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Abstract

Max-linear Bayesian networks have emerged as
highly applicable models for causal inference via
extreme value data. However, conditional inde-
pendence (CI) for max-linear Bayesian networks
behaves differently than for classical Gaussian
Bayesian networks. We establish the parallel be-
tween the two theories via tropicalization, and es-
tablish the surprising result that the Markov equiv-
alence classes for max-linear Bayesian networks
coincide with the ones obtained by regular CI. Our
paper opens up many problems at the intersection
of extreme value statistics, causal inference and
tropical geometry.

1 INTRODUCTION

A max-linear Bayesian network is a special class of a graph-
ical model on a directed acyclic graph (DAG) used to model
causal relations between extreme values [Gissibl and Klüp-
pelberg, 2018, Klüppelberg and Lauritzen, 2019, Engelke
and Hitz, 2020]. Denoting the maximum operator max by
∨, its defining equation is

Xi =
∨

j=1,...,n

cijXj ∨ Zi, cij , Zi ≥ 0 (1)

for each i ∈ [n] = {1, . . . , n}, where the Zi are indepen-
dent and unobserved random variables and C is a matrix of
coefficients supported on a DAG with n nodes. Like their
classical counterparts, they are versatile and easy to interpret.
They are the simplest class of models that exhibit cascading
failure, where extreme measurements Xj (rainfall, contami-
nant level, risk, financial return) occurring at a large number
of nodes can be traced to a few common sources Zi (storm,
chemical spill, catastrophic failure, financial shock). Such
cascading failures are commonly experienced in hydrology,
engineering, and finance, and therefore max-linear Bayesian

networks are finding many applications in these domains
[Gissibl, 2018, Gissibl and Klüppelberg, 2018, Buck and
Klüppelberg, 2020, Janßen and Wan, 2020, Klüppelberg and
Krali, 2021]. Most recently, Tran et al. [2021] fitted max-
linear Bayesian trees to data and achieved state-of-the-art
results on the Hidden River problem, the current benchmark
for causal discovery from extreme data [Asadi et al., 2015].
This indicates that max-linear Bayesian networks are highly
suited to model causal relations between large observed
values of random variables.

Conditional independence (CI) theory is fundamental to
causal inference on Bayesian networks [Spirtes et al., 2000,
Pearl and Verma, 1995]. While max-linear Bayesian net-
works are special instances of Bayesian networks, they
have, however, a different CI theory [Améndola et al., 2021].
While CI statements in Bayesian networks can be found by
the classical d-separation criterion [Geiger et al., 1990a,b,
Meek, 1995], CI statements on max-linear Bayesian net-
works are given by ∗-separation, a stronger form of separa-
tion (see Example 1.1). Furthermore, in sharp contrast with
the classical case, CI statements on a max-linear Bayesian
network can depend on both the coefficients C and the con-
text, that is, on some (partial) realization of the conditioning
set [Améndola et al., 2021, Example 1.3].

The natural next step is the question of Markov equivalence.
Two graphs G and H are called Markov equivalent if they
yield the same set of CI statements under a separation cri-
terion. Based on CI statements alone, one can only hope
to recover a DAG up to Markov equivalence. Nevertheless,
while Markov equivalent graphs yield the same conditional
independence structures, they have very different causal
structures. Understanding the Markov equivalence classes
allows for the development of algorithms that infer Markov
equivalence classes from data such as the PC algorithm for
Bayesian networks [Spirtes et al., 2000].

A necessary and sufficient condition for determining Markov
equivalence for classical Bayesian networks is well-known
[Verma and Pearl, 1990, 1992]. Specifically, two directed
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Figure 1: The Cassiopeia graph.

acyclic graphs are Markov equivalent if and only if they
have the same skeleton and same unshielded colliders (also
known as v-structures or immoralities) [Andersson et al.,
1997]. In this paper we answer the natural question of deter-
mining what are the Markov equivalence classes for max-
linear Bayesian networks.

Here is a motivating example. The relevant definitions will
be given in Section 2, and more details in Example 2.9.

Example 1.1 (Cassiopeia). Consider the graph in Figure 1.
It holds that 1 and 3 are d-connected by 4 and 5. Therefore,
the global Markov property is not enough to conclude that
1 ⊥⊥ 3 | 4, 5. Nevertheless, 1 and 3 are ∗-separated by 4 and
5 and hence we can conclude that for a max-linear Bayesian
network supported on the Cassiopeia graph, the conditional
independence statement 1 ⊥⊥ 3 | 4, 5 holds.

A priori, one would expect that the Markov equivalence
class for max-linear Bayesian networks refine those seen for
Gaussian Bayesian networks since it was shown in [Amén-
dola et al., 2021] that max-linear Bayesian networks have
additional valid conditional independence statements. We
show in our main theorem that in fact it is not true that the
Markov equivalence classes are refined, and that instead
the equivalence classes of max-linear Bayesian networks
coincide with the equivalence classes of Gaussian Bayesian
networks.

Theorem (Theorem 3.4). Gaussian Bayesian networks and
max-linear Bayesian networks have the same Markov equiv-
alence classes.

Aside from the tree case [Tran et al., 2021], finding a con-
sistent estimator for the parameters c∗ij of the max-linear
Bayesian networks to data remains difficult. One primary
reason is that C∗ is a matrix of max-weighted paths on
an unknown DAG G. The set of such matrices is a non-
convex piecewise-linear manifold made up of many low-
dimensional cones [Tran, 2014]. Thus, estimators of C∗

are often sensitive to noise [Gissibl et al., 2021]. For Gaus-
sian graphical models, conditional independence statements
are governed by rank constraints on the covariance matrix
(see e.g. [Sullivant, 2018, Proposition 4.1.9]). Our second
main result establishes an analogue of this result for the
max-linear model via tropical geometry. In particular, we
show that some tropical rank constraints on the tropical-

ization of the covariance matrix correspond to conditional
independence statements for max-linear Bayesian networks.

Theorem (Theorem 5.2). The conditional independence
statements implied by d-separation in a max-linear Bayesian
network impose tropical rank constraints that hold for every
tropical covariance matrix supported on the network.

This result opens up new directions for conditional inde-
pendence testing in max-linear Bayesian networks. Namely,
instead of finding a consistent estimator for C∗, which so
far has proven difficult, one could opt to find a consistent es-
timator for the tropical covariance matrix and/or the tropical
ranks of its sub-blocks. Furthermore, this theorem offers an
algebraic way to handle CI, complementing the path-based
∗-separation criterion of Améndola et al. [2021]. In particu-
lar, this brings us closer in the task of identifying sufficient
conditions for CI statements to hold in max-linear Bayesian
networks.

This paper is organized as follows. In Section 2 we discuss
the preliminary concepts and notation, including some ba-
sics on tropical algebra. The first main result, Theorem 3.4,
and its proof are the content of Section 3. We explore deeper
the connection of max-linear models to tropical geometry by
proving a tropical analogue of the classical trek rule in Sec-
tion 4. We use the tropical trek rule to obtain tropical rank
constraints, culminating in our second main result, Theo-
rem 5.2, in Section 5. Finally, we consider in Section 6 some
interesting open problems and future research directions.

2 PRELIMINARIES

2.1 TROPICAL BASICS

Here we recall some concepts of tropical geometry for our
discussion. For an introductory exposition to this field we
recommend Maclagan and Sturmfels [2015].

We work in the max-times semiring (R≥,∨,�), defined by

a∨b := max(a, b), a�b := ab for a, b ∈ R≥ := [0,∞).

These tropical operations extend to Rn≥ coordinate-wise, to
scalar-vector multiplication as

λ� x = (λx1, . . . , λxd) for λ ∈ R≥ and x ∈ Rn≥,

and to corresponding matrix product as

(A�B)ij =

n∨
`=1

ai`b`j

for A ∈ Rm×n≥ and B ∈ Rn×p≥ . In particular, this defines
tropical matrix powers A�k for k ∈ N where A�0 = In is
the identity matrix.



 Analogously, we can define the tropical determinant of a
matrix A ∈ Rn×n as

tdet(A) =
∨
σ∈Sn

a1σ(1)a2σ(2) . . . anσ(n)

where Sn denotes the symmetric group on [n].

A matrix is tropically singular if the maximum in the evalu-
ation of the tropical determinant is attained at least twice.

Definition 2.1. The tropical rank trank(M) of a matrix
M ∈ Rm×n is the largest integer r such that M has a
tropically non-singular r × r minor.

Example 2.2. The matrix M given by6 3 0
0 8 4
6 4 2

 =

0
2
1

� (0 4 2
)
∨

3
0
3

� (2 1 0
)

has tropical rank 2. Indeed, the 2× 2 minor

A =

(
6 3
0 8

)
is tropically non-singular since

tdet(A) = 6� 8 ∨ 0� 3 = 48 ∨ 0 = 48

achieves its maximum uniquely. On the other hand, M is
tropically singular since

tdet(M) = 96 ∨ 84 ∨ 0 ∨ 0 ∨ 0 ∨ 96 = 96

attains its maximum twice, namely at the terms 6 � 8 � 2
and 6� 4� 4.

Remark 2.3. While tropical geometry is often introduced
as min-plus or max-plus operations over R ∪ {∞} or R ∪
{−∞} respectively, our max-times semiring (R≥,∨,�) is
isomorphic to the latter by taking logarithms.

2.2 MAX-LINEAR BAYESIAN NETWORKS

A max-linear Bayesian network is given by a random vec-
tor X = (X1, . . . Xn) with vertices on a directed acyclic
graph G = ([n], E), edge weights cij ≥ 0, and independent
positive random variables Z1, . . . , Zn called innovations.
The Zi have support R> = (0,∞) and have atom-free
distributions. Then X is given by the recursive structural
equations

Xi =
∨

j∈pa(i)

cijXj ∨ Zi,

or X = C �X ∨ Z in tropical notation. This system has
solution X = C∗ � Z, that is,

Xi =
∨

j∈an(i)∪i

c∗ijZj (2)

where C∗ =
∨n−1
k=0 C

�k is the Kleene star of the matrix C.
In these equations pa(i) denotes the parents of node i and
an(i) denotes the ancestors of i.

Conditional independence in max-linear models can be
quite different from conditional independence in classical
Bayesian networks. For the latter, the d-separation crite-
rion gives a complete set of valid conditional independence
statements for the model [Meek, 1995].

We use the following standard notation (see e.g. Klüppelberg
and Lauritzen [2019]). A path in a DAG G is a sequence of
vertices i0, i1, . . . ik such that i` → i`+1 is an edge in G or
i`+1 → i` is an edge in G for each ` = 0, . . . k. A directed
path has edges i` → i`+1 for all `. If there is a directed path
from i to j, we say that i is an ancestor of j and denote by
an(K) the set of all ancestors of nodes in K. A collider on
a path is a vertex i` in the path such that i`−1 → i` ← i`+1.

Definition 2.4. Two vertices i and j in G are d-connected
given a set K ⊆ [n] \ {i, j} if there is a path π from i to
j such that all colliders on π are in K ∪ an(K) and no
non-collider on π is in K. If I, J,K ⊆ [n] are pairwise
disjoint sets with I and J nonempty, then K d-separates I
and J if no pair of nodes i ∈ I and j ∈ J are d-connected
given K. We denote this by I ⊥d J |K.

It was noted in Klüppelberg and Lauritzen [2019] that d-
separation does not give all valid conditional independence
statements for a max-linear Bayesian network. Recently, a
new criterion named ∗-separation which gives a complete
set of conditional independence statements for max-linear
models was given in Améndola et al. [2021].

Definition 2.5. A path π between i and j in a DAG is ∗-
connecting given a set K ⊆ [n] \ {i, j} if and only if π is
d-connecting given K and π contains at most one collider.
Two nodes i and j are ∗-connected given K if there is a
∗-connecting path. If I, J,K ⊆ [n] are pairwise disjoint
sets with I and J nonempty, then K ∗-separates I and J if
no pair of nodes i ∈ I and j ∈ J are ∗-connected given K.
We denote this by I ⊥∗ J |K.

The 5 basic shapes of ∗-connecting paths are illustrated in
Figure 2.

An alternate formulation of ∗-separation involves the notion
of the conditional reachability DAG. This alternate formula-
tion is useful for giving the proofs of our main result.

Definition 2.6. Let G be a DAG and K ⊆ [n]. A directed
path π from i to j factors through K if there exists a vertex
k ∈ π such that k 6= i, j and k ∈ K. The conditional
reachability DAG, denoted G∗K is a graph on [n] with edges
given by i→ j ∈ G∗K if and only if there exists a directed
path from i→ j that does not factor through K.

Example 2.7. Let G be the DAG pictured on the left in
Figure 3 and letK = {3}. Then the conditional reachability
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Figure 2: Types of ∗-connecting paths between two nodes i
and j with shaded nodes in K.
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Figure 3: A DAGG and the corresponding conditional reach-
ability graph G∗K for K = {3}.

graph G∗K is the graph pictured on the right in Figure 3.
Note that the additional edge 1→ 5 is due to the fact that
the path 1→ 4→ 5 is a directed path that does not factor
through K. On the other hand, there is no edge between 2
and 5 since the only directed path between 2 and 5 in G is
2→ 3→ 5 which factors through K.

Observe that since 1→ 5 is a ∗-connecting path in G∗K we
have that 1 6⊥∗ 5|3. The only path between 2 and 5 in G∗K
is 2 → 3 → 5 which is not ∗-connecting since 3 ∈ K so
2 ⊥∗ 5|3.

Remark 2.8. With this definition, we can say that for
I, J,K ⊆ [n] pairwise disjoint sets, I and J are ∗-separated
by K in G if and only if there are no ∗-connecting paths
from I to J in G∗K .

Checking ∗-separation in G∗K is the analogue of checking

d-separation as undirected separation in a corresponding
moralized graph, see [Lauritzen, 1996, Proposition 3.25].

Example 2.9. To provide some intuition on the ‘at most one
collider’ condition in Definition 2.5, we consider again the
Cassiopeia graph from Example 1.1 and the path between 1
and 3 with two colliders in K = {4, 5}. For simplicity, let
all nonzero coefficients cij equal to one. Then the max-linear
model states that

X1 ∨X2 ≤ x4 and X2 ∨X3 ≤ x5.

If x4 < x5, then X3 ≤ x5 so that x5 cannot be caused by
X2 but only by X3 or Z5. Analogously, if x4 ≥ x5 then x4
can only be caused by X1 or Z4. Finally, if x4 = x5 we
must have X2 = x4 = x5 (since the Zi are atom-free) so
that both are caused by X2. In any of the three cases, we
have that 1 ⊥⊥ 3 | {4, 5}.

3 SOLVING MARKOV EQUIVALENCE

In this section we compare Markov equivalence under d-
separation and ∗-separation and show that they give the
same Markov equivalence classes.

Definition 3.1. Two graphs G and H with vertex set V
are called Markov equivalent if they yield the same set of
conditional independence statements under a global Markov
property, i.e., for all pairwise disjoint I, J,K ⊆ V ,

I ⊥ J |K =⇒ I ⊥⊥ J |K

where ⊥ is a separation criterion.

The following theorem by Verma and Pearl [1990, 1992]
characterizes which graphs are Markov equivalent when
considering the d-separation criterion. An alternative proof
can also be found in [Andersson et al., 1997].

Theorem 3.2 (Verma and Pearl [1990], Theorem 1). Two
directed acyclic graphs G and H are Markov equivalent
under the d-separation criterion if and only if the following
two conditions hold:

1. G and H have the same skeleton, which is the undi-
rected graph obtained by removing edge directions.

2. G and H have the same unshielded colliders, which
are triples i, j, k ∈ [n] which induce a subgraph of the
form i→ k ← j.

We use ∼d and ∼∗ to denote Markov equivalence un-
der d-separation and ∗-separation respectively. Since ev-
ery ∗-connecting path is also d-connecting, it holds that if
I ⊥d J |K then I ⊥∗ J |K. Consequently, one might think
that the additional statements obtained from ∗-separation
would refine the Markov equivalence classes of d-separation
but this is not the case. We will show that the Markov equiv-
alence classes are actually the same. The following lemma
will be useful in the proof.



 Lemma 3.3. Let K ⊆ [n]. Let G and H be DAGs on [n]
such that G ∼d H and suppose i→ j ∈ G∗K . Then one of
the following holds:

1. i→ j ∈ H∗K ,

2. j → i ∈ H∗K ,

3. i and j have a common parent ` in H∗K , i.e., there
exists l ∈ [n] such that `→ i, `→ j ∈ H∗K .

Proof. The existence of the edge i→ j ∈ G∗K implies that
there is a directed path πG from i to j in G that does not
factor through K. Since it holds that G ∼d H hence G and
H have the same skeleton. This means there exists a path
πH between i and j in H whose edge directions we now
consider.

First we suppose that πH has no colliders on it. Then πH
must be a directed path from i to j, a directed path from j to
i, or has exactly one source ` 6= i, j on it. If πH is a directed
path from i to j then (1) holds since there is no vertex in K
on π and similarly if πH is a directed path from j to i then
(2) holds. If there is a source ` 6= i, j then we get that (3)
holds since there must be a directed paths from ` to both i
and j and no vertex on these paths can be in K.

Now we suppose that there is at least one collider on πH . We
will show a different path exists by looking at the colliders
on the path. Suppose v is a collider on πH and let u→ v ←
w be path πH locally around v. The local path around v in
πG must have the form u→ v → w since πG is the path that
induces the edge i→ j ∈ G∗K . Since we have that G ∼d H
they must have the same unshielded colliders by Theorem
3.2 and since the triple (u, v, w) is not an unshielded collider
in G, it cannot be an unshielded collider in H . Combining
this with the fact that locally around v, πH has the form
u → v ← w, there must either exist an edge u → w or
u ← w in H . So we can create a new path, π′H , in H by
replacing u → v ← w with the edge between u and w.
The path π′H is one edge shorter than πH and has one less
collider or one of the vertices u,w has become a collider.
We can inductively apply the same argument to π′H though
until we obtain a path between i and j with no colliders or
we end up with a direct edge between i and j. If we have a
direct edge between i and j then either (1) or (2) holds and
if we have a path with no colliders than the result holds by
the previous paragraph.

We are now ready to prove our promised first main result.

Theorem 3.4. d-separation and ∗-separation induce the
same Markov equivalence classes on a DAG G.

Proof. Let G ∼d H . We will show that for any K ⊆ [n], if
there exists a ∗-connecting path πG between i and j in G
then there is a ∗-connecting path πH between i and j in H .
This implies that G and H have the same ∗-separations and

hence are Markov equivalent with respect to ∗-separation.
So fix K and let πG be a ∗-connecting path between i and
j in G conditioned on K. We now argue that the desired
path πH exists based on which of the five possible forms
displayed in Figure 2 πG may take. For each of the possible
∗-connecting paths πG, we apply Lemma 3.3 to each edge
in πG and analyze the possible resulting graphs. Throughout
the rest of the proof, we denote by (1), (2), and (3) the three
outcomes that we can get by applying Lemma 3.3 to an edge
in πG.

(a) Suppose πG has the form of path (a) in Figure 2.
Then Lemma 3.3 gives three possibilities which are all ∗-
connecting paths between i and j.

(b) Suppose πG has the form of path (b) in Figure 2. We
analyze these cases up to the symmetry obtained by inter-
changing i and j.

• If (1) holds for both edges then the path j ← j′ → i
is also in H∗K .

• If (1) holds for either edge with (2) holding for the
other then we have a directed path between i and j
in H∗K which implies the existence of a directed path
between i and j in H that does not factor through K
hence we i→ j ∈ H∗K which is ∗-connecting as well.

• If (1) holds for j′ → j and (3) holds for j′ → i then
there exists an ` such that j′ ← ` → i ∈ H∗K . The
existence of these two paths implies that j ← `→ i ∈
H∗K .

• If (2) holds for both edges, (3) holds for both edges,
or (2) holds for one edge and (3) for the other then j′

would be a collider in H∗K . If such a collider exists
though then we are guaranteed a path directly from i
to j in H by the proof of Lemma 3.3 which means we
have a path of type (a) in H∗K .

(c) Suppose πG has the form of path (c) in Figure 2. We
again use the symmetry between i and j to reduce the num-
ber of cases.

• If (1) holds for both edges then the path is unchanged
and hence ∗-connecting.

• Suppose (1) holds for the edge i → k and (2) holds
for the edge j → k. Then locally around k, πG has the
form u → k ← v but in H this path must be of the
form u→ k → v which means that the triple (u, k, v)
is no longer an unshielded collider in H though it
was in G. This contradicts the assumption that G ∼d
H though so this scenario is not possible. The same
argument applies to the case where (2) holds for both
edges and the case where (2) and (3) hold for the
edges.

• Suppose (1) holds for the edge i→ k and (3) holds for
the edge j → k. Then there exists a common parent
j′ of j and k which implies the existence of a path of
type (d) between the vertices i, j, j′, and k.



 • Suppose (3) holds for both edges. Then there exists
a common parent i′ of i and k as well as a common
parent j′ of j and k. This means that there is a path of
type (e) between these vertices which is ∗-connecting.

(d) Suppose πG has the form of path (d) in Figure 2. We
consider the different cases that can arise based on the cases
we had when πG had the form (c) and analyze how adding
the edge between j and j′ affects these cases.

• Suppose (1) holds for the edge i → k and (2) holds
for the edge j′ → k. Regardless of the status of the
edge j′ → j, we know from the previous case that
the graph H is missing an unshielded collider which
contradicts G ∼d H . Just as in the previous case, the
same argument applies to the case where (2) holds for
both edges and the case where (2) and (3) hold for the
edges.

• Now suppose that any of the other cases hold. Then
we know there is a ∗ connecting path between j′ and
i of type (c), (d), or (e). Furthermore, there is a ∗-
connecting path between j and j′ of type (a) or (b).
If the path between j′ and i is of type (c) then taking
the union of this path with any of the configurations
of the path between j and j′ gives a ∗-connecting
path between i and j of type (c), (d), or (e) still. If
the path between j′ and i is of type (e) and the path
between j and j′ is of type (b) then j′ will be a collider
in the union of these paths. This path has the form
j ← m → j′ ← ` → k ← `′ → i. Again though by
the proof of Lemma 3.3, we know that the parents of
j′ must be moral since j′ is not a collider on πG and
G ∼d H . This means that we have an edge m → `
and thus the path j ← m → k ← ` → i which is
a path of type (d) between i and j. The remaining
configurations follow in the exact same way.

(e) Suppose πG has the form of path (e) in Figure 2. This
case follows in a very similar way to the type (d) case. We
can again rule out all of the cases where k is no longer a
collider. The remaining cases then follow from the same
argument used previously. We know that j and i′ will have
a ∗-connecting path between them of type (c), (d), or (e)
by the previous case. We also know from the previous case
that taking the union of this path with any of the possible
configurations of the path between i′ and i also gives a
∗-connecting path.

This completes the proof since the desired path exists in
every case.

Remark 3.5. The equality of equivalence classes in Theo-
rem 3.4 holds for generic coefficient matrices C supported
on G. For special choices of C, there may be more valid CI
statements.

The following example illustrates Theorem 3.4.

1 2 3
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Figure 4: The graphs G, H , and F used in Example 3.6.
These three graphs form a Markov equivalence class with
respect to d- and ∗-separation.

Example 3.6. Let G be the graph pictured in Figure 4. Let
H be obtained from G by reversing the edge 3 → 6 and
let F be obtained by reversing the edge 6→ 7 in H . Then
the graphs G,H and F form a Markov equivalence class
under d-separation since each of the reversals of edges
does not change the unshielded colliders but altering any
other edges would. It is also straightforward to check that
any additional conditional independence statements that
come from applying the ∗-separation criterion to G are also
valid for H and F . For example, suppose K = {4, 5} and
observe that in all three conditional reachability graphs
there is a unique path between 1 and 6 in which there are
always two colliders and thus cannot be ∗-connecting. So
the additional statements that ∗-separation gives do not
refine this Markov equivalence class for d-separation and
thus we see this is also a Markov equivalence class with
respect to ∗-separation.



 Note that as a corollary of Theorem 3.4, the problem of
counting the number of Markov equivalence classes for max-
linear Bayesian networks is equivalent to the classical one,
as studied in Gillispie and Perlman [2001], Radhakrishnan
et al. [2017, 2018].

4 TROPICAL TREK RULE

In this section we define a new matrix, Σtrop, associated
to a max-linear model that is a natural analogue of the
covariance matrix for Gaussian distributions. We then show
that this matrix can be obtained by tropicalizing the trek rule
of Sullivant et al. [2010] which is used to parameterize the
covariance matrix of a directed Gaussian graphical model.
This immediately implies tropical rank constraints on Σtrop

which correspond to conditional independence statements
for the model.

We begin with some background on directed Gaussian graph-
ical models and the trek rule. For additional background we
refer the reader to [Sullivant, 2018, Chapter 13]. Recall that
a random vector X is distributed according to the directed
Gaussian graphical model for a graph, G, if it satisfies the
recursive structural equations X = CX +Z where C is the
weighted adjacency matrix ofG andZ is a Gaussian random
vector with diagonal covariance matrix Ω. The matrices C
and Ω are the parameters of the model. The recursive struc-
tural equations have solution X = (Id − C)−1Z where
(Id− C)−1 plays the role that C∗ plays in the max-linear
model. The covariance matrix Σ admits the factorization
Σ = (Id − C)−1Ω(Id − C)−T and this factorization can
be used to interpret the entries of Σ combinatorially.

Definition 4.1. A trek τ from i to j is an alternating se-
quence of nodes and edges of the form

i← il ← · · · ← i1 ←−− i0 −−→ j1 → · · · → jr → j.

(a trek takes you up and down a ‘mountain’). The top
of the trek is top(τ) = i0, the left-hand side of the trek,
left(τ) = {i0, i1, . . . , il, i} and the right-hand side of the
trek is right(τ) = {i0, j1, . . . , jr, j}. We also allow trivial
treks with a single node i that have left(τ) = right(τ) =
{i}.

For a trek τ with top i0 in a DAG with edge weights given
by C we can naturally define a trek monomial:

τ(C,Ω) = ωi0i0
∏

k→l∈τ

clk. (3)

Proposition 4.2 (Trek Rule). (see e.g. Sullivant et al.
[2010]) LetX be distributed according to the directed Gaus-
sian graphical model on G with parameters C and Ω. Then
the covariance matrix, Σ, of X satisfies

Σij =
∑

τ∈T (i,j)

τ(C,Ω), i, j ∈ [n]. (4)

1

2

c21

3

c31

4

c42 c43

Figure 5: The Diamond graph G with its edges labeled by
coefficients.

where T (i, j) denotes the set of all treks from i to j.

Since the structural equations of a max-linear model are
given by tropicalizing the structural equations of a directed
Gaussian graphical model, it is natural to consider the trop-
icalization of the above trek rule. If the random variable
X is distributed according to the max-linear model on G
with coefficient matrix C then we call Σtrop = C∗� (C∗)T

the tropical covariance matrix for X where the matrix mul-
tiplication is in max-times arithmetic. This definition is
motivated by the factorization that the covariance matrix
of a directed Gaussian graphical model admits, as shown
above.

Theorem 4.3 (Tropical Trek Rule). Let G = ([n], E) be a
DAG and Σtrop = C∗ � (C∗)T for a coefficient matrix C
supported on G. Then

(Σtrop)ij =
∨

τ∈T (i,j)

τ(C, Id). (5)

Proof. First note that by construction c∗ij is the maximum
weight of any path from j to i which means

c∗ij =
∨

π∈P(j,i)

∏
m→`∈π

c`m.

This means that (C∗)Tij = c∗ji is the maximum weight of
any path from i to j. Thus we get that

(C∗ � (C∗)T )ij =
∨
k

c∗ikc
∗
jk

=
∨
k

 ∨
π∈P(k,i)

∏
m→`∈π

c`m

 ∨
π∈P(k,j)

∏
m→`∈π

c`m


Note that the last expression corresponds exactly to the trek
monomial of the max-weighted trek between i and j which
gives the desired result.

Example 4.4. Let G be the Diamond graph which is pic-
tured in Figure 5. The tropical trek rule can be used to
compute the entries of the tropical covariance matrix corre-
sponding to the max-linear model on G.



 For example, there are three treks from 2 to 4:

2→ 4, 2← 1→ 2→ 4 and 2← 1→ 3→ 4.

Then, according to expression (5):

Σtrop
24 = c42 ∨ c221c42 ∨ c21c31c43. (6)

5 TROPICAL RANK CONSTRAINTS

The tropical trek rule allows us to easily show that condi-
tional independence statements that come from d-separation
correspond to tropical rank constraints on Σtrop.

We first recall the following proposition which is the analo-
gous result for Gaussians.

Proposition 5.1. LetX be a multivariate Gaussian with co-
variance matrix Σ and I, J,K ⊆ [n] be disjoint sets. Then
the conditional independence statement XI ⊥⊥ XJ |XK

holds if and only if rank(ΣI∪K,J∪K) = #K.

The trek rule can also be thought of as a map that param-
eterizes the set of Σ that can be produced by the directed
Gaussian graphical model on a DAG, G. Let G = ([n], E)
be a DAG and let

φG : RE × Rn → R(n+1
2 )

be defined by

φG(C,Ω)ij =
∑

τ∈T (i,j)

τ(C,Ω).

The image of φG is exactly the parameterized Gaussian
graphical model associated to G. From Section 5 of Sturm-
fels and Tevelev [2008] we have that

image(trop(φG)) ⊆ trop(image(φG)).

The following two results are an immediate consequence of
this containment of tropical varieties.

Theorem 5.2. Let G be a DAG and Σtrop be supported
on G. If K d-separates I and J in the DAG G then
trank(Σtrop

I∪K,J∪K) = #K.

Proof. Proposition 5.1 implies that if Σ ∈ image(φG) every
(#K + 1)× (#K + 1) minor of ΣI,J vanishes. Since we
have that Σtrop ∈ trop(image(φG)), the tropicalization of
any polynomial that vanishes on image(φG) will vanish on
Σtrop. So all of the (#K + 1)× (#K + 1) tropical minors
of Σtrop vanish and the result follows.

Example 5.3. Consider the Diamond graph G pictured in
Figure 5 which has Σtrop equal to

1 c∗21 c∗31 c∗41
c∗21 (c∗21)

2 ∨ 1 c∗21c
∗
31 c∗21c

∗
41 ∨ c

∗
42

c∗31 c∗21c
∗
31 (c∗31)

2 ∨ 1 c∗31c
∗
41 ∨ c

∗
43

c∗41 c∗21c
∗
41 ∨ c

∗
42 c∗31c

∗
41 ∨ c

∗
43 (c∗41)

2 ∨ (c∗42)
2 ∨ (c∗43)

2 ∨ 1



Note that the entry Σtrop
24 coincides with that computed in

Equation (6) since

Σtrop
24 = c42 ∨ c221c42 ∨ c21c31c43

= c∗42 ∨ c∗21(c21c42 ∨ c31c43)

= c∗42 ∨ c∗21c∗41.

Observe that K = {1} d-separates I = {2} and J = {3}
in G so the tropical rank of the submatrix Σtrop

I∪K,J∪K =

Σtrop
{1,2},{1,3} should be #K = 1. More explicitly, the subma-

trix is

Σtrop
{1,2},{1,3} =

(
1 c∗31
c∗21 c∗21c

∗
31

)
and is not zero so it has tropical rank at least one. To show
that it is rank is 1, we compute the tropical determinant
which is

det(Σtrop
{1,2},{1,3}) = c∗21c

∗
31 ∨ c∗31c∗21

Since this determinant is tropically singular, we have that
trank(Σtrop

{1,2},{1,3}) = #K = 1.

While conditional independence statements that come from
d-separation give tropical rank constraints on Σtrop, the
same is not necessarily true for those which come from
∗-separation. The following example illustrates this.

Example 5.4. Let G be the Cassiopeia graph pictured in
Figure 1 and recall that 1 ⊥∗ 3|{4, 5} inG. The correspond-
ing block of Σtrop is

Σtrop
{1,4,5},{3,4,5} =

 0 c41 0
0 c241 ∨ c242 ∨ 1 c42c52
c53 c42c52 c252 ∨ c2531

 .

Observe that the tropical determinant of this submatrix is

det(Σtrop
{1,4,5},{3,4,5}) = 0 ∨ 0 ∨ 0 ∨ c41c42c52c53 ∨ 0 ∨ 0

which is not tropically singular for any choice of C. This
means for every C supported on G, the tropical rank of this
submatrix is 3 so this conditional independence statement
does not correspond to a drop in tropical rank.

It is worth mentioning that, in general, computing the trop-
ical rank is NP-Hard [Shitov, 2014]. However, there exist
recent approximation algorithms [Karaev and Miettinen,
2019].

A natural question is if Theorem 5.2 can be used for struc-
ture learning of a graph. A first obstacle is access to the
tropical covariance matrix Σtrop. Unlike the classical case,
there is no known estimator for this matrix from data (see
Question 6.2).

Nevertheless, we could assume oracle access to Σtrop and
apply the PC algorithm to try recover a max-linear graph.



 However, the PC algorithm can fail because the distribution
is in general not faithful. This means that there exist valid
CI statements that do not follow from d-separation. We
illustrate with an example.

Example 5.5. Consider the Diamond graph from Figure 5,
and assume that the matrix C satisfies c42c21 < c31c43 with
c31 > 1. Then we have that

Σtrop
{1,3},{3,4} =

(
c∗31 c∗41

(c∗31)2 ∨ 1 c∗31c
∗
41 ∨ c∗43

)
has tropical rank 1 because

c∗31(c∗31c
∗
41 ∨ c∗43) = c∗41((c∗31)2 ∨ 1) = (c∗31)2c∗41.

While it is true that 1 ⊥⊥ 4 | 3 in this scenario, this CI
statement cannot be concluded from d-separation, since it
is not true that K = {3} d-separates I = {1} and J = {4}
in the Diamond graph.

6 OPEN PROBLEMS

In this section we describe some open problems surrounding
max-linear models with a particular emphasis on conditional
independence.

Our original inspiration for considering Σtrop was its sim-
ilarity to the tail-dependence matrix χ defined in [Sibuya,
1960]. Conditional tail dependence is the extreme value
analogue of correlation. Gissibl and Klüppelberg [2018]
showed that if X is distributed according to a max-linear
model on a DAG G with Fréchet(α) innovations Zi then
the tail dependence between Xi and Xj can be computed
in the following way. First define the normalized coefficient
matrix C with entries

cij =
(c∗ij)

α∑
k∈An(j)(c

∗
kj)

α

then the tail dependence between Xi and Xj is

χ(i, j) =
∑

k∈An(i)∩An(j)

cki ∧ ckj .

Since tail dependence is a popular measure of dependence
in extreme value theory and the matrix χ can be estimated
directly from data, it would be interesting to determine
if something analogous to Theorem 5.2 holds for χ. If a
relationship like this could be found, then more tools from
algebraic geometry and tropical geometry could be used to
study max-linear models just as algebraic geometry has been
used to study Gaussian Bayesian networks. This motivates
the following problem.

Problem 6.1. Determine if conditional independence state-
ments that hold for the max-linear model X correspond
to an algebraic or tropical algebraic constraint on the tail
dependence matrix χ.

It would be interesting to determine other information that
Σtrop encodes. We have shown that it satisfies tropical rank
constraints similar to those for Gaussians but it would be
more helpful if Σtrop had a direct interpretation in terms of
the underlying max-linear model or could be determined
from data like χ (without having to estimate C∗). This leads
us to the following question.

Question 6.2. Is there a consistent estimator for Σtrop?

Lastly, we note that our rank constraints on Σtrop only cor-
respond to conditional independence statements that come
from d-separation. It would be interesting to determine if the
conditional independence statements that come ∗-separation
can also be interpreted as an algebraic constraint on Σtrop

or a related matrix such as χ.

Problem 6.3. Suppose K ∗-separates I and J in the DAG
G so XI ⊥⊥ XJ |XK for X distributed according to a
max-linear model on G. Determine if this conditional inde-
pendence statement corresponds to an algebraic or tropical
algebraic constraint on the matrix Σtrop.

In fact, in Example 5.5 we see that despite the CI statement
1 ⊥⊥ 4 | 3 not being implied by d-separation, and only by
∗-separation, a tropical rank constraint still holds. However,
we see in Example 5.4 there is a ∗-separation statement
that does not correspond to a drop in tropical rank. This
suggests a complex relationship between tropical rank and
∗-separation.

Finally, it may also be interesting to consider an analogue
of Problem 6.3 when the coefficient matrix C is fixed. This
means additional ∗-separation statements might hold [Amén-
dola et al., 2021].
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