N (0,Σ∗)

[
dwTF

(t)
w∗dw

]
= Tr

(
F

(t)
w∗Σ

∗
)
. (6)

Crucially, by using the Fisher to estimate the change in the
output distribution due to weight perturbation, we obtain a
quadratic form whose expectation we can compute analyt-
ically. Note that this metric is the Frobenius inner product

between the test input’s Fisher and a regularized inverse of
the dataset Fisher. Thus, we can view this metric as measur-
ing novelty in the terms of DNN’s curvature, i.e., measuring
the abnormality of a test input x by comparing the curvature
at this input against the curvature on training inputs.

4.1 EFFICIENTLY COMPUTING THE
UNCERTAINTY METRIC

While (6) is a clean expression for an uncertainty metric, its
naïve computation is intractable for typical DNNs, as both
Σ∗ and F (t)

D are N ×N matrices. To make this computation
amenable for real-time operation, we exploit the fact that
both matrices are low-rank. From their definitions, it follows
that rank(F

(t)
w∗) ≤ d, and thus rank(FDw∗) ≤Md. The num-

ber of weights in a neural network N is always greater than
the output dimension d, and for large models and typical
dataset sizes, often also greater than Md. Thus, we choose
instead to express both Fisher matrices in factored forms

F
(t)
w∗ = L

(t)
w∗L

(t)T
w∗ , FDw∗ = Udiag(λ)UT , (7)

where L(t)
w∗ ∈ RN×d, U ∈ RN×Md, and λ ∈ RMd. Note

that if we write Fθ(f(x(t),w∗)) = L
(t)
θ∗L

(t)T
θ∗ , then from

(4), we can see that L(t)
w∗ = JT

f,wL
(t)
θ∗ . For many common

choices of parametric distributions, L(t)
θ∗ can be computed

analytically. Furthermore, leveraging the linearity of the
derivative, we can compute each row of L(t)

w∗ efficiently via
backpropagation (see Appendix A for details and examples
for common distributions).

Given these factored forms, an application of the Woodbury
matrix identity allows us to simplify the computation to

Unc(x(t)) =

ε2
∥∥∥L(t)

w∗

∥∥∥2

F
− ε2

∥∥∥∥∥diag
(√

λ

λ+ 1/(Mε2)

)
UTL

(t)
w∗

∥∥∥∥∥
2

F

.

(8)

A derivation is provided in Appendix B. In this new form,
the computation is split into computing the factor L(t)

w∗ , car-
rying out the matrix product with UT, and then computing
Frobenius norms.

The main bottleneck in this procedure, both in terms of
memory and computation, is the matrix multiplication with
the N ×Md matrix U . To address this, we note that sev-
eral empirical analyses of neural network curvature have
found that the Hessian and dataset Fisher FDw∗ exhibit rapid
spectral decay [Sagun et al., 2017, Madras et al., 2020],
meaning that there are only a small number of significant
eigenvalues and eigenvectors. Inspecting (8), we see that if
λi << (Mε2)−1, the corresponding element in the diago-
nal matrix tends to 0. This suggests that we can effectively

 approximate this uncertainty metric without the tail eigen-
values. Using λtop and Utop to denote the top k eigenvalues
and corresponding eigenvectors of FDw∗ , we have

Ũnc(x(t)) =

ε2
∥∥∥L(t)

w∗

∥∥∥2

F
− ε2

∥∥∥∥∥diag
(√

λtop

λtop + 1/(Mε2)

)
UT

topL
(t)
w∗

∥∥∥∥∥
2

F

.

(9)

Working with the much smaller N × k matrix Utop drasti-
cally improves both memory and computational complex-
ity. Notably, making this low-rank approximation gives
us a strict over-estimate of the exact quantity, which is
well-suited for safety-critical settings, where being under-
confident is more desirable than being over-confident. The
approximation error relates to the magnitude of the tail
eigenvalues, and can be bounded using the final obtained
eigenvalue

Ũnc(x(t))−Unc(x(t))

≤ ε2
∥∥∥L(t)

w∗

∥∥∥2

F

rank(FDw∗)∑
j=k+1

λj
λj + 1/(Mε2)

(10)

≤ ε2
∥∥∥L(t)

w∗

∥∥∥2

F
(min(Md,N)− k) ln(1 +Mε2λk)

(11)

A derivation of this bound is provided in Appendix B.

4.2 TRACTABLY APPROXIMATING THE
DATASET FISHER VIA MATRIX SKETCHING

In order to compute Ũnc(x(t)) online, we require the top k
eigenvalues and eigenvectors of FDw∗ . While this computa-
tion can happen offline, it is still intractable to carry out ex-
actly for common DNN models and large datasets, since just
representing FDw∗ exactly requires storing an Md×N fac-
tor, which can easily grow beyond the capacity of common
GPU memories for large perception networks and datasets
with tens of thousands of parameters. To alleviate this issue,
prior work has considered imposing sparsity patterns on the
Fisher, e.g., diagonal (which ignores correlations between
weights), or layer-wise block-diagonal [Ritter et al., 2018]
(which ignores correlations between layers). Instead, we
note that only the top eigenvectors of the datastet Fisher
are important to the computation of our uncertainty metric,
and thus we turn to tools from matrix sketching to tractably
estimate a low-rank approximation of the Fisher without
imposing any sparsity structure on the matrix.

The key idea in matrix sketching, to avoid working with a
large matrix directly, is to apply a randomized linear map
S to the matrix of interest [Tropp et al., 2017]. By appro-
priately randomizing this map (the sketching operator), we
obtain high-probability guarantees that the image of the

original matrix produced by the map (the sketch) encodes
sufficient information about the original matrix. Given a
bound on the desired approximation error, the size required
for the sketch depends on the desired rank of the approxi-
mation k, and not the original size of the large matrix. Thus,
this can enable our technique to be applied to arbitrarily
large datasets.

The linearity of the sketching operator allows us to form
this sketch iteratively, using a single pass over the dataset,
without storing the full dataset Fisher in memory. Specifi-
cally, from the definition of FDw∗ , we can compute its sketch
as the sum of smaller sketches:

S
(
FDw∗

)
=

1

M

M∑
i=1

S
(
F

(i)
w∗

)
=

1

M

M∑
i=1

S
(
L

(i)
w∗L

(i)T
w∗

)
.

(12)

Following Tropp et al. [2017], we choose S to indepen-
dently left- and right-multiply the Fisher by random sketch-
ing matrices. Specifically, the sketch of each component is
computed as Y (i),W (i) ← S(L

(i)
w∗L

(i)T
w∗), where

Y (i) =
((

ΩL
(i)
w∗

)
L

(i)T
w∗

)T
, W =

(
ΨL

(i)
w∗

)
L

(i)T
w∗ ,

(13)

where Ω ∈ Rr×N and Ψ ∈ Rs×N are random sketching
matrices, with T = r + s defining the total size of the
sketch. Note that following the operation order indicated
by the parentheses avoids instantiating any N ×N matrix.
The memory complexity of this operation is O(T (N + d)).
Tropp et al. [2017] suggest splitting the budget to r =
(T − 1)/3, s = T − r, and suggest choosing T = 6k + 4
as a minimal value of T for a given k to minimize a high-
probability bound on the approximation error of the sketch.
We refer the reader to [Tropp et al., 2017] for a discussion
of these theoretical results.

These sketching matrices can be as simple as matrices with
i.i.d. standard Gaussian entries. However, to further reduce
the memory and computation overhead of sketching, in this
work, we use Subsampled Randomized Fourier Transform
(SRFT) sketching matrices [Woolfe et al., 2008]

Ω = P1FNdiag(d1), Ψ = P2FNdiag(d2), (14)

where d1,d2 ∈ RN are vectors with entries sampled from
independent Rademacher random variables4, FN is the lin-
ear operator which applies the discrete cosine transform on
each N -length column, and P1, P2 are matrices which each
select a random subset of r and s rows respectively. The
SRFT sketching matrices offer similar approximation per-
formance when compared to Gaussian matrices, but adding
only a (T + 2N) parameter overhead, as opposed to TN of
the Gaussian case [Tropp et al., 2017].

4A Rademacher random variable has a value of +1 or−1 with
equal probability.

 Algorithm 1 SCOD Offline

Require: Dataset D = {x(i),y(i)}Mi=1, DNN architecture
f,P , trained weights w∗

1: function SKETCHCURVATURE(f,P,w∗,D)
2: Sample Ω,Ψ as in (14). . construct sketching map
3: Y,W ← 0, 0 . initialize sketch
4: for (x(i),y(i)) in D do
5: θ(i) ← f(x(i),w∗) . forward pass
6: Compute L(i)

w∗ from θ(i) . d backward passes

7: Y ← Y + 1
M

((
ΩL

(i)
w∗

)
L

(i)T
w∗

)T
. update

sketch
8: W ←W + 1

M

(
ΨL

(i)
w∗

)
L

(i)T
w∗

9: end for
10: Utop,λtop ← FIXEDRANKSYM(Ω,Ψ, Y,W)
11: return Utop,λtop

12: end function

Armed with these tools, we can now follow the procedure
detailed in Algorithm 1 to produce a low-rank approxima-
tion of the dataset Fisher. Our approach uses one pass over
the dataset D, incrementally building the sum in (12) by ap-
plying the SRFT sketching matrices to the L(i)

w∗ , the factor
for the Fisher for a single input, which can be computed
with d backward passes for each input. Having constructed
the sketch, we can use this much lower-dimensional, T ×N
representation of the dataset Fisher to extract a low-rank,
diagonalized representation FDw∗ = Utopdiag(λtop)UT

top by
following the FixedRankSymmetric algorithm detailed
in Tropp et al. [2017].

5 RELATED WORK

There is a large body of work on characterizing epistemic un-
certainty in DNNs. Specific to softmax-based classification
models, there has been some effort in using the predictive
uncertainty directly as a measure of epistemic uncertainty
for OoD detection [Hendrycks and Gimpel, 2017], which
can be improved through temperature scaling and input pre-
processing [Liang et al., 2018]. Bayesian approaches often
employ Monte-Carlo [Neal, 2012, Gal and Ghahramani,
2015] or variational [Graves, 2011, Blundell et al., 2015,
Liu and Wang, 2016] methods, but these are not generally
applicable to pre-trained networks. In contrast, the Laplace
approximation to the Bayesian posterior [MacKay, 1992] is
appealing as it can be applied to any pre-trained DNN, yet
requires estimating the network curvature.

The most closely-related approaches to ours are the post-
training uncertainty methods of Madras et al. [2020] and
Ritter et al. [2018]. The main differences between such
approaches are (1) how to approximate the curvature (Hes-
sian/Fisher) and (2) how to propagate uncertainty at test time.
The true Bayesian posterior is based on the log-likelihood,

and a second-order approximation of the log-likelihood
would involve the Hessian (the Laplace approximation).
However, for DNNs, we often do not optimize to conver-
gence, and thus, the Hessian is not guaranteed to be PSD.
Madras et al. [2020] consider only the principal components,
but the computation still does not scale well to large datasets.
Moreover, stochastic versions of Lanczos algorithm [Lanc-
zos, 1950] or power iteration are difficult to tune. An al-
ternative is to consider the Fisher (or the Gauss–Newton
[Botev et al., 2017]) approximation of the full Hessian. For
certain cases, such as for the exponential family distribu-
tions and piecewise linear networks, the Fisher is the same
as the Hessian5. An advantage of the Fisher is that it is
easier to compute, as it only requires the first-order terms.
Further, it is guaranteed to be PSD, and thus is often used in
second-order optimization.

As mentioned earlier, Fisher is still intractable to compute,
store, and invert for large models, and so, various approx-
imation schemes for that have been proposed. Ritter et al.
[2018] use a Kronecker-factored representation of the Fisher,
which is easy to store and invert, but it requires certain ap-
proximations of the expectations of a Kronecker product,
and ignores the cross terms between layers to form a block
diagonal structure. We do not enforce this block diagonal
structure, and instead use matrix sketching to tractably esti-
mate only the top eigenvectors and eigenvalues of the full
Fisher. The KFAC approximation (and its derivatives) are
suitable for second-order optimization, when curvature is
used to scale the gradient step in the training loop (making
the block diagonal approximation enables quick computa-
tion of an invertible Fisher). However, in our case, comput-
ing the dataset Fisher (and its eigen-decomposition) happens
only once, offline, and thus, we can afford to take a slower,
more memory-intensive approach.

While proposed for a different purpose, there are similar
ideas that have been used for the problem of continual learn-
ing, i.e., learning different tasks in a sequential fashion. The
challenge there is to represent the information of the pre-
vious training data in a compact form and to update the
weights in such a way that preserves the previous infor-
mation as much as possible when training for a new task.
Elastic weight consolidation (EWC) of Kirkpatrick et al.
[2017] uses the Fisher information matrix to weight each
parameter based on its “importance” for the previous task,
and uses a regularizer that penalizes changing important pa-
rameters more. Farajtabar et al. [2020] proposed orthogonal
gradient descent (OGD), which represents the information
about the previous data in the form of gradients of the predic-
tions, and then updates the weights in a direction orthogonal
to those gradients.

5For piecewise linear networks, e.g., those with ReLU activa-
tions, the Hessian of θ with respect to the weights is 0 wherever
the network is differentiable, and the nondifferentiable points of
such networks form a measure zero set [Singla et al., 2019]

 Domain Training data OoD data

Wine Red wine data White wine data

Rotated MNIST Rotated ‘2’s OoD rotations of ‘2’s
Rotated ‘5’s

TaxiNet Runway images OoD weather
Clear weather, 9am OoD time-of-day

Diff. runway

Binary MNIST MNIST ‘0’s OoD digits
and ‘1’s FashionMNIST

MNIST MNIST (0-5) OoD digits
FashionMNIST

CIFAR10 CIFAR-10 images SVHN
LSUN
TinyImageNet

Table 1: Summary of case studies. The first three are re-
gression problems, while the last three are classification
problems.

6 EXPERIMENTAL RESULTS

We are interested in evaluating how efficiently SCOD pro-
duces uncertainty estimates, and how useful these estimates
are. We define the utility of the uncertainty estimate in terms
of how well it serves to classify atypical inputs from typical
ones. Following the literature on OoD detection, we quan-
tify this utility by computing the area under the ROC and
precision-recall curves, to produce the AUROC and AUPR
metrics, respectively.6

Using these metrics, we explore: (1) how choices like the
sketch budget T and rank of approximation k impact perfor-
mance; (2) how performance of SCOD can be improved on
large DNNs; and (3) how SCOD compares to baselines on a
suite of problem settings, from regression to classification.
A summary of these problem settings is provided in table 1,
with more details in Appendix C.1.

6.1 CHOOSING THE SKETCH BUDGET AND
RANK OF APPROXIMATION

A key aspect of SCOD is using matrix sketching to approxi-
mate the dataset Fisher as a low-rank matrix. This presents
the practitioner with two key hyperparameters: the memory
budget T to allocate for the sketching, and the rank k of the
approximation used in online computation. While memory
budget T is generally set by hardware constraints, it impacts
the quality of low-rank approximation attainable through
sketching. Indeed, the sketching procedure produces a rank

6Code to run experiments and apply SCOD to arbitrary
PyTorch models is available at https://github.com/
StanfordASL/SCOD/.

100 101 102

Rank of approximation k

0.82

0.84

0.86

0.88

0.90

0.92

AU
RO

C

T=64
T=154
T=304
T=604

Figure 2: The impact of the sketched approximation on OoD
detection (measured by AUROC) for Rotated MNIST. We
see that, in general, increasing the rank of the approximation
yields a higher AUROC, but with diminishing returns (note
the log scale). AUROC is not significantly impacted by the
sketch budget T if k ≤ (T − 4)/6, the threshold visualized
by the dashed lines.

2(T − 1)/3 approximation, and theoretical results suggest
keeping only the top (T−4)/6 eigenvalues and eigenvectors
from this approximation [Tropp et al., 2017].

We explore this trade-off empirically on the Rotated MNIST
domain. We choose a range of values for the sketching
budget T , and sketch the dataset Fisher. For each sketch
size, we choose k from a range of values from 1 all the
way to the theoretical maximum 2(T − 1)/3, and test the
AUROC performance of Unc. Figure 2 shows the results of
these experiments. These results show two key trends. First,
we see that increasing the rank k improves performance,
but with diminishing returns. Second, for a fixed rank k,
we see that the performance is insensitive to the sketch
budget, especially if k < (T − 4)/6. For larger k, we start
seeing benefits from increasing the sketch budget, consistent
with the theory; performance starts to plateau as k increases
beyond (T − 4)/6. Beyond the rank, Unc is also impacted
by the scale of the prior ε2. In our experiments, we found
performance to be insensitive to this hyperparameter and
thus use ε = 1 in all the experiments. See Appendix C.3 for
more details.

6.2 FURTHER IMPROVING EFFICIENCY FOR
LARGE DNNS

These results suggest that the best classification performance
is achieved by setting T as high as memory allows, and
subsequently choosing k ≥ (T − 4)/6. While sketching
enables us to avoid the quadratic dependency on N , the
memory footprint of the offline stage of SCOD is still linear,
i.e., O(NT). As a result, GPU memory constraints can
restrict T , and thus k, substantially for large models. To
alleviate this issue, we study how performance is impacted

https://github.com/StanfordASL/SCOD/
https://github.com/StanfordASL/SCOD/

0 100 200 300 400 500 600 700 800

Runtime (ms)

0.91

0.92

0.93

0.94

0.95

A
U

R
O

C

0 2 4 6 8 10

Runtime (ms)

0.950

0.955

0.960

0.965

0 2 4 6 8

Runtime (ms)

0.974

0.976

0.978

0.980

0.982

0.984

A
U

R
O

C

0 20 40 60 80 100

Runtime (ms)

0.5

0.6

0.7

0.8

0.9

1.0

A
U

R
O

C

0 2 4 6 8 10

Runtime (ms)

0.5

0.6

0.7

0.8

0.9

SCOD SCOD
(LL) Deep Ensemble Local Ensemble KFAC Laplace Naive

Wine Rotated MNIST TaxiNet

Binary MNIST MNIST CIFAR10

0 1 2 3 4 5 6

Runtime (ms)

0.5

0.6

0.7

0.8

0.9

A
U

R
O

C

Figure 3: Comparing OoD detection performance and runtime against baselines. We see that SCOD is consistently on a
Pareto frontier in terms of the runtime/efficacy tradeoff among post-hoc uncertainty methods (top-left is better). Indeed,
SCOD, applied onto a pre-trained model, often matches or exceeds the performance of Deep Ensembles, which is not a
post-training approach, and requires retraining multiple models from scratch. Note that the y-axes are independently scaled.

if we simply restrict our analysis to the last few layers of
the network, thus lowering the effective value of N . For
convolutional networks, the first layers tend to learn generic
filter patterns which apply across many domains, while later
layers learn task-specific representations [Zeiler and Fergus,
2014]. Thus, it is possible that the curvature on the later-
layer parameters is more informative from an OoD detection
standpoint.

To test the impact of this, we compare to SCOD (LL), an
ablation which applies this analysis only to the last layers
of the network. For these experiments, we chose to limit
analysis to the last L layers, where we chose L for each
network architecture such that a minimum of 2 layers were
considered, and at least 1 Conv layer was considered. For
the larger models in TaxiNet and CIFAR10, we restricted
our analysis to the last 15% of the layers. In these latter two
domains, we also increased the sketch budget T and associ-
ated rank k up to the capacity of our GPU. Full details of the
setup are included in Appendix C.1. Results are included in
Figure 3. For an in-depth look into the impact of focusing
on the last layer, see Appendix C.4.

6.3 PERFORMANCE RELATIVE TO BASELINES

We compare SCOD against several baselines. First, we com-
pare with the two closely-related approaches, namely, Local
Ensembles [Madras et al., 2020] and KFAC Laplace ap-
proximation [Ritter et al., 2018], which use curvature estima-
tion to augment a trained model with uncertainty estimates.

Next, while not a method applicable to a pre-trained model,
we compare against Deep Ensembles [Lakshminarayanan
et al., 2017] as a benchmark, as it has shown strong OoD
detection performance across regression and classification
examples. For this baseline, we retrain K = 5 models of
the same architecture from different initializations. Both
KFAC Laplace and Deep Ensembles output mixture distri-
butions, which we turn into a scalar uncertainty measure
by computing the total variance (summed over output di-
mension) for regression problems, or the predictive entropy
for classification, as in [Lakshminarayanan et al., 2017].
Finally, we compare to a Naive baseline which produces
an uncertainty measure directly from the output of the pre-
trained model. For regression models which output only
a mean estimate, extracting an uncertainty estimate is not
possible, and thus this baseline outputs a constant signal
Unc(x) = 1. For classification models, we use the entropy
of the output distribution as a measure of uncertainty, as in
[Lakshminarayanan et al., 2017].

We compare the performance of these baselines across three
regression domains (Wine, Rotated MNIST, and TaxiNet),
as well as three classification domains (Binary MNIST,
MNIST, and CIFAR10). For each domain, we create a
dataset known to be semantically different from the training
data. Where possible, we consider OoD data that is realistic
— for example, data from white wines as OoD for a model
trained on data form red wines; or in TaxiNet, images from
a wing-mounted camera in different times of day and dif-
ferent weather conditions for a model trained only on data
from the morning with clear weather conditions. Table 1

 gives a summary of the domains; more details are provided
in Appendix C.1. We also consider using the model’s own
accuracy to label points as in- or out-of-distribution in Ap-
pendix C.5. For all domains except CIFAR10, we train all
networks, and then apply the post-training algorithms. For
the CIFAR10 domain, we test on a pre-trained DenseNet121
model [Huang et al., 2019, Phan, 2021] to highlight the
fact that SCOD can be applied to augment any pre-trained
model, independent of training methodology, with uncer-
tainty estimates.

The results are summarized in Figure 3. Overall, we see
three key trends. First, SCOD consistently provides the
most informative uncertainty measures out of the meth-
ods applicable on a pre-trained model. In fact, its AU-
ROC often matches or exceeds that of Deep Ensembles.
While KFAC Laplace also matches Ensemble performance
in many settings, our approach tends to dominate it on a
runtime/AUROC Pareto frontier. Computing uncertainty
metrics using KFAC Laplace requires the computationally-
intensive repeated evaluations of the DNN with different
sampled weights. Furthermore, this sampling process is very
sensitive to the regularization hyperparameters. In contrast,
our uncertainty metric does not require any sampling, and
thus adds very little overhead. Local Ensembles similarly
add little overhead, but have a worse AUROC on many
domains, especially for large models and datasets, e.g., in
the TaxiNet domain, where M = 50, 000. It is likely that
sketching the Fisher yields a better low-rank curvature esti-
mate than using stochastic mini-batching to estimate the top
eigenspace of the Hessian.

On regression problems, the output of the network provides
no estimate of uncertainty, and, unsurprisingly, the Naive
baseline performs poorly. In contrast, on classification prob-
lems, the Naive strategy of interpreting the predictive uncer-
tainty as epistemic uncertainty works quite well [Hendrycks
and Gimpel, 2017]. Nevertheless, we see that, SCOD is
generally able to exceed the Naive performance on these
classification domains, and match the performance of Deep
Ensembles. Importantly, unlike Deep Ensembles or even
KFAC Laplace, we do not directly use the base DNN’s out-
put uncertainty as part of our score, and only consider how
weight perturbations may change the output. Given that the
output uncertainty is a strong baseline for softmax classi-
fication problems, connecting these ideas is an interesting
avenue for future work.

In general, we see that restricting analysis to the last lay-
ers often leads to better AUROC performance as well as
faster runtime. This is particularly evident on CIFAR10,
where without restricting analysis to the last layers, SCOD
performed worse than the Naive baseline (although still
achieving AUROC > 0.9). This may be a consequence of
the phenomenon in which the first layers tend to represent
generic features that are equally suited to all natural images.
Therefore, the curvature of the later layers may be more

useful for OoD detection. This is supported by a case study
on the CIFAR10 model, with results in Appendix C.4.

7 CONCLUSION

We presented Sketching Curvature for OoD Detection
(SCOD), a scalable, architecture-agnostic framework for
equipping any pre-trained DNN with a task-relevant epis-
temic uncertainty estimate. Through extensive experiments,
we demonstrated that the proposed method achieves com-
parable or better OoD detection performance with a lower
computational burden relative to existing approaches.

There are several important avenues for future work, in addi-
tion to what was mentioned earlier. First, while the straight-
forward single-pass, sketch-based eigenvalue decomposition
algorithm we employ was effective in our experiments, per-
formance might be improved using more involved sketching-
based algorithms for low-rank matrix approximation [Yu
et al., 2017]. Indeed, multiple passes over the data would
allow reaping benefits of power iteration and improving
approximation quality. The single-pass sketching approach
has its own advantages, however — since the sketch is built
incrementally, our framework can be potentially extended
to continual learning applications. Furthermore, within the
context of autonomous systems, another important direction
is to tailor OoD detection and uncertainty estimation for
downstream control task, by quantifying the impact of pos-
terior parameter uncertainty on the overall system behavior,
rather than just on DNN predictions.

Acknowledgements

A. Sharma and M. Pavone were supported in part by
DARPA under the Assured Autonomy program. Addi-
tionally, the NASA University Leadership initiative (grant
#80NSSC20M0163) provided funds to assist the authors
with their research, but this article solely reflects the opin-
ions and conclusions of its authors and not any NASA entity.
N. Azizan was supported by MIT. The authors wish to thank
Robin Brown and Edward Schmerling for helpful input and
discussions during the development of these ideas.

References

Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic
mirror descent on overparameterized nonlinear models:
Convergence, implicit regularization, and generalization.
arXiv preprint arXiv:1906.03830, 2019.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu,
and Daan Wierstra. Weight uncertainty in neural network.
In International Conference on Machine Learning, pages
1613–1622. PMLR, 2015.

 Aleksandar Botev, Hippolyt Ritter, and David Barber. Prac-
tical gauss-newton optimisation for deep learning. In
International Conference on Machine Learning. Pmlr,
2017.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li.
Orthogonal gradient descent for continual learning. In
International Conference on Artificial Intelligence and
Statistics. Pmlr, 2020.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian
approximation: Representing model uncertainty in deep
learning. arXiv preprint arXiv:1506.02142, 2015.

Alex Graves. Practical variational inference for neural net-
works. In Advances in Neural Information Processing
Systems, 2011.

Dan Hendrycks and Kevin Gimpel. A baseline for detecting
misclassified and out-of-distribution examples in neural
networks. Proceedings of International Conference on
Learning Representations, 2017.

Gao Huang, Zhuang Liu, Geoff Pleiss, Laurens Van
Der Maaten, and Kilian Weinberger. Convolutional net-
works with dense connectivity. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2019.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran
Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-
Barwinska, et al. Overcoming catastrophic forgetting in
neural networks. Proceedings of the National Academy
of Sciences, 114(13), 2017.

Frederik Kunstner, Philipp Hennig, and Lukas Balles. Limi-
tations of the empirical fisher approximation for natural
gradient descent. In Advances in Neural Information
Processing Systems, volume 32, 2019.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles
Blundell. Simple and scalable predictive uncertainty es-
timation using deep ensembles. In Advances in Neural
Information Processing Systems, 2017.

Cornelius Lanczos. An iteration method for the solution of
the eigenvalue problem of linear differential and integral
operators. 1950.

Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the
reliability of out-of-distribution image detection in neu-
ral networks. In International Conference on Learning
Representations, 2018. URL https://openreview.
net/forum?id=H1VGkIxRZ.

Qiang Liu and Dilin Wang. Stein variational gradient de-
scent: A general purpose bayesian inference algorithm.
In Advances in Neural Information Processing Systems,
2016.

David JC MacKay. A practical bayesian framework for
backpropagation networks. Neural computation, 4(3),
1992.

David Madras, James Atwood, and Alexander D’Amour.
Detecting extrapolation with local ensembles. In In-
ternational Conference on Learning Representations,
2020. URL https://openreview.net/forum?
id=BJl6bANtwH.

James Martens and Roger Grosse. Optimizing neural net-
works with kronecker-factored approximate curvature. In
International Conference on Machine Learning. Pmlr,
2015.

Radford M Neal. Bayesian learning for neural networks,
volume 118. Springer Science & Business Media, 2012.

Huy Phan. huyvnphan/pytorch_cifar10, January 2021.
URL https://doi.org/10.5281/zenodo.
4431043.

Hippolyt Ritter, Aleksandar Botev, and D. Barber. A scal-
able laplace approximation for neural networks. In Inter-
national Conference on Learning Representations, 2018.

Levent Sagun, Utku Evci, V Ugur Guney, Yann Dauphin,
and Leon Bottou. Empirical analysis of the hessian
of over-parametrized neural networks. arXiv preprint
arXiv:1706.04454, 2017.

Sahil Singla, Eric Wallace, Shi Feng, and Soheil Feizi. Un-
derstanding impacts of high-order loss approximations
and features in deep learning interpretation. In Interna-
tional Conference on Machine Learning. Pmlr, 2019.

Joel A Tropp, Alp Yurtsever, Madeleine Udell, and Volkan
Cevher. Practical sketching algorithms for low-rank
matrix approximation. SIAM Journal on Matrix Anal-
ysis and Applications, 38(4):1454–1485, 2017. URL
http://arxiv.org/abs/1609.00048.

Franco Woolfe, Edo Liberty, Vladimir Rokhlin, and Mark
Tygert. A fast randomized algorithm for the approxima-
tion of matrices. Applied and Computational Harmonic
Analysis, 25(3), 2008.

Wenjian Yu, Yu Gu, Jian Li, Shenghua Liu, and Yaohang
Li. Single-pass pca of large high-dimensional data. arXiv
preprint arXiv:1704.07669, 2017.

Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In European conference
on computer vision. Springer, 2014.

https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=H1VGkIxRZ
https://openreview.net/forum?id=BJl6bANtwH
https://openreview.net/forum?id=BJl6bANtwH
https://doi.org/10.5281/zenodo.4431043
https://doi.org/10.5281/zenodo.4431043
http://arxiv.org/abs/1609.00048

	Introduction
	Problem Statement
	Background: Curvature and Laplace Approximation
	Fisher Information
	Fisher for Deep Neural Networks
	Connection to the Hessian
	The Laplace Approximation of Epistemic Uncertainty

	Proposed Method: Sketching Curvature for OoD Detection
	Efficiently computing the Uncertainty Metric
	Tractably approximating the Dataset Fisher via Matrix Sketching

	Related Work
	Experimental Results
	Choosing the Sketch Budget and Rank of Approximation
	Further improving efficiency for large DNNs
	Performance relative to Baselines

	Conclusion

