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Abstract

The conditional value-at-risk (CVaR) is a useful
risk measure in fields such as machine learning,
finance, insurance, energy, etc. When measuring
very extreme risk, the commonly used CVaR estim-
ation method of sample averaging does not work
well due to limited data above the value-at-risk
(VaR), the quantile corresponding to the CVaR
level. To mitigate this problem, the CVaR can be
estimated by extrapolating above a lower threshold
than the VaR using a generalized Pareto distribu-
tion (GPD), which is often referred to as the peaks-
over-threshold (POT) approach. This method often
requires a very high threshold to fit well, leading
to high variance in estimation, and can induce sig-
nificant bias if the threshold is chosen too low. In
this paper, we address this bias-variance tradeoff
by deriving a new expression for the GPD approx-
imation error of the CVaR, a bias term induced
by the choice of threshold, as well as a bias cor-
rection method for the estimated GPD parameters.
This leads to the derivation of a new CVaR estim-
ator that is asymptotically unbiased and less sensit-
ive to lower thresholds being used. An asymptotic
confidence interval for the estimator is also con-
structed. In a practical setting, we show through
experiments that our estimator provides a signi-
ficant performance improvement compared with
competing CVaR estimators in finite samples from
heavy-tailed distributions.

1 INTRODUCTION

Traditional machine learning algorithms typically consider
the expected value of a random variable as the target to op-
timize. In a risk-averse setting, the objective function needs
to be adapted to consider the full distribution and account for

severe outcomes. Recently, risk-averse machine learning has
become an important area of study, especially in the context
of multi-armed bandits and reinforcement learning, for ex-
ample, Chow and Ghavamzadeh [2014], Tamar et al. [2015],
Keramati et al. [2020], Torossian et al. [2019] and Hiraoka
et al. [2019]. Most often, the risk measure of interest is the
conditional value-at-risk (CVaR). Given a random variable
X representing losses (i.e., where larger values are less de-
sirable), the CVaR at a confidence level α ∈ (0, 1) measures
the expected value of X given that X exceeds the quantile
at α. This quantile is referred to as the value-at-risk (VaR).
Compared to the VaR, the CVaR captures more information
about the weight of a distribution’s tail, making it a more
useful object of study in risk-averse decision making. In
practice, the CVaR is usually estimated by averaging obser-
vations above the estimated VaR, which we call the sample
average estimator of the CVaR. When α is close to 1, these
observations can be very scarce in small samples leading to
volatile estimates of the CVaR. This work is motivated by a
lack of reliable estimators and performance guarantees for
the CVaR at these extreme levels.

In this paper, we consider estimating the CVaR of heavy-
tailed random variables, which are ubiquitous in areas such
as finance, insurance, energy, and epidemiology, e.g., Manz
and Mansmann [2020]. In this setting, extreme events cor-
respond to very large observations (and hence severe losses),
which is in contrast to the light- or short-tailed cases where
similar low probability events are closer to the mean. Ex-
treme value theory provides the tools to construct a new
CVaR estimator that is appropriate for this setting. By se-
lecting a threshold lower than the VaR, it is possible to
approximate the tail distribution of a random variable by
using a generalized Pareto distribution (GPD) and extra-
polating beyond available observations. The estimation of
quantities using this approximation is commonly referred
to as the peaks-over-threshold (POT) approach. To the best
of our knowledge, the only existing CVaR estimator based
on the POT approach is given in, for example, McNeil et al.
[2005, Section 7.2.3], where the CVaR is referred to as the
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 expected shortfall. This estimator suffers from one of the
main drawbacks of the POT approach, which is the difficult
bias-variance tradeoff in selecting the threshold. Unless the
threshold is chosen very high, the estimator will encounter
two sources of potentially significant bias: the deviation
between the GPD and the true tail distribution, and the bias
associated with parameter estimation using the approximate
GPD tail data. Perhaps even more significantly, the CVaR
estimator of McNeil et al. [2005] comes with no perform-
ance guarantees unless one assumes exactness of the GPD
approximation and of the empirical distribution function.
Therefore, it has not been previously possible to determine
the precise conditions where the POT approach for CVaR
estimation is actually superior to the more common sample
average estimator, which has measures of uncertainty estab-
lished in Brown [2007], Thomas and Learned-Miller [2019],
Kolla et al. [2018, 2019], Bhat and L.A. [2019], Kagrecha
et al. [2019] (concentration bounds), and Trindade et al.
[2007], Brazauskas et al. [2008], Sun and Hong [2010]
(asymptotic confidence intervals).

Major contributions. First, we derive the GPD approxima-
tion error, a deterministic quantity measuring the deviation
between the GPD approximation of the CVaR and its true
value. We then derive bias-corrected maximum likelihood
estimators for the GPD parameters, ξ and σ, using the POT
approach, which in turn requires the derivation of a new
estimator for a second-order parameter that may be of in-
dependent interest. Using our bias correction methods, a
new estimator for the CVaR based on the POT approach
is derived which we prove is asymptotically unbiased. Us-
ing our convergence result, we derive a confidence interval
for the CVaR which has asymptotically correct coverage
probability.

The remainder of this paper is organized as follows. In sec-
tion 2, the VaR and CVaR are formally defined, and the
sample average estimator of the CVaR is given. Needed
background from extreme value theory and second-order
regular variation is presented, along with the CVaR approx-
imation based on the POT approach. Section 3 derives the
GPD approximation error for the CVaR and its asymptotic
behaviour. In section 4, bias-corrected maximum likelihood
estimators for the GPD parameters are derived, as well as
details on second-order parameter estimation, which play
an important role in bias correction. Section 5 establishes an
estimator for the GPD approximation error, and our results
are consolidated to give the unbiased POT estimator for
the CVaR. In section 6, simulations are shown to provide
empirical evidence of the finite sample performance of our
estimator on data, and Section 7 concludes. All proofs and
additional details for experiments are provided in the ap-
pendix in the supplementary material, along with code to
reproduce our results.

2 PRELIMINARIES

Let X denote a random variable and F its corresponding
cumulative distribution function (cdf). In this paper, we
adopt the convention that X represents a loss, so larger
values of X are less desirable.

Definition 2.1 (Value-at-Risk). The value-at-risk of X at
level α ∈ (0, 1) is

qα , VaRα(X) = inf{x ∈ R|F (x) ≥ α}. (1)

VaRα(X) is equivalent to the quantile at level α of F . If
the inverse of F exists, VaRα(X) = F−1(α). The VaR
can be estimated in the same way as the standard empirical
quantile. Let X1, . . . , Xn be i.i.d. random variables with
common cdf F . Let X(1,n) ≤ X(2,n) . . . ≤ X(n,n) denote
the set of order statistics for the sample of size n, i.e., the
sample sorted in non-decreasing order. An estimator for the
VaR is

V̂aRn,α(X) =

min
{
X(i,n) | i = 1, . . . , n; F̂n

(
X(i,n)

)
≥ α

}
= X(m,n),

where F̂n denotes the empirical cdf andm = dαne. We now
define the CVaR as in Acerbi and Tasche [2002]. The current
work will only consider continuous random variables.

Definition 2.2 (Conditional Value-at-Risk). The condi-
tional value-at-risk of a continuous random variable X
at level α ∈ (0, 1) is

cα , CVaRα(X) = E[X|X ≥ VaRα(X)]

=
1

1− α

∫ 1

α

VaRγ(X)dγ. (2)

Typical values of α are 0.95, 0.99, 0.999, etc. Besides the
CVaR, expectile-based approaches to risk estimation can
be considered, such as in Daouia et al. [2018], Girard et al.
[2021]. Expectile-based risk estimation comes with the ad-
vantage of the elicitability property but is arguably more
difficult to understand and implement than CVaR, making
it less common outside of financial risk management. We
leave such discussion out-of-scope in the current work.

The CVaR can be estimated by averaging observations above
V̂aRα(X). This estimator is given by

ĈVaRn,α(X) =

∑n
i=1Xi1{Xi≥V̂aRn,α(X)}∑n
j=1 1{Xj≥V̂aRn,α(X)}

. (3)

The use of the eq. (3) can be problematic when the confid-
ence level α is high due to the scarcity of extreme observa-
tions. We now provide tools from extreme value theory to
address this problem.



 Let Fn(x) = P(max(X1, . . . , Xn) ≤ x) denote the cdf of
the sample maxima. Suppose there exists a sequence of real-
valued constants an > 0 and bn, n = 1, 2, . . ., and a nonde-
generate cdf H such that lim

n→∞
Fn (anx+ bn) = H(x)

for all x, where nondegenerate refers to a distribution not
concentrated at a single point. The class of distributions
F that satisfy this limit are said to be in the maximum
domain of attraction of H, denoted F ∈ MDA(H). The
Fisher–Tippett–Gnedenko theorem (see De Haan and Fer-
reira [2006, Theorem 1.1.3]) states that H must then be
a generalized extreme value distribution (GEVD),1 i.e., if
F ∈ MDA(H), then there exists a unique ξ ∈ R such
that H = Hξ. It is important to note that essentially all
common continuous distributions used in applications are
in MDA(Hξ) for some value of ξ. When ξ > 0, F is a
heavy-tailed distribution, defined next.

Definition 2.3 (Heavy-tailed random variable). Let X be a
random variable with cdf F . Then X (or F ) is heavy-tailed
if F ∈ MDA(Hξ) with ξ > 0.

If F is heavy-tailed, then moments of order greater than or
equal to 1/ξ do not exist. Otherwise, F is light-tailed with a
tail having exponential decay (ξ = 0), or the right endpoint
of F is finite (ξ < 0). If ξ ≥ 1, then F has infinite mean,
and therefore the true CVaR, eq. (2), is also infinite. For the
remainder of this paper, we assume the following condition
is satisfied.

Assumption 2.1. F is heavy-tailed with ξ < 1.

When F ∈ MDA(Hξ), there exists a useful approximation
of the distribution of sample extremes above a threshold,
and we define this distribution next. We denote the tail
distribution F̄ = 1− F .

Definition 2.4 (Excess distribution function). For a given
threshold u ≥ ess infX , the excess distribution function is
defined as

Fu(y) = P(X − u ≤ y|X > u)

=
[F (y + u)− F (u)]

F̄ (u)
, y ≥ 0.

Note that the domain of Fu is [0,∞) under assumption 2.1.
The y-values are referred to as the threshold excesses. Given
that X has exceeded some high threshold u, this function
represents the probability that X exceeds the threshold by
at most y. The Pickands-Balkema-de Haan theorem states
that Fu can be well-approximated by the GPD, which we
give now.

Theorem 2.1 (Pickands III [1975], Balkema and De Haan
[1974]). Suppose assumption 2.1 is satisfied. Then, there

1For ξ > 0, the GEVD has cdfHξ(x) = exp(−(1+ξx)−1/ξ)
over its support, which is [−1/ξ,∞).

exists a positive function σ = σ(u) such that

lim
u→∞

sup
0≤y≤∞

|Fu(y)−Gξ,σ(y)| = 0, (4)

where Gξ,σ is the generalized Pareto distribution, which for
ξ 6= 0 has a cdf and density function given by, respectively,

Gξ,σ(y) = 1−
(

1 +
ξy

σ

)−1/ξ
, gξ,σ(y) =

1

σ

(
1 +

ξy

σ

)−1/ξ−1
.

(5)

Using theorem 2.1, it is quite straightforward to derive ap-
proximate formulas for the VaR and CVaR using the defini-
tion of the excess cdf and eqs. (1) and (2), for example, see
McNeil et al. [2005, Section 7.2.3]. Before stating these for-
mulas, we make precise the choice of function σ(u) in the-
orem 2.1, which we give next after some needed definitions.
Let U = (1/F̄ )−1, the functional inverse of 1/F̄ . Assume
such U exists and is twice-differentiable. The following
functions will become important tools for characterizing the
tail behaviour of F .

Definition 2.5. The first- and second-order auxiliary func-
tions are defined as, respectively,

a(t) = tU ′(t), A(t) =
tU ′′(t)

U ′(t)
− ξ + 1. (6)

For the remainder of this paper, let σ(u) = a(1/F̄ (u)). It
is proven in Raoult and Worms [2003, Corollary 1], with
different notation, that eq. (4) achieves the optimal rate of
convergence with σ(u) = a(1/F̄ (u)) when the following
condition on A holds, which we assume to be true for the
rest of this paper.

Assumption 2.2. If F ∈ MDA(Hξ), the second-order aux-
iliary function A exists and satisfies the following condi-
tions: (1) limt→∞A(t) = 0, (2) A is of constant sign in a
neighborhood of∞, (3) ∃ρ ≤ 0 such that |A| ∈ RVρ.2

While assumption 2.2 may seem restrictive at first glance, it
is in fact a very general condition, satisfied for all common
distributions that belong to a maximum domain of attraction
[Drees et al., 2004]. Counterexamples are fairly contrived
and rarely seen in practice, e.g., De Haan and Ferreira [2006,
Exercise 2.7 on p. 61].

Now, with a precise definition of σ(u), we state the ap-
proximations for the VaR and CVaR which follow from
theorem 2.1. For the rest of this paper, we shall denote
su,α = F̄ (u)/(1− α).

Definition 2.6 (POT approximations). Suppose that as-
sumption 2.1 and assumption 2.2 are satisfied. Fix u ∈ R

2A positive, measurable function f is regularly varying with
unique index ρ, denoted f ∈ RVρ, if limx→∞ f(tx)/f(x) =
tρ for all t > 0.



 and let σ = a(1/F̄ (u)). Then, the POT approximations for
the VaR and CVaR are given by, respectively,

qu,α = u+
σ

ξ

(
sξu,α − 1

)
, cu,α = u+

σ

1− ξ

(
1 +

sξu,α − 1

ξ

)
.

(7)

The accuracy of the POT approximations depends on how
high of a threshold is used. When these approximations are
used in statistical estimation, a lower threshold is preferable
to make use of as much data as possible, but this can induce
a significant bias. To estimate this bias, explicit expressions
are required for the approximation error when using eq. (7).
In the next section, we derive these expressions.

3 GPD APPROXIMATION ERROR

When applying the POT approximation for the CVaR, there
is a deviation between cu,α and cα that can be quantified
asymptotically. We define this deviation as follows.

Definition 3.1. The GPD approximation error (of the CVaR)
at level α and threshold u is defined as

εu,α , cu,α − cα.

Note that when we do not consider parameter estimation,
εu,α is a deterministic quantity. In this section, the asymp-
totic behaviour of εu,α as u → ∞ is derived, which leads
to a useful approximation for finite u. For the rest of this
paper, we shall denote τu = 1/F̄ (u).

Theorem 3.1. Suppose assumption 2.1 and assumption 2.2
hold. Let α = αu = 1− F̄ (u)/β, where β > 1 is a constant
not depending on u. Then,

εu,α
a(τu)A(τu)Kξ,ρ(β)

→ 1 as u→∞,

where

Kξ,ρ(β) =



1
ρ

(
βξ

ξ(1−ξ) −
1
ξ+ρ

(
βξ+ρ

(1−ξ−ρ) + ρ
ξ

))
,

ρ < 0, ξ + ρ 6= 0,
1
ρ

(
βξ

ξ(1−ξ) − log β + ξ−1
ξ

)
,

ρ < 0, ξ + ρ = 0,
βξ

ξ(1−ξ)

(
1−2ξ
ξ(1−ξ) − log β

)
+ 1

ξ2 ,

ρ = 0.
(8)

In practice, we would typically be interested in the CVaR
at a fixed value of α, so it may appear unsatisfactory that
α→ 1 in theorem 3.1. However, a useful approximation in
the non-asymptotic setting which holds for large u is εu,α ≈
a(τu)A(τu)Kξ,ρ(su,α), which is valid as long α > F (u).
In subsequent sections, we derive estimators for all needed
quantities to estimate cu,α and εu,α (and thus cα) from data,
namely the parameters ξ, σ, ρ, and function A, leading to an
asymptotically unbiased estimator of cα.

4 PARAMETER ESTIMATION

In this section, we discuss the estimation of ξ, σ, ρ, and A.
The starting point is to first select a threshold u, and then es-
timate ξ and σ using maximum likelihood with the threshold
excesses above u. LetX(1,n) ≤ X(2,n) . . . ≤ X(n,n) denote
the order statistics for a sample of size n. Let u = X(n−k,n)
for some value of k = kn < n. Then, the threshold excesses
Yi = X(n−k+i,n) − u, i = 1, .., k are i.i.d. [De Haan and
Ferreira, 2006, Section 3.4] and approximately distributed
by a GPD (theorem 2.1). Maximum likelihood estimators
(MLEs) are obtained by maximizing the approximate log-
likelihood function with respect to ξ and σ,

(ξ̂(n)

MLE, σ̂
(n)

MLE) = arg max
ξ,σ

k∑
i=1

log gξ,σ(Yi). (9)

Based on partial derivatives of the log-pdf with respect to
parameters, the resulting maximum likelihood first-order
conditions when ξ > 0 are given by

1

k

k∑
i=1

log

(
1 +

ξYi
σ

)
= ξ,

1

k

k∑
i=1

Yi
σ + ξYi

=
1

ξ + 1
.

(10)
A closed-form solution to eq. (10) does not exist, but the
MLEs can be obtained numerically through standard soft-
ware packages. See, for example, Grimshaw [1993] for an
overview of the commonly implemented algorithm.

While the usual asymptotic theory of maximum likelihood
does not apply in the approximate GPD model, the following
theorem establishes the fact that the MLEs are asymptotic-
ally normal with a biased mean as long as the number of
threshold excesses is chosen suitably. We will include a cor-
rection for the asymptotic bias in an estimator for the CVaR
subsequently. The following theorem is given in De Haan
and Ferreira [2006, Theorem 3.4.2].

Theorem 4.1. Suppose that assumption 2.1 and assump-
tion 2.2 hold. Then for k = kn → ∞ and k/n → 0 as
n→∞, if limn→∞

√
kA(n/k) = λ <∞, then the MLEs

satisfy

√
k(ξ̂(n)

MLE − ξ, σ̂(n)

MLE/a(n/k)− 1)
d→ N(λbξ,ρ,Σ),

where N denotes the normal distribution and

bξ,ρ =
(
b
(1)
ξ,ρ, b

(2)
ξ,ρ

)
=

[ξ + 1, −ρ]

(1− ρ)(1 + ξ − ρ)
,

Σ =

[
(1 + ξ)2 −(1 + ξ)
−(1 + ξ) 1 + (1 + ξ)2

]
.

(11)

For the remaining theory sections of this paper, let u =
un = X(n−k,n). In the assumption of theorem 4.1, it
does not seem possible to give conditions to guarantee√
kA(n/k) → λ < ∞ in full generality, but a common



 approach when working with heavy-tailed distributions is
to assume that they belong to the Hall class [Hall, 1982],
which nests those most often seen in practice, for example,
the Burr, Fréchet, Student, Cauchy, Pareto, F , stable etc.
The Hall class satisfies assumption 2.2 with A(t) = ctρ for
some constant c ∈ R, and so to ensure convergence we only
require that k = O(n−2ρ/(1−2ρ)).

To obtain an asymptotically unbiased estimator of the CVaR,
we will first correct the asymptotic bias in theorem 4.1,
which requires estimating ρ, A(n/k) and bξ,ρ.

Estimation of ρ. Let

M (j)
n (m) =

1

m

m∑
i=1

[logX(n−i+1,n) − logX(n−m,n)]
j ,

T (τ)
n (m) =

(M
(1)
n (m))τ − (M

(2)
n (m)/2)τ/2

(M
(2)
n (m)/2)τ/2 − (M

(3)
n (m)/6)τ/3

, τ ∈ R,

with the notation abτ = b log a if τ = 0. Then, an estimator
for ρ is given by Fraga Alves et al. [2003, Equation 2.18],

ρ̂n =
3(T

(τ)
n (m)− 1)

T
(τ)
n (m)− 3

. (12)

The number of upper order statistics chosen to estimate ρ is
usually much larger than the choice used to estimate (ξ, σ),
i.e., m > k. It is shown in Fraga Alves et al. [2003] that ρ̂n
is consistent, i.e., ρ̂n

p→ ρ, under certain mild conditions.
The estimator ρ̂n has an asymptotic bias, and the reduction
of this bias is dependant on the choice of m as well as
the tuning parameter τ . Fortunately, the adaptive algorithm
given in Caeiro and Gomes [2015, Section 4.1] provides an
effective method of bias correction by choosing m and τ
via the most stable sample path of ρ̂n. Details of the full
estimation procedure are given in appendix B.1.

Estimation of A(n/k). As part of a secondary contribution
of this paper, we derive an estimator for A(n/k) in order
to estimate ĉ(n)ε,α from i.i.d. samples. Following the formu-
lation of Haouas et al. [2018], we adapt their estimator for
A0(n/k) to non-truncated data. Then, using the relation
between A0 and A in De Haan and Ferreira [2006, Table
3.1], an estimator for A(n/k) is

Ân ,
(ξ̂(n)

MLE + ρ̂n)(1− ρ̂n)2(M̂
(2)
n − 2(M̂

(1)
n )2)

2ξ̂(n)
MLEρ̂nM̂

(1)
n

, (13)

where we define M̂ (j)
n , M

(j)
n (k). The proof that Ân is

consistent in the sense that Ân/A(n/k)
p→ 1 is given in

appendix A.5.

Estimation of bξ,ρ. To obtain a consistent estimator for
bξ,ρ, it suffices to plug in any consistent estimators for ξ
and ρ into eq. (11), which follows from the continuous
mapping theorem (see, for example, Vaart [1998, Theorem

2.3]). Since ξ̂(n)
MLE

p→ ξ by theorem 4.1, we set

b̂n = (b̂(1)n , b̂(2)n ) ,
[ξ̂(n)

MLE + 1, −ρ̂n]

(1− ρ̂n)(1 + ξ̂(n)
MLE − ρ̂n)

(14)

as an estimator for bξ,ρ, where b̂n
p→ bξ,ρ. We now give

bias-corrected estimates of the GPD parameters, which we
define by

ξ̂n , ξ̂(n)

MLE − Ânb̂(1)n , σ̂n , σ̂(n)

MLE(1− Ânb̂(2)n ). (15)

The following theorem shows that ξ̂n and σ̂n are asymptotic-
ally normal and centered with the same asymptotic variance
Σ as in eq. (11).

Theorem 4.2. Suppose that the assumptions of theorem 4.1
hold. Then

√
k(ξ̂n − ξ, σ̂n/a(n/k)− 1)

d→ N(0,Σ).

Having now established estimators for all required distri-
butional parameters, in the next section we introduce es-
timators for cu,α and εu,α. Using this result, we derive an
asymptotically unbiased estimator and confidence interval
for cα.

5 UNBIASED POT ESTIMATOR

Using theorem 4.2, a new estimator for cu,α can be con-
structed from eq. (7), which we then show is asymptotic-
ally normal and centered. The only missing requirement
is an estimate for F (u), which, with u = X(n−k,n), can
be obtained using the empirical distribution function, i.e.,
F̂n(u) = 1− k/n.

Definition 5.1 (POT estimator). Suppose that (ξ̂n, σ̂n) are
obtained from k threshold excesses with ξ̂n < 1. Then, an
estimator for cu,α at level α > 1− k/n is

ĉ(n)α ,
σ̂n

1− ξ̂n

(
1 +

1

ξ̂n

[(
k

n(1− α)

)ξ̂n
− 1

])
+X(n−k,n).

(16)

Typically, when the CVaR is estimated using the POT ap-
proach in the literature, e.g., McNeil et al. [2005], eq. (16)
is used with (ξ̂(n)

MLE, σ̂
(n)
MLE) in place of our estimators (ξ̂n, σ̂n).

Hence, the typical approach introduces two sources of bias
with respect to the true CVaR: the bias from the MLEs and
the bias from the misspecification of the threshold excesses
by the GPD (which can be corrected using the GPD ap-
proximation error). The next theorem shows that ĉ(n)α is
asymptotically unbiased with respect to cu,α.

Theorem 5.1. Suppose that the assumptions of theorem 4.1
hold. Let α = αn = 1 − (1/β)k/n where β > 1 is a
constant not depending on n. Let

dβ(x, y) =
y

1− x

(
1 +

βx − 1

x

)
.



 If the contribution of variance by the random variable F̂n(u)
is ignored (it is approximately 0), then

√
k

a(n/k)

(
ĉ(n)α − cu,α

)
d→ N (0, V ) , (17)

where V = ∇dβ(ξ, 1)>Σ∇dβ(ξ, 1) and∇dβ(ξ, 1) denotes
the gradient of dβ evaluated at (ξ, 1), given at the end of
appendix A.3.

Remark 5.1. In the proof of theorem 5.1, we show that the
remainder term involving F̂n(u) would only add 1 to V if
F̂n(u) and (ξ̂n, σ̂n) are asymptotically independent.

Remark 5.2. The conditions of theorem 5.1 imply that α→
1, however, this is not very restrictive in a practical setting
since finite sample approximations will be valid for any fixed
choice of α as long as α > 1− k/n, since β is arbitrary.

While ĉ(n)α is asymptotically unbiased with respect to cu,α,
we still need to include the GPD approximation error to
correct the remaining deviation induced by the GPD model.
Using theorem 3.1, we can derive an estimator for the GPD
approximation error, given by

ε̂(n)α , σ̂nÂnK̂n, (18)

where K̂n = Kξ̂n,ρ̂n
(k/(n(1−α))), defined in eq. (8) with

known values replaced by their respective estimators. We
can now define the following estimator for the CVaR.

Definition 5.2 (Unbiased POT estimator). The unbiased
POT estimator is an estimator for the CVaR at level α >
1− k/n, which is defined for ξ̂n < 1, and is given by

ĉ(n)ε,α , ĉ(n)α − ε̂(n)α . (19)

Note that ĉ(n)ε,α is asymptotically unbiased with respect to cα,
a statement which is made precise in the following theorem.

Theorem 5.2. Suppose that the assumptions of theorem 5.1
hold. Then,

√
k(ĉ

(n)
ε,α − cα)

σ̂n
√
V̂n

d→ N(0, 1), (20)

Where V̂n denotes a consistent estimator of V , which can be
obtained by plugging in ξ̂n into the expression for V given
in theorem 5.1.

Corollary 5.1. Based on the above limit, an asymptotic
confidence interval with level 1− δ for cα is

Cnδ =

(
ĉ(n)ε,α − zδ/2σ̂n

√
V̂n/k, ĉ

(n)
ε,α + zδ/2σ̂n

√
V̂n/k

)
,

(21)
where zδ/2 satisfies P(Z > zδ/2) = δ/2 with Z ∼ N(0, 1).
Equation (21) has asymptotically correct coverage probab-
ility, i.e., P(cα ∈ Cnδ )→ 1− δ as n→∞.

6 NUMERICAL EXPERIMENTS

In this section, we investigate the finite sample performance
of ĉ(n)ε,α (denoted UPOT in this section) compared with the
sample average estimator (eq. (3)), and POT estimator with
no bias correction, i.e., eq. (16) with (ξ̂n, σ̂n) replaced by
(ξ̂(n)

MLE, σ̂
(n)
MLE). Denote these estimators as SA and BPOT, re-

spectively. First, in the theoretical setting, we compare the
exact values of the asymptotic variance of UPOT and SA
at different values of α and sample sizes on the Fréchet dis-
tribution. This analysis provides justification for the cases
where UPOT is expected to perform better than SA on data.
Next, we assess the statistical accuracy of the three estima-
tion methods at different sample sizes among several classes
of heavy-tailed distributions. Finally, we assess the accuracy
of the asymptotic confidence interval given in eq. (21) on
finite samples by using the empirical coverage probability.

6.1 COMPARISON OF ASYMPTOTIC VARIANCE

In this section, the magnitude of the asymptotic variance
(AVAR) of UPOT and SA are compared. Since both estim-
ators are asymptotically unbiased and assuming they are
both efficient, the mean squared error of each estimator ap-
proaches the AVAR in large samples (by the Cramér-Rao
lower bound). Hence, this comparison gives evidence of
the distributional properties and level of α where UPOT
results in lower error than SA. The comparison is made on
the Fréchet distribution with single parameter γ, which has
ξ = 1/γ, ρ = −1 (see appendix C.2). We compute V/k
(given in theorem 5.1) with n = 10000, 20000, . . . , 100000
and set k = dn2/3e to satisfy the assumption of theorem 4.1.
An expression for the AVAR of SA is given in, for example,
Trindade et al. [2007], and we provide the details of this
calculation for the Fréchet distribution in appendix C.2.1.
To the best of our knowledge, the AVAR of SA can only be
derived for distributions with a bounded second moment,
which corresponds to distributions with ξ < 1/2 (or γ > 2
in the Fréchet case). The AVAR of SA and UPOT is com-
pared for the Fréchet distribution with γ = 2.25, 2.5, 3 and
α = 0.99, 0.999 in fig. 1. The results indicate that UPOT
is preferable for high values of α and low values of γ. In-
creasing α would lead to lower sample availability in SA,
and thus higher variance, while UPOT is unaffected. De-
creasing γ is equivalent to increasing ξ and thus increasing
tail thickness. This increases the AVAR of SA since extreme
observations are much further from the mean but not readily
observed. Based on evidence from the Fréchet distribution,
it is reasonable to extrapolate that UPOT should always
perform better than SA on heavy-tailed distributions with
ξ ≥ 1/2 at high values of α.
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Figure 1: Asymptotic variance of the SA CVaR estimator
(blue) and unbiased POT estimator (green) for the Fréchet(γ)
distribution at α = 0.99, 0.999.

6.2 ERROR ANALYSIS OF CVAR ESTIMATORS

In the experiments that follow, samples are generated from
the Burr, Fréchet, and half-t distributions, which provide
a good characterization of heavy-tailed phenomena with
finite mean. Relevant details for each distribution class are
provided in appendix C. The estimation performance of
SA, BPOT, and UPOT are compared via the root-mean-
square error (RMSE) on five examples from each distri-
bution class, shown in fig. 2. Similar plots of the absolute
bias are provided in appendix D. We fix α = 0.998 as
an example of an extreme risk level. Experiments are con-
ducted as follows. Generate N = 1000 random samples
of size 50000 from each distribution. For each sample,
the CVaR is estimated using the three methods at sub-
sample sizes n = 5000, 10000, . . . , 50000. In practice, it
can be difficult to choose the number of threshold excesses
k, and so we apply the ordered goodness-of-fits tests of
Bader et al. [2018] to choose the optimal threshold. This
threshold selection procedure, which we employ in both
BPOT and UPOT, is given in detail in appendix B.2. The
average threshold selected (in terms of the percentile of
a given sample) was between 0.80 and 0.96 in all simu-
lations performed. The complete algorithm for UPOT is
summarized in appendix B.3. The chosen Burr distribu-
tions allow us to investigate the effect of varying ρ while
keeping a fixed ξ. In this case, we set ξ = 2/3 while
ρ = −0.25,−0.33,−0.44,−1.33,−2.22 in the respective
Burr distributions. In general, when ρ approaches 0, the
distribution’s tail deviates more severely from a strict Pareto

model, and therefore we see the largest bias and RMSE
occur in BPOT in the Burr(0.38, 4) and Burr(0.5, 3) models,
while the bias-correction of UPOT leads to the most sub-
stantial performance gain. As a non-parametric estimator,
SA is less affected by changes in the value of ρ, outper-
forming the POT estimators in terms of bias on some Burr
distributions. However, as alluded to in section 6.1, high
values of ξ leads to high variance in observations, typic-
ally causing poor performance in SA in terms of RMSE.
This effect is similarly observed in the Fréchet simulations,
where SA has relatively low bias. The Fréchet distribution
always has ρ = −1, a property shared with the GPD, giv-
ing its tail a similar shape. Therefore, the bias-correction
of UPOT is less significant, but still provides a noticeable
performance gain over BPOT. The results of the half-t sim-
ulations are similar to the Fréchet, but we note a larger bias
in BPOT due to the fact that the half-t distribution has a ρ
value that varies with its parameter. Like in the Burr simula-
tions, SA is unaffected by different values of ρ and obtains
good performance in terms of bias in the half-t simulations,
except when ξ is largest in the half-t(1.5) model. Finally,
we note that UPOT consistently had the lowest RMSE in
all simulations except in a few cases at a sample size of
5000. Next, the finite sample performance of the UPOT
confidence interval is investigated.

6.3 COVERAGE PROBABILITY OF THE
ASYMPTOTIC CONFIDENCE INTERVAL

The accuracy of the confidence interval given in eq. (21) is
assessed by its empirical coverage probability for each dis-
tribution using the same simulated data from section 6.2. Let
Cni,δ denote the confidence interval computed for a sample
of size n for sample i, i = 1, . . . , N . Then, the empirical
coverage probability is defined as

P̂nδ (N) =
1

N

N∑
i=1

1{cα∈Cni,δ}.

Plots of the coverage probability at each sample size for
each distribution are shown in fig. 3. We set δ = 0.05
and compute the coverage probability at sample sizes
n = 5000, 10000, . . . , 50000. The final value of each distri-
bution’s coverage probability at n = 50000 is reported in
appendix D. Most of the distributions tested achieve nearly
the correct coverage of 0.95, sometimes surpassing it in
some cases, and this is due to the estimated confidence in-
terval being wider than its true asymptotic counterpart. The
coverage is worst in the Burr(0.38, 4) distribution, achieving
a final coverage probability of just 0.73. The small mag-
nitude of ρ in this distribution causes slow convergence of
the tail to the GPD, and hence a relatively high average
threshold percentile of 0.96 was chosen by the threshold se-
lection procedure. This high threshold increases the variance
of parameter estimation which explains the poor coverage.
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Fréchet(1.5)

101

102
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Figure 2: RMSE of estimating CVaR0.998 using UPOT (black), BPOT (red), and SA (blue).

0.4

0.6

0.8

P̂
n δ

(N
)

Burr(0.38, 4.0)

0.6

0.8

Burr(0.5, 3.0)

0.8

0.9

Burr(0.67, 2.25)

0.90

0.92

0.94

Burr(2.0, 0.75)

0.90

0.92

0.94

Burr(3.33, 0.45)

0.875

0.900

0.925

0.950

P̂
n δ

(N
)
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Figure 3: Coverage probabilities with α = 0.998, δ = 0.05. The solid line indicates the theoretical coverage, i.e., 1− δ =
0.95.

7 CONCLUSION

We have studied the asymptotic properties of a new CVaR es-
timator based on the peaks-over-threshold approach. Using
extreme value theory and second-order regular variation, we
derived estimators for the bias induced by the approximate
GPD model of the threshold excesses and the bias from max-
imum likelihood estimators of the GPD parameters. Using
these results, we proved that our estimator is asymptotically
normal and unbiased (up to some technical conditions). This
convergence result allowed us to derive confidence intervals
for the CVaR, enabling us to measure the level of uncer-
tainty in our estimator. We compared the magnitudes of the

asymptotic variance of our CVaR estimator with that of the
sample average CVaR estimator, demonstrating a significant
improvement in asymptotic performance for some cases.
An empirical study showed that our CVaR estimator can
lead to a significant performance improvement in heavy-
tailed distributions when compared to the sample average
estimator and the existing peaks-over-threshold estimator.
Finally, we investigated the finite-sample performance of
the asymptotic confidence interval, and found that good
coverage probability is achieved in reasonable sample sizes.
While our evidence suggests that our CVaR estimator is
most effective in the heavy-tailed domain, it would also
be instructive to perform the same theoretical analysis for



 light-tailed distributions. Doing so would allow our CVaR
estimator to be robust to situations where it is not possible
to make any assumptions about the underlying data distribu-
tion.
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