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Abstract

We consider the problem of simultaneous learn-
ing in stochastic games with many players in the
finite-horizon setting. While the typical target so-
lution for a stochastic game is a Nash equilibrium,
this is intractable with many players. We instead
focus on variants of correlated equilibria, such as
those studied for extensive-form games. We be-
gin with a hardness result for the adversarial MDP
problem: even for a horizon of 3, obtaining sublin-
ear regret against the best non-stationary policy is
NP-hard when both rewards and transitions are ad-
versarial. This implies that convergence to even the
weakest natural solution concept—normal-form
coarse correlated equilbrium—is not possible via
black-box reduction to a no-regret algorithm even
in stochastic games with constant horizon (unless
NP ⊆ BPP). Instead, we turn to a different target:
algorithms which generate an equilibrium when
they are used by all players. Our main result is
algorithm which generates an extensive-form cor-
related equilibrium, whose runtime is exponential
in the horizon but polynomial in all other param-
eters. We give a similar algorithm which is poly-
nomial in all parameters for “fast-mixing” stochas-
tic games. We also show a method for efficiently
reaching normal-form coarse correlated equilib-
ria in “single-controller” stochastic games which
follows the traditional no-regret approach. When
shared randomness is available, the two generative
algorithms can be extended to give simultaneous
regret bounds and converge in the traditional sense.

1 INTRODUCTION

Many multi-agent systems, such as financial markets, trans-
portation networks, and video games, involve agents com-

peting in environments where their actions affect their im-
mediate rewards as well as transitions between states in the
environment. When opponent strategies are fixed, this re-
sembles a reinforcement learning problem for a single agent.
Stochastic games, also known as Markov games are a popu-
lar model for multi-agent reinforcement learning problems
(Littman [1994]), and have also been studied extensively
throughout economics and computer science (Solan and
Vieille [2015], Shoham and Leyton-Brown [2008]). They
generalize Markov decision processes (MDPs) to many play-
ers, where each state is now a game where both the instan-
taneous rewards and transitions depend on the actions of
all players. As is the case throughout game theory, a funda-
mental question from the perspective of algorithm design is
whether some kind of equilibrium can be found efficiently.

The traditional solution concept for a game, often interpreted
as a model of rational behavior, is the Nash equilibrium
(Nash [1950]). In two-player zero-sum and other restricted
classes of normal-form games, Nash equibria can be found
efficiently; however, finding one is PPAD-complete for ar-
bitrary games even with only two players (Daskalakis et al.
[2006], Chen et al. [2007]), and thus likely computationally
intractable. A more appropriate target in this case is a corre-
lated equilibrium, introduced by Aumann [1974], which is a
generalization of a Nash equilibrium where strategies can be
correlated across players, and can be efficiently computed
in general games (e.g. Nisan et al. [2007]). Correlated equi-
libria can also be reached through repeated play by agents
who use appropriate learning algorithms. The existence of
no-swap-regret dynamics which efficiently converge to cor-
related equilibria is a celebrated result in the theory of learn-
ing in games (Foster and Vohra [1997], Hart and Mas-Colell
[2000], Blum and Mansour [2004]). A notable benefit of this
approach is that it does not depend on the description length
of the game, so long as rewards are computable from an
action profile, and thus can be used in many-player games
where writing an explicit game description is prohibitive.

The normal-form game model is often insufficient to capture
problems of practical interest. The aforementioned results
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 cannot be applied directly to stochastic games, as the strat-
egy space is exponential in the relevant parameters. Yet, as
real-world problems often have many players and possibly
arbitrary reward structures, it is natural to target correlated
equilibria as a solution concept for stochastic games as well.
The starting point for our work is asking whether an efficient
convergence result of the same form as Hart and Mas-Colell
[2000] can be obtained for repeated play of a stochastic
game in the finite-horizon setting.

A related setting where similar questions have been studied
is that of extensive-form games (EFGs). Several refinements
of correlated equilibria have been proposed for EFGs, which
differ in when action recommendations are revealed to each
agent (von Stengel and Forges [2008], Huang and von Sten-
gel [2008], Farina et al. [2019]). Two variants which we
will consider are normal-form coarse correlated equilibria
(NFCCE) and extensive-form correlated equilibria (EFCE),
with the latter contained in the former, which we adapt to
finite-horizon stochastic games. Recent work has led to the
development of an algorithm which converges to an EFCE
by minimizing an appropriate notion of regret for each agent
(Celli et al. [2020]). We show that such a black-box reduc-
tion cannot work for stochastic games of even constant
horizon, as the corresponding online learning problem is
hard, and instead design algorithms which converge to cor-
related equilibria (in a somewhat delicate sense) by directly
leveraging information about opponents’ strategies.

1.1 RESULTS AND TECHNIQUES

We assume that players in a finite-horizon stochastic game
play for many repeated horizons, or trajectories, and that
rewards and transition dynamics are computed by an ora-
cle when players submit actions simultaneously at a given
state. Players receive only bandit feedback, i.e. they do
not know what see what rewards or transitions would have
occurred if they had selected a different action. Longer hori-
zons allow for greater consideration of “deferred rewards”
for actions, such as in a board game where an early move
can become consequential in the endgame; a horizon of
one corresponds to a repeated one-shot game. Each form
of correlated equilibrium we consider is a joint distribution
over recommended policies, which tell each player an ac-
tion to play at each state. We consider policies which are
non-stationary, i.e. they can depend on the time-step. In a
NFCCE, no player can improve their reward by committing
to a fixed policy before the trajectory begins or recommen-
dations are revealed. In an EFCE, players receive individual
action recommendations only upon reaching a state, and
they cannot improve rewards by “swapping” their actions
based on their recommendations.

Our first result is negative: we show that obtaining sublinear
regret against the best non-stationary policy for adversar-
ial MDPs with a horizon of 3 is NP-hard, strengthening

previous hardness results (Even-Dar et al. [2004], Abbasi-
Yadkori et al. [2013]) which require the stronger “LPN
hardness” assumption and hold only when the horizon is
approximately the size of the MDP. The adversarial MDP
problem is the natural online learning variant of our setting,
as each set of opponent policies defines an MDP for a given
player, albeit with different rewards and transitions. As-
suming NP 6⊆ BPP, this implies that any algorithm which
quickly converges to even a NFCCE in a stochastic game
with constant horizon cannot be no-regret against arbitrary
opponents, ruling out a black-box reduction to reaching a
correlated equilibrium as in Hart and Mas-Colell [2000] or
Celli et al. [2020].

We then turn our attention to designing algorithms which
make use of information about the behavior of opponents,
namely that they are using the same algorithm. While re-
gret minimization and learning equilibria are often viewed
as intimately connected, lower bounds for regret do not
necessarily imply barriers for equilibria when opponents
are not behaving arbitrarily; in particular, knowledge of
“self-play” has been used to obtain rates of convergence to
correlated equilibria in normal-form games which overcome
lower bounds for regret minimization against an arbitrary
adversary (Syrgkanis et al. [2015], Chen and Peng [2020]).

Our main result is a decentralized learning algorithm which
reaches an EFCE when used by all players, and in particular
one where the distribution of recommended action profiles at
each state is a product distribution across states. We observe
that computing an EFCE of this form is straightforward in
a centralized model, as it reduces to the problem of finding
a correlated equilibrium for a set of normal-form games,
each of which can be computed with linear programming or
no-swap-regret learning. States at the final time-step are es-
sentially equivalent to normal-form games, and each player
will have a value associated with a given correlated equilib-
rium representing their average reward at that state-time pair.
These values can be folded back into rewards at previous
time-steps, enabling an inductive computation. Our main al-
gorithm, PLL, aims to simulate this approach by conducting
repeated parallel local learning at each state. After a num-
ber of trajectories which is exponential in the horizon length
but polynomial in all other parameters, the set of subgame
value estimates stabilizes for each player, at which point the
product distribution across state-time pairs over the action
profiles generated by continued local learning constitutes
an EFCE for the stochastic game, thus circumventing the
previous hardness result. In addition, we give a variant of
PLL which removes the exponential dependence on horizon
provided that a “mixing” assumption is satisfied.

We also give an alternative approach which reaches an
NFCCE in “single-controller” stochastic games, where only
one player affects transitions (as studied in e.g. Filar and
Raghavan [1984]). Here, the controller uses a no-regret al-
gorithm for adversarial MDPs with fixed transitions (Rosen-



 berg and Mansour [2019]) while the followers use another
variant of PLL. This approach converges in the black-box
sense, where each agent has sublinear regret for the the uni-
form distribution over the entire history of strategies. We
further show that the algorithms for general and fast-mixing
stochastic games can be extended to satisfy sublinear regret
bounds simultaneously for all agents if shared randomness
is available by allowing agents to play according to the
generated equilibrium after the initial algorithms terminate.
As building blocks for the analysis of our algorithms, we
establish generalizations of known results for convergence
of learning algorithms to correlated equilibria in normal-
form games (e.g. Blum and Mansour [2004], to the case
where reward feedback is noisy, which we call “games with
stochastic rewards”) and Bayesian games (removing the
“independent private value” assumption in Hartline et al.
[2015]). Most proofs and some algorithmic details (such as
exact constants) are deferred to Appendix A.

1.2 COMPARISON WITH RELATED WORK

Most provably efficient algorithms for learning in stochastic
games target Nash equilibria in tractable special cases like
zero-sum games, and often in infinite-horizon settings with
discount factors or mixing guarantees (Brafman and Tennen-
holtz [2001], Chang et al. [2010], Zhang et al. [2018], Zhang
et al. [2018]). When there are many players, we cannot af-
ford to “learn the game” and use a model-based approach
(e.g. Brafman and Tennenholtz [2001]), as explicitly rep-
resenting even a single state will be intractable. Closest to
our setting is Kearns et al. [2000], who give a centralized
recursive algorithm that computes an EFCE in finite-horizon
stochastic games for the case when the algorithm can sam-
ple many transitions and rewards at each state (which we
cannot do in our “repeated trajectories” model); the run-
time is exponential in both the horizon and the number of
players, but does not depend on the number of states. Corre-
lated equilibria are also studied empirically by Greenwald
and Hall [2003], and there is a large body of literature on
general-sum multi-agent learning under other objectives or
without convergence guarantees; for a recent overview of
multi-agent reinforcement learning, see Zhang et al. [2019].

Finite-horizon stochastic games are somewhat related to
extensive-form games, but are distinct in several important
ways and in general are not directly comparable. In EFGs,
only one player acts at each state, but partial information
is allowed via “infosets”, which can be used to simulate
simultaneous actions (Shoham and Leyton-Brown [2008],
von Stengel and Forges [2008], Celli et al. [2020]). Stochas-
tic games with partial information have been considered in
the literature (Hansen et al. [2004]), but are considerably
more difficult to solve (POMDPs, the single-player analog,
are PSPACE-complete, see Papadimitriou and Tsitsiklis
[1987]), and we will not consider them here. EFGs typically

enforce a tree structure on the infosets by the “perfect recall”
assumption, whereas finite-horizon stochastic games allow
for a DAG structure. As a result, our setting can allow for
games with both a large depth and branching factor as long
as the number of total states is not too large; EFGs are not
as appropriate of a model when there are many paths to a
given game state. Encoding a finite-horizon stochastic game
as an EFG requires considering each path to a state inde-
pendently, introducing a space blowup which is exponential
in the horizon length, which renders existing methods for
learning in EFGs impractical for our setting.

2 CORRELATED EQUILIBRIA IN
STOCHASTIC GAMES

We begin with some background regarding no-(swap)-regret
learning in the bandit feedback setting and connections to
correlated equilibria in Section 2.1. In Section 2.2, we in-
troduce a preliminary model of a “game with stochastic
rewards” and its corresponding definition of a correlated
equilibrium. This serves as a building block for our for-
mulation of stochastic games in Section 2.3. These game
models may have unbounded description length; throughout,
we treat them as oracles to which players submit actions
simultaneously, then receive reward and state feedback. We
assume instantaneous rewards are normalized to lie in [0, 1].

2.1 PRELIMINARIES

Adversarial Bandits. In the adversarial multi-armed
bandit problem, the objective is to sequentially choose ac-
tions a ∈ A which minimize some notion of regret, where
rewards at each step are chosen by an (adaptive) adversary.
Let N denote the cardinality of A. At each round, an al-
gorithm commits to a distribution of actions qt ∈ ∆(A),
which is observed by an adversary, who then chooses a
reward vector bt ∈ [0, 1]N . The algorithm then draws an ac-
tion at from qt and then observes the associated reward btat .
Let F denote the set of swap functions F : A → A. After
T rounds, the swap-regret of such an algorithm is given by

RegF (T ) = max
f∈F

T∑
t=1

btf(at) −
T∑
t=1

btat .

Dividing by T gives us the average swap regret; there are
efficient algorithms for achieving sublinear swap-regret in
this setting, which we refer to as no-swap-regret as average
swap regret vanishes as T grows.

Proposition 1 (Blum and Mansour [2004]). There is an
algorithm (SR-MAB) that, when used for T rounds in the
multi-armed bandit setting with adaptively chosen losses,
has expected swap regret bounded by O(N

√
NT logN).

This implies that after using SR-MAB for O( 1
ε2N

3 logN)
rounds, the expected average swap regret is bounded by ε.



 We will use B to denote the SR-MAB algorithm and B(ε)
to denote the number of rounds after which it has expected
average swap regret at most ε. We use it as a subroutine in
our algorithms, but our results are not specific to its details,
and can be adapted to use any no-swap-regret algorithm.

Correlated Equilibria in Normal-Form Games. In a
normal-form game with M players and action space A =
×i∈[M ]Ai, each player i selects an action ai ∈ Ai and re-
ceives a reward given by a utility function u : A → [0, 1]M

mapping action profiles to a vector of rewards. An ε-
correlated equilibrium for such a game is a distribution
D ∈ ∆(A) such that for all players i and deterministic
functions f : Ai → Ai,

E
a∼D

[ui(ai; a−i)] ≥ E
a∼D

[ui(f(ai); a−i)]− ε,

i.e. no player can benefit by more than ε in expectation by
deviating from the distribution of “recommended actions”
with any swap function. Repeated play in a normal form
game converges to a correlated equilibrium if players use
no-swap-regret algorithms.

Proposition 2 (Blum and Mansour [2004]). If all players in
a game select actions using B for B(ε) rounds, the uniform
distribution over the sequence of action profiles played thus
far is an ε-correlated equilibrium for the game, where the
expectation is taken both with respect to the distribution of
action profiles as well as the randomness of B.

2.2 GAMES WITH STOCHASTIC REWARDS

We define a game with stochastic rewards as a distribution
over normal-form games, which is equivalent to a normal-
form game where reward feedback can be noisy and arbi-
trarily correlated across players.

Definition 1 (Games with Stochastic Rewards). A game
with stochastic rewards x = (A,M, r, u) with M players
is given by a set of action profiles A = ×i∈[M ]Ai, a distri-
bution over reward tensors r ∈ ∆(Θ), and a utility function
u, where the utilities u : A×Θ → [0, 1]M depend on the
realization of θ ∼ r. In a round of the game, players submit
actions to x simultaneously, θ is drawn independently from
r, and each player observes only their utility ui(a, θ).

We assume thatAi = N for all agents. A correlated equilib-
rium for such a game is an action profile distribution where
the regret bound holds with respect to the distribution over
reward tensors.

Definition 2 (Correlated Equilibria in Games with Stochas-
tic Rewards). An ε-correlated equilibrium for a game with
stochastic rewards is a distribution D ∈ ∆(A) such that
for all players and all swap functions f ∈ F ,

E
a∼D,θ∼r

[ui(ai; a−i, θ)] ≥ E
a∼D,θ∼r

[ui(f(ai); a−i, θ)]− ε.

Here, there is some expected reward tensor θ̄ where for every
action profile a and player i, θ̄a,i = Eθ∼r[ui(ai; a−i, θ)],
and a correlated equilibrium for such a game is simply a
correlated equilibrium for the game specified by θ̄.

2.3 FINITE-HORIZON STOCHASTIC GAMES

Stochastic games resemble Markov decision processes, yet
there are many players who act simultaneously at each state,
and transition and reward dynamics depend on all players’
actions. In finite-horizon stochastic games, players begin
at a state drawn from some initial distribution and play for
a fixed period of steps, where a step consists of one set of
simultaneous actions, followed by a transition to a new state
and a reward for each agent. We allow both rewards and
transitions to be probabilistic. A trajectory is the sequence
of steps over the entire horizon length.

Definition 3 (Finite-Horizon Stochastic Games). A finite-
horizon stochastic game is given by a tuple M =
(X ,A,M,H, p0, p, r, u), where:

• M is the number of players,
• A = ×i∈[M ]Ai is the action space (|Ai| = N for

each player),
• H is the horizon length,
• X is the state space (|X | = S),
• p0 ∈ ∆(X ) is an initial distribution over states,
• p : [H] → ∆(T ) is a function which defines distri-

butions over transition functions τ ∈ T : A×X →
X ∪∅,

• r : X ×H → ∆(Θ) is a function which defines distri-
butions of reward tensors, and

• u : A×Θ → [0, 1]M is a function which defines util-
ities for each player given an action profile and a re-
ward tensor.

For all a, x, τ , we assume τ(a, x) = ∅ if and only if h = H ,
where ∅ denotes termination of the episode.

State Values for a Policy Profile. We consider non-
stationary policies of the form πi : X ×[H] → Ai for
each agent i, with πi ∈ Πi and Π = ×i∈[M ]Πi. For a policy
profile π we can recursively define a state value function
V πi : X ×[H]→ [0, H] where:

V πi (x,H) = E
θ∼r(x,H)

[ui(ai; a−i, θ)]

where ai = πi(x, h) for each agent i and

V πi (x, h) = E
θ,τ

[ui(ai; a−i, θ) + V πi (τ(a, x), h+ 1)]

for h ∈ {1, . . . ,H − 1}, where θ and τ are drawn from the
appropriate distributions.



 Counterfactual State Values. We also define the coun-
terfactual state value function for a player who deviates
from a distribution over policy profiles. We consider two
kinds of deviations: always playing a fixed policy ψi ∈ Πi,
or deviating from local recommendations using a “swap
function”. Let F i : Ai×X ×[H]→ Ai be the set of swap
functions for player i that can depend on action, state, and
episode step. We can recursively define a value function for
f ∈ F i given a policy profile π:

V π,fi (x,H) = E
θ∼r(x,H)

[ui(f(ai, x, h); a−i, θ)]

and

V π,fi (x, h) = E
θ,τ

[ui(f(ai, x, h); a−i, θ) + V π,fi (τ∗, h+ 1)],

where τ∗ = τ(f(ai, x, h), a−i, x) and again ai = πi(x, h)
for each agent i. Our notion of swap regret will be defined
with respect to F i, and our notion of a correlated equilib-
rium is a distribution over policy profiles π = [πi]i∈[M ]. We
can equivalently define V π,ψii (x, h) for ψi ∈ Πi, omitting
dependence on the actions recommended at each step.

We can adapt variants of correlated equilibria as considered
for extensive-form games in e.g. von Stengel and Forges
[2008] or Farina et al. [2019] to stochastic games. Our defi-
nition of a normal-form correlated equilibrium says that no
player can benefit substantially by committing to a fixed pol-
icy before seeing any recommendations, given knowledge
of a policy profile distribution. For an extensive-form corre-
lated equilibrium, recommendations are revealed to agents
one step at a time, and they cannot benefit by deviating from
these recommendations using a swap function. The EFCEs
we consider will be a product distribution across state-time
pairs, and so we restrict to considering deviations based
only on the current recommendation—recommendations
at previous steps provide no additional information about
opponent recommendations at any other step.

Definition 4 (Normal-Form Coarse Correlated Equilibria
for Stochastic Games). We say that a policy profile distri-
bution D ∈ ∆(Π) is an ε-approximate normal-form coarse
correlated equilibrium (or ε-NFCCE) for a finite-horizon
stochastic game if for all agents i and all ψi ∈ Πi:

E
x∼p0,π∼D

[V πi (x, 1)] ≥ E
x∼p0,π∼D

[V π,ψi (x, 1)]− εH.

Definition 5 (Extensive-Form Correlated Equilibria for
Stochastic Games). We say that a policy profile distribu-
tion D ∈ ∆(Π) is an ε-approximate extensive-form corre-
lated equilibrium (or ε-EFCE) for a finite-horizon stochastic
game if for all agents i and all f ∈ F i:

E
x∼p0,π∼D

[V πi (x, 1)] ≥ E
x∼p0,π∼D

[V π,fi (x, 1)]− εH.

Just as in the case for extensive-form games, EFCEs provide
stronger guarantees than NFCCEs.

Theorem 1. For a finite-horizon stochastic game, the set of
ε-EFCEs is contained in the set of ε-NFCCEs for all ε ≥ 0.

Proof. Any fixed policy ψ can be encoded with the swap
function f(ai, x, h) = ψ(x, h) for all ai, x, and h, and so
any ε-EFCE is also an ε-NFCCE.

These definitions bound the average per-step regret by ε for
each agent under the appropriate class of deviations. We are
interested in when, and how quickly, players can converge
to such an equilibrium by repeatedly playing the game.

3 HARDNESS OF LEARNING IN
ADVERSARIAL MDPS

The first thing that one might hope for in the setting of multi-
player finite-horizon stochastic games is the existence of an
algorithm which minimizes the appropriate notion of regret
for each agent, and can be used as a black box to reach a
correlated equilibrium. This is the form of Celli et al. [2020],
who give an algorithm with sublinear trigger regret, which
corresponds to the definition of an EFCE and thus results in
efficient convergence of the sequence of policies played to
an EFCE when all agents use the algorithm.

The appropriate problem for modeling repeated play in
finite-horizon stochastic games against arbitrary opponents
is the “adversarial MDP problem”, where an agent is faced
with a set of finite-horizon MDPs, each with a different re-
ward and transition function. A commonly studied objective
is to minimize regret against the best fixed policy, and such
an algorithm with sublinear regret would converge to an
NFCCE for a stochastic game. This was shown to be as
hard as the “learning parities with noise” problem (which is
not known to be NP-hard) by Abbasi-Yadkori et al. [2013]
when H = Θ(S). We show that this is indeed NP-hard even
when the horizon is only 3.

Theorem 2. Assuming NP 6⊆ BPP, there is no algorithm
with polynomial time per-round computation which has
O(T 1−δ · poly(S)) regret algorithm for the adversarial
MDP problem with H ≥ 3, for any δ > 0.

We prove this by considering an offline version of the ad-
versarial MDP problem, where the goal is to find a single
non-stationary policy which does well across a set of MDPs
with differing reward and transition functions. We show that
this is as hard as MAX-3-SAT, and use the online-to-batch
reduction from Cesa-Bianchi et al. [2004] to show hardness
of the online problem. This suggests we should not expect a
black-box reduction to finding even an NFCCE, even when
the horizon is quite short.

Corollary 2.1. Assuming NP 6⊆ BPP, any decentralized
learning algorithm which converges in polynomial time
to an approximate (coarse) correlated equilibrium for a



 stochastic game with horizon H ≥ 4 when used by all
players must have regret ω(T 1−δ · poly(S)), for all δ > 0,
against arbitrary opponents.

Despite this, we give algorithms which converge to corre-
lated equilibria which are not black-box, i.e. they explicitly
make use of the fact that all players are using the same algo-
rithm. Without any assumptions on transitions, the runtime
of our primary algorithm, PLL, is polynomial in all parame-
ters except the horizon, where dependence is exponential in
the worst case, allowing us to overcome the barrier we show
for black-box reductions.

4 LEARNING IN STOCHASTIC GAMES
VIA REPEATED TRAJECTORIES

The main idea behind our algorithm is for each agent to
locally perform no-swap-regret learning at each state-time
pair, augmenting their observed rewards with estimates of
the “values” for states they transition to. We first give an
extension of the convergence theorem for bandit learning
in normal-form games from Blum and Mansour [2004] to
“games with stochastic rewards”, which makes use of B with
additional modifications in order to handle stochasticity and
obtain high-probability bounds for both regret and value
estimates. We then give an “offline” centralized algorithm,
BILL, which uses this subroutine to compute an EFCE for
a stochastic game, given the ability to sample rewards and
transitions for each state. Our algorithm PLL can be viewed
as simulating BILL in a decentralized manner when agents
play repeated trajectories of the game. The sense in which
PLL converges is different from e.g. Blum and Mansour
[2004]; rather than taking the uniform distribution over the
history of policies, we consider the product distribution of
a truncated history of action profiles at each state-time pair.
We can improve the speed of convergence for PLL when a
“fast-mixing” assumption is satisfied, a common tool in the
analysis of reinforcement learning algorithms.

4.1 LEARNING IN GAMES WITH STOCHASTIC
REWARDS

Recall that we define correlated equilibria for stochastic
games with respect to the average reward tensor θ̄. When
agents all use a no-swap regret algorithm (such as B) to
play such a game repeatedly, the immediate regret bound
holds with respect to the realized sequence of reward ten-
sors. We can extend this bound to hold with respect to θ̄ by
viewing the “error” of each swap function for a player (their
reward from sampled sequence of reward tensors θ versus
the average tensor θ̄) as a martingale which does not deviate
too far from its expectation. Depending on the relationship
between ε and N , we may need to run B for slightly longer
thanB(ε) in order to apply our martingale analysis, but only

by at most a factor of O(log(1/ε)). We let B(ε,N) denote
this extended runtime as a function of ε and N .

Theorem 3. When players in a game with stochastic re-
wards x select actions using B for T ≥ B(ε/4, N) rounds,
the sequence of action profiles is an ε-correlated equilibrium
for the game, where the expectation is taken with respect to
the tensor distribution as well as B.

The proof is given in Appendix A.2. By running B several
times, we can boost the expected regret bound for each
player to hold with high probability over the randomness
of while simultaneously obtaining accurate estimates of the
value of this process for each player; we use this form of
the result in the analysis for later algorithms.

Corollary 3.1. When all agents in a game with stochastic
rewards x play according to B for at least 2 log(5M/δ)

η2 ·
B(ε/8, N) rounds, simultaneously restarting B every
B(ε/8, N) rounds, the resulting sequence of actions is an
(ε/2 + η/2)-correlated equilibrium for x with probability
at least 1− δ/5.

Further, let V Bi (x) = EB,r
[

1
T

∑T
t=1 ui(a

t
i; a

t
−i, θ

t)
]

and

let V̂ Bi (x) be the average utility received by player i
over all rounds. With probability at least 1 − 2δ/5,∣∣∣V Bi (x)− V̂ Bi (x)

∣∣∣ ≤ η/2 simultaneously for all players.

Additionally, the computed estimate is within η of player i’s
expected average reward for playing the game according
to the resulting policy distribution with probability at least
1− 2δ/5.

An extension of this method to Bayesian games is presented
in Appendix A.3, which we make use of in analyzing Algo-
rithm 4 (Theorem 7).

4.2 SUBGAME VALUE ESTIMATES

We define a notion of the subgame value for an agent at a
state-step pair (x, h) in a stochastic game, similiar to that in
Definition 5, which is specified with respect to a learning
algorithm B. Henceforth we will refer to (x, h) simply as
a pair. We will define this recursively. Note that a pair
(x,H) in a finite-horizon stochastic game is equivalent to
a game with stochastic rewards, as all action profiles result
in termination of the episode. If all agents play according
to private copies of a bandit algorithm B for T rounds, the
average reward for each agent over the period can be viewed
as a random variable, where the expected value for agent i
is given by:

V Bi (x,H) = E
{at}∼(B)i∈[M],θ∼r(x,H)

[
1

T

T∑
t=1

ui(a
t
i; a−i, θ)

]
.

This will be in [0, 1] for all agents. We can also view other
pairs (x, h) as games with stochastic rewards, where the



 immediate reward for an agent is augmented with their value
of the state they transition to. Values of states in steps prior
to H will represent the expected reward of an agent in the
remainder of the episode when all agents play at each state
according to B at each pair, augmenting their immediate
payoffs at a pair with the value of the pair they transition
to. Suppose V Bi (x′, h′) is defined for all x′ ∈ X and for all
h′ > h. Then,

V Bi (x, h) = E

[
1

T

T∑
t=1

ui(a
t
i; a−i, θ) + V Bi (τ(a, x), h+ 1)

]
,

where the expectation is taken over the randomness of each
copy of B as well as sampled reward tensors and transition
functions. These will be in [0, H − h+ 1], but throughout,
we will assume that rewards are scaled to [0, 1] before being
given to B. These subgame values we have defined represent
the utility which an agent can obtain in expectation if they
use a copy of B at each state and know all downstream sub-
game values. Subgame values can be equivalently defined
using downstream value estimates V̂i, and we obtain such
estimates from Corollary 3.1 which are accurate with high
probability.

4.3 AN EFFICIENT OFFLINE ALGORITHM

If we are not constrained to learning online through en-
tire trajectories, and can sample reward tensors and tran-
sition functions from any state-step pair (as oracles with
constant-time query access), there is a straightforward of-
fline algorithm for computing an EFCE which is a product
distribution across pairs.

Algorithm 1: Backward-Inductive Local Learning.

• Use a copy of a bandit algorithm B for each player to
compute an approximate correlated equilibrium and
value estimates V̂i(x,H) for each player and pair, as
in Corollary 3.1.

• By backward induction, compute approximate equilib-
ria and value estimates for each pair (x, h) in the same
manner, augmenting players’ rewards at state x with
value estimates for (x′, h+ 1), where x′ is the visited
state in step h+ 1 for that round.

• Return the product distribution of computed sequences
of action profiles across all pairs.

Theorem 4. BILL computes an ε-EFCE in
Õ(poly(M,N,S,H, 1/ε)) time.

The proof is quite similar to the error propagation analysis
for Theorem 5.

4.4 PARALLEL LOCAL LEARNING

PLL essentially simulates BILL in a decentralized manner
when used by all agents by computing estimates of subgame
values for each agent over a series of epochs, which are
batches of many trajectories of the game, by using a no-
swap-regret algorithm B at each state. We say that a state is
locked when it is visited enough to obtain an accurate value
estimate, and estimates are reset whenever a value estimate
for a downstream step is updated. We terminate once an
epoch elapses where no new states are locked.

A key point of difficulty here is that visitation probabilities
may shift drastically when value estimates change; the se-
quence of actions taken when all players use B at a pair
may be quite sensitive to small changes in rewards even for
just one player. We show that the number of epochs before
termination is at most exponential in H , at which point the
distribution over action profiles at each pair truncated at the
last reset constitutes an approximate correlated equilibrium
for the subgame at that pair (given downstream values) al-
most surely, with the exception of pairs which are visited
infrequently under the final value estimates. We then show
how regret bounds compose to give an ε-EFCE for the entire
finite-horizon game when considering action profiles sam-
pled independently across pairs from the aforementioned
distributions.

Algorithm 2: Parallel Local Learning. Initialize
V̂ Bi (x, h) = H − h + 1 for each pair (x, h), as well
as a visit counter c(x, h) for each pair set to 0. Let
W = Θ̃

(
S4H7

ε2

)
and L = Θ

(
S2H4WB

ε2

)
. Initialize a copy

of B at each pair, specified to run for B = B( ε
16H , N)

steps. Until termination, run the following procedure for
each epoch:

• Run for L trajectories, using B at each pair, counting
rounds and updating actions for a copy of B only when
the corresponding pair is visited. Record rewards as
the sum of the observed reward as well as the current
value estimate for the next pair visited in that trajectory,
scaled to [0,1].

• Consider the last step h ∈ [H] where an unlocked
pair’s counter crossed 16H2WB

ε in the epoch. Lock
all unlocked states at this step with appropriate esti-
mates which were previously unlocked, compute value
estimates V̂ Bi (x, h) as the average reward over the cor-
responding 16H2WB

ε visits, then reset all copies of B,
counters, and value estimates at earlier pairs (h′ < h).

• Terminate if no pair’s counter crosses 16H2WB
ε in the

epoch.

Note that when all players use this algorithm, locking and
unlocking is synchronized across players. The action pro-
file distributions for each pair after they are last unlocked



 converge to an approximate EFCE for the game, when we
consider action profiles sampled independently for each pair,
with a running time at most exponential in the horizon and
polynomial in all other parameters.

Theorem 5. PLL terminates after at most (S + 1)H + 1
epochs. After termination, for each pair (x, h), consider
the uniform distribution over action profiles D(x, h) played
since that pair was last reset. Let D be the distribution over
policy profiles where the action profile for each pair (x, h)
is sampled independently from D(x, h). With probability at
least 1− δ, D is an ε-EFCE for the game.

A key step in the analysis of PLL is to bound the number
of times that value estimates can change, thus bounding the
number of required epochs before estimates stabilize.

Lemma 3. The algorithm runs for at least H epochs, and
at most (S + 1)H + 1 epochs.

Proof. All pairs start unlocked, and some pair in each step
is visited at least 16H2WB

ε per epoch by pigeonhole, so the
algorithm will not terminate unless there is a locked pair for
every step. States are only moved from unlocked to locked at
one step per epoch, and so there must be at most H epochs
to lock some pair in all steps.

We can bound the number of epochs by bounding the num-
ber of times a pair at some step can become locked. Observe
that a locked pair at step H will only become locked in one
epoch and will never become unlocked afterwards. A pair
at step H − 1 will become locked in at most S epochs, as
it will only become locked after at least one pair at step H
is locked, and then can be unlocked at most S − 1 times
for the remaining unlocked pairs at step H . In general, the
number of epochs in which a state can become locked is
bounded by the number of epochs in which a downstream
state can become locked. Let g(h) denote this bound on the
number of epochs in which a pair at step h can be locked,
which is given by:

g(h) =

H∑
i=h+1

Sg(i)

= Sg(h+ 1) +

H∑
i=h+2

Sg(i)

= (S + 1)g(h+ 1)

= (S + 1)H−hg(H)

= (S + 1)H−h,

as g(H) = 1. The total number of epochs before termination
is then bounded by

1 +

H∑
i=1

Sg(i) = g(0) + 1 = (S + 1)H + 1,

accounting for the last epoch in which no states are locked.

Given this, much of the remainder of the analysis is to
analyze the propagation of estimation error and regret terms
to give an explicit bound on the regret after estimates have
stabilized.

4.5 EFFICIENT LEARNING IN FAST-MIXING
STOCHASTIC GAMES

PLL generates an EFCE in polynomial time only when
H is a constant. For “fast-mixing” games we give a re-
lated algorithm, FastPLL, which converges to an ε-EFCE in
finite-horizon stochastic games which are γ-fast-mixing in
time Õ(poly(S,N,H, 1/ε, 1/γ). We will say that a finite-
horizon stochastic game is γ-fast-mixing if all pairs are
visited with probability at least γ in a trajectory when each
agent selects a policy uniformly at random, i.e. for each
(x, h):

Pr
π∼Π,z

[x is visited at step h] ≥ γ.

Unlike the previous algorithm, the fast-mixing assumption
allows us to avoid unlocking states once they are locked,
as we can ensure sufficient visitation with high probability.
As a result, we show that polynomial time convergence to a
correlated equilibrium is possible after only H epochs.

Algorithm 3: Fast PLL. Let B = B
(
ε

8H , N
)
, and

let the epoch length (in trajectories) be given by L =

Θ̃
(
BH4

γ1.5ε2

)
. Run H epochs, one corresponding to each step

(beginning with step H) as follows:

• Epoch for Step h: Use a copy of B to select actions at
each pair (x, h), augmenting rewards with computed
values for pairs (x′, h+ 1) transitioned to for the next
step (if h < H). At the end of the epoch, let V̂ Bi (x, h)
be the average reward received from all completed runs
of B.

• Upstream (h′ < h): Select actions uniformly at ran-
dom for each pair.

• Downstream (h′ > h): Use B at each signal as in
the epoch for step h′, augmenting rewards with value
estimates for pairs transitioned to. Restart B after every
B rounds in which it is used, which can include rounds
from a prior epoch.

The notion of convergence here is the same as that for PLL.

Theorem 6. After Algorithm 3 terminates, for each pair
(x, h), consider the uniform distribution over action profiles
D(x, h) played since epoch H − h + 1 began. Let D be
the distribution over policy profiles where the action profile
for each pair (x, h) is sampled independently from D(x, h).
With probability at least 1−δ,D is an ε-EFCE for the game.



 5 WHEN CAN WE GET SIMULTANEOUS
NO-REGRET?

While PLL gives us a way to generate an EFCE, as well as
find stable value estimates for all pairs and players, it is not
itself a no-regret algorithm. For single-controller stochastic
games, where only one player (the controller) affects tran-
sitions, we show that an NFCCE can be reached without
shared randomness when the controller uses an algorithm
for adversarial MDPs with fixed transitions and each fol-
lower uses B repeatedly in parallel across each pair. Further,
both PLL and FastPLL can again be extended to simulta-
neous no-swap-regret algorithms in the case where shared
randomness is available for all players.

5.1 EFFICIENT LEARNING IN
SINGLE-CONTROLLER STOCHASTIC
GAMES

When only one player affects transitions, their problem is
equivalent to an adversarial MDP with fixed transitions. The
Shifted Bandits U-CO-REPS algorithm from Rosenberg and
Mansour [2019] obtains sublinear regret in finite-horizon
adversarial MDPs of this form with only bandit feedback
and when the transition function is unknown. We show that
running Shifted Bandits UC-O-REPS for the “controller”
bounds their appropriate notion of regret against arbitrary
“followers”. The learning problem for the followers can
be viewed as a set of Bayesian games with shifting sig-
nal distributions. In Appendix A.3 we give an extension of
our analysis of games with stochastic rewards to Bayesian
games, which generalizes the convergence result of Hart-
line et al. [2015] to remove the “independent private value”
assumption, and which we can use to prove a regret bound
for a modification of B (which we call a “parallel bandit”
algorithm, denoted BS) against arbitrary opponents. The
regret bound holds even when the “signal distribution” for
the Bayesian game shifts over time, and the followers will
use a copy of BS for each time-step. As such, all agents can
efficiently reach an NFCCE by black-box regret minimiza-
tion.

Algorithm 4: S.B. U-CO-REPS + P.B. Let BL(ε) be the
time after which S.B. U-CO-REPS has per-step regret ε,
which is poly(H,S,N, 1/ε), and let BF (ε) = B(ε/S,N).
Run for T = 8 log(M/δ)

ε2 · max (BL(ε/8), BF (ε/8)) total
trajectories, where each player acts as follows:

• Controller: Select policies for each trajectory using
S.B. U-CO-REPS, restarting every BL(ε/8) trajecto-
ries.

• Followers: Select policies using a copy of BS for
Bayesian games at each step, counting only immediate
rewards, and restarting every BF (ε/8) trajectories.

This specifies a policy for each player prior to the start of
each trajectory, and this sequence of policies will converge
to an approximate NFCCE.

Theorem 7. With probability at least 1 − δ, the uniform
distribution over the sequence of policy profiles played by
Algorithm 4 is an ε-NFCCE for the game.

5.2 SIMULTANEOUS NO-SWAP-REGRET WITH
SHARED RANDOMNESS

If players have access to shared randomness at each step,
they can play according to the equilibrium generated by
PLL or FastPLL in future rounds without any explicit com-
munication. The total regret bound is sublinear in T when
the “target average reget” for the PLL (or FastPLL) portion
is appropriately calibrated so that the any regret incurred at
the beginning does not overwhelm the average regret for the
entire sequence of play.

Algorithm 5: PLL with Shared Randomness (PLL-SR).

Let ε1 = Θ̃

(
7

√
N3SO(H)

T

)
and ε2 = Θ̃

(
5

√
N3H4γ2/3

T

)
.

• Run PLL, specified for an ε1-EFCE, until termination,
or FastPLL for an ε2-EFCE.

• At each step after termination, each player receives the
same uniform random number w ∈ [W ∗] and plays
the wth action of the final high-probability local CE
sequence (from Corollary 3.1), where W ∗ is the appro-
priate length of the sequence for PLL or FastPLL.

Theorem 8. With respect to F , PLL-SR has regret Õ(T
6
7 )

and FastPLL-SR has regret Õ(T
4
5 ).
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