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Abstract

The empirical success of multi-agent reinforce-
ment learning is encouraging, while few theoret-
ical guarantees have been revealed. In this work,
we prove that the plug-in solver approach, proba-
bly the most natural reinforcement learning algo-
rithm, achieves minimax sample complexity for
turn-based stochastic game (TBSG). Specifically,
we perform planning in an empirical TBSG by
utilizing a ‘simulator’ that allows sampling from
arbitrary state-action pair. We show that the em-
pirical Nash equilibrium strategy is an approxi-
mate Nash equilibrium strategy in the true TBSG
and give both problem-dependent and problem-
independent bound. We develop reward perturba-
tion techniques to tackle the non-stationarity in
the game and Taylor-expansion-type analysis to
improve the dependence on approximation error.
With these novel techniques, we prove the mini-
max sample complexity of turn-based stochastic
game.

1 INTRODUCTION

Reinforcement learning (RL) [Sutton and Barto, 2018], a
framework where agents learn to make sequential decisions
in an unknown environment, has received tremendous at-
tention. An interesting branch is multi-agent reinforcement
learning (MARL) that multiple agents exist and they interact
with the environment as well as the others, which bridges
RL and game theory. In general, each agent attempts to max-
imize its own reward by utilizing the data collected from
the environment and also inferring other agents’ strategies.
Impressive successes have been achieved in games such
as backgammon [Tesauro, 1995], Go [Silver et al., 2017]
and strategy games [Ye et al., 2020]. MARL has shown
the potential for superhuman performance, but theoretical

guarantees are rather rare due to complex interaction be-
tween agents that makes the problem considerably harder
than single agent reinforcement learning. This is also known
as non-stationarity in MARL, which means when multi-
ple agents alter their strategies based on samples collected
from previous strategy, the system becomes non-stationary
for each agent and the improvement can not be guaranteed.
One fundamental question in MBRL is that how to design
efficient algorithms to overcome non-stationarity.

Two-players turn-based stochastic game (TBSG) is a two-
agents generalization of Markov decision process (MDP),
where two agents choose actions in turn and one agent wants
to maximize the total reward while the other wants to min-
imize it. As a zero-sum game, TBSG is known to have
Nash equilibrium strategy [Shapley, 1953], which means
there exists a strategy pair that both agents will not benefit
from changing its strategy alone, and our target is to find
the (approximate) Nash equilibrium strategy. Dynamic pro-
gramming type algorithms is a basic but powerful approach
to solve TBSG. Strategy iteration, a counterpart of policy
iteration in MDP, is known to be a polynomial complex-
ity algorithm to solve TBSG with known transition kernel
[Hansen et al., 2013, Jia et al., 2020]. However, these al-
gorithms suffer from high computational cost and require
full knowledge of the transition dynamic. Reinforcement
learning is a promising alternative, which has demonstrated
its potential in solving sequential decision making problems.
However, non-stationarity pose a large obstacle against the
convergence of model-free algorithms. To tackle this chal-
lenge, sophisticated algorithms have been proposed [Jia
et al., 2019, Sidford et al., 2020]. In this work, we focus
on another promising but insufficiently developed method,
model-based algorithms, where agents learn the model of
the environment and plan in the empirical model.

Model-based RL is long perceived to be the cure to the sam-
ple inefficiency in RL, which is also justified by empirical
advances [Kaiser et al., 2019, Wang et al., 2019]. However,
the theoretical understanding of model-based RL is still
far from complete. Recently, a line of research focuses on
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 analyzing model-based algorithm under generative model
setting [Azar et al., 2013, Agarwal et al., 2019, Cui and
Yang, 2020, Zhang et al., 2020, Li et al., 2020], In this work,
we aim to prove that the simplest model-based algorithm,
plug-in solver approach, enjoys minimax sample complexity
for TBSG by utilizing novel absorbing TBSG and reward
perturbation techniques.

Specifically, we assume that we have access to a generative
model oracle [Kakade et al., 2003], which allows sampling
from arbitrary state-action pair. It is known that exploration
and exploitation tradeoff is simplified under this setting, i.e.,
sampling from each state-action pair equally can already
yield the minimax sample complexity result. With the gen-
erative model, the most intuitive approach is to learn an em-
pirical TBSG and then use a planning algorithm to find the
empirical Nash equilibrium strategy as the solution, which
separates learning and planning. This kind of algorithm
is known as the ‘plug-in solver approach’, which means
arbitrary planning algorithm can be used. We will show
that this simple plug-in solver approach enjoys minimax
sample complexity. For MDP, this line of research is studied
in the seminal work by Azar et al. [2013]. In the recent
work [Li et al., 2020], they almost completely solves this
problem by proving the minimax complexity with full range
of error ε. However, the result for TBSG is still unknown
and largely due to interaction between agents. In this work,
we give the sample complexity upper bounds of TBSG for
both problem-dependent and problem-independent cases.

Suboptimality gap is a widely studied notion in the bandit
theory, which stands for a constant gap between the optimal
arm and second optimal arm. This notion has received in-
creasing focus in MDP and we generalize it to TBSG. To
start with, we prove that Õ(|S||A|(1− γ)−3∆−2) samples
are enough to recover Nash equilibrium strategy accurately
for ∆ ∈ (0, (1 − γ)−

1
2 ], where S is the state space, A

is the action space, γ is the discount factor and ∆ is the
suboptimality gap. The key analysis tool is the absorbing
TBSG technique that helps to show the empirical optimal Q
value is close to true optimal Q value. With the absorbing
TBSG, the statistical dependence on P̂ (s, a) is moved to a
single parameter u, which can be approximated by an cover-
ing argument. Therefore, standard concentration arguments
combined with union bound can be applied. Suboptimality
gap plays an critical role in showing the empirical Nash equi-
librium strategy is exactly the same as true Nash equilibrium
strategy.

The main contribution is in the second part, where we give
our problem-independent bound which meets the existing
lower bound O(|S||A|(1 − γ)−3ε−2) [Azar et al., 2013,
Sidford et al., 2020]. Note that the problem-dependent re-
sult becomes meaningless when the suboptimality gap is
sufficiently small and also the gap may not even exist. In
the problem-independence case, we develop the reward per-
turbation technique to create such a gap in the estimated

TBSG, which is inspired by the technique developed in [Li
et al., 2020]. The key observation is that if r(s, a) increases,
Q∗(s, a) increases much faster than Q∗(s, a′) for a′ 6= a,
thus the perturbed TBSG enjoys a suboptimality gap with
high probability. Different from the usage in the first part,
here the suboptimality gap is used to ensure the empirical
Nash equilibrium strategy lies in a finite set so that union
bound can be applied. Combining the reward perturbation
technique with the absorbing TBSG technique, we are able
to prove more subtle concentration arguments and finally
show that the empirical Nash equilibrium strategy is an ε-
approximate Nash equilibrium strategy in the true TBSG
with minimax sample complexity Õ(|S||A|(1− γ)−3ε−2)
for ε ∈ (0, (1 − γ)−1]. In addition, we can recover the
problem-dependent bound by simply setting ε = ∆.

Recently Zhang et al. [2020] proposes a similar result for
simultaneous stochastic game. However, their result requires
a planning oracle for regularized stochastic game, which
is computationally intractable. Our algorithm only requires
planning in a standard turn-based stochastic game, which
can be performed efficiently by utilizing strategy iteration
[Hansen et al., 2013] or learning algorithms [Sidford et al.,
2020]. In addition, their sample complexity result N =
Õ(|S||A|(1− γ)−3ε−2) only holds for ε ∈ (0, (1− γ)−

1
2 ],

which means N = Õ(|S||A|(1− γ)−2). our result fills the
blank in the sample region Õ(|S||A|(1 − γ)−1) ≤ N ≤
Õ(|S||A|(1−γ)−2). Note that the lower bound [Azar et al.,
2013] indicates thatN = O(|S||A|(1−γ)−1) is insufficient
to learn a policy. As both parts of our analysis heavily rely
on the suboptimality gap, we hope our work can provide
more understanding about this notion and TBSG.

2 PRELIMINARY

Turn-based Stochastic Game Turn-based two-player
zero-sum stochastic game (TBSG) is a generalized version
of Markov decison process (MDP) which includes two play-
ers competing with each other. Player 1 aims to maximize
the total reward while player 2 aims to minimize it. TBSG is
described by the tuple G = (S = Smax ∪ Smin,A, P, r, γ),
where Smax is the state space of player 1, Smin is the
state space of player 2, A is the action space of both play-
ers, P ∈ R|S||A|×|S| is the transition probability matrix,
r ∈ R|S||A| is the reward vector and γ is the discount factor.
In each step, only one player plays an action and a transition
happens. For instance, if the state s ∈ Smax, player 1 needs
to select an action a ∈ A. After selecting the action, the
state will transit to s′ ∈ Smin according to the distribution
P (·|s, a) with reward r(s, a) and player 2 needs to choose
the action. For representation simplicity and without loss
of generality, we assume that r is known and only P is



 unknown1.

We denote a strategy pair as π := (µ, ν), where µ is the
strategy of player 1 and ν is the strategy of player 2. Given
strategy π, the value function and Q-function can be defined
similarly as in MDP:

V π(s) := E

[ ∞∑
t=0

γtr(st, π(st))

∣∣∣∣ s0 = s

]
,

Qπ(s, a)

:=E

[
r(s0, a0) +

∞∑
t=1

γtr(st, π(st))

∣∣∣∣ s0 = s, a0 = a

]
=r(s, a) + γP (s, a)V π.

From the perspective of player 1, if the strategy ν of player 2
is given, TBSG degenerates to an MDP, so the optimal policy
against ν exists, which we called as counterstrategy and use
cmax(ν) to denote it. Similarly we can define cmin(µ) as
the counterstrategy of µ for player 2. For simplicity, we
ignore the subscript in cmax and cmin when it is clear in
the context. In addition, we define V ∗,ν := V c(ν),ν and
V µ,∗ := V µ,c(µ) and the same for Q. By definition and
property of optimal policy in MDP, we have

Q∗,ν(s, a) = max
µ

Qµ,ν(s, a),∀s ∈ S,

Qµ,∗(s, a) = min
ν
Qµ,ν(s, a),∀s ∈ S,

Q∗,ν(s, cmax(ν)(a)) = max
a′

Q∗,ν(s, a′),∀s ∈ Smax,

Qµ,∗(s, cmin(µ)(s)) = min
a′

Qµ,∗(s, a′),∀s ∈ Smin.

Note that these are the sufficient and necessary condition
of counterstrategy, which will be utilized repeatedly in our
analysis.

To solve a TBSG, our goal is to find the Nash equilibrium
strategy π∗ = (µ∗, ν∗), where µ∗ = c(ν∗), ν∗ = c(µ∗). For
Nash equilibrium strategy, neither player can benefit from
changing its policy alone. As µ∗ and ν∗ are counterstrat-
egy to each other, they inherit properties of counterstrategy
given above. For simplicity, we will not repeat here. It is
well known that in TBSG, there always exists a pure strategy
as the Nash equilibrium strategy. In addition, all Nash equi-
librium strategy share the same state-action value, which
makes pure Nash equilibrium strategy unique given some
tie selection rule, so we only consider pure strategies in our
analysis.

Specifically, our target is to find an ε-approximate Nash
equilibrium strategy π = (µ, ν) such that∣∣Qµ,∗(s, a)−Q∗(s, a)

∣∣ ≤ ε,∀(s, a),

1Our proof can be easily adapted to show that the sample
complexity of learning the reward r is an order of 1

1−γ
smaller

than learning the transition P .

∣∣Q∗,ν(s, a)−Q∗(s, a)
∣∣ ≤ ε,∀(s, a),

for some ε > 0 with as few samples as possible. Note that
this is different from and stronger than the MDP analogue,
which should be

∣∣Qπ(s, a) − Q∗(s, a)
∣∣ ≤ ε. This slight

difference makes subtle difficulty as we will show later.

Generative Model Oracle and Plug-in Solver Approach
We assume that we have access to a generative model, where
we can input an arbitrary state action pair (s, a) and receive
a sampled state form P (·|s, a). Generative model oracle
was introduced in [Kearns and Singh, 1999, Kakade et al.,
2003]. This setting is different from the offline oracle where
we can only sample trajectories via a behaviour policy and
online oracle where we adaptively change the policy to
explore and exploit. The advantage of generative model
setting is that the exploration and exploitation is simplified,
as previous work shows that treating all state-action pair
equally is already optimal [Azar et al., 2013, Sidford et al.,
2018]. In particular, we call the generative model N/|S||A|
times on each state-action pair and construct the empirical
TBSG Ĝ = (S = Smax ∪ Smin,A, P̂ , r, γ):

P̂ (s′|s, a) =
count(s, a, s′)

N/|S||A|
,∀s, s′ ∈ Smax∪Smin, a ∈ A,

where count(s, a, s′) is the number of times that s′ is sam-
pled from state-action pair (s, a). It is straightforward that
P̂ is an unbiased and maximum likelihood estimation of the
true transition kernel P . We use π̂∗ = (µ̂∗, ν̂∗) to denote
the Nash equilibrium strategy in the empirical MDP as well
as V̂ and Q̂. The algorithm is given in Algorithm 1.

As the transition kernel in Ĝ is known, arbitrary planning
algorithm can be used to find the empirical Nash equilibrium
strategy π̂∗. One choice is to use strategy iteration, which
finds π̂∗ with in Õ(|S||A|(1 − γ)−1) iterations [Hansen
et al., 2013]. In addition, algorithms that find approximate
Nash equilibrium strategy can be applied, such as QVI-
MIVSS in [Sidford et al., 2020]. Note that our analysis is
for the exact Nash equilibrium strategy π̂∗, but it can be
generalized to approximate Nash equilibrium strategy by
using techniques in [Agarwal et al., 2019].

Suboptimality Gap Suboptimality gap is originated in
bandit theory, which is the gap between the mean reward
of the best arm and second best arm. In TBSG, we define
the suboptimality gap based on optimal Q-value and second
optimal Q-value.

Definition 1. (Suboptimality gap for Nash equilibrium strat-
egy) A TBSG enjoys a suboptimality gap of ∆ for Nash
equilibrium strategy if and only if

∀s ∈ Smax, a 6= µ∗(s) : Q∗(s, µ∗(s))−Q∗(s, a) ≥ ∆,

∀s ∈ Smin, a 6= ν∗(s) : Q∗(s, ν∗(s))−Q∗(s, a) ≤ −∆,

and if there are two optimal actions, the gap is zero.



 Definition 2. (Suboptimality gap for counterstrategy) A
TBSG enjoys a suboptimality gap of ∆ for counter strategy
to the strategy ν of player 2 if and only if

∀s ∈ Smax, a 6= c(ν)(s), Q∗(s, c(ν)(s))−Q∗(s, a) ≥ ∆.

A TBSG enjoys a suboptimality gap of ∆ for counter strat-
egy to the strategy µ of player 1 if and only if

∀s ∈ Smin, a 6= c(µ)(s), Q∗(s, c(µ)(s))−Q∗(s, a) ≤ −∆.

The suboptimality gap means that following the Nash equi-
librium strategy, the expected total reward of the best action
and the second best action differs at least ∆. Intuitively, this
gap quantifies the difficulty of learning the optimal action
and a small gap hinders finding out the optimal action.

Notations f(x) = O(g(x)) means that there exists a con-
stant C such that f ≤ Cg and f(x) = Ω(g(x)) means that
g(x) = O(f(x)). Õ and Ω̃ is same as O and Ω except that
logarithmic factors are ignored. We use f & g to denote
that there exist some constant C such that f ≥ Cg and
f . g means f ≤ Cg for some constant C. For a strategy
π, Pπ ∈ R|S||A|×|S||A| is the transition matrix induced by
policy π and Pπ(s, a)(s′, a′) = P (s′|s, a)1(a′ = π(s′))
where 1(·) is the indicator function. P (s, a) is the row vec-
tor of P that correspond to s, a. We use | · | to denote the
infinity norm ‖ · ‖∞ and

√
·,≤,≥ are entry-wise operators.

Algorithm 1: Solving TBSG via Plug-in Solver
Input: A generative model that can output samples

from distribution P (·|s, a) for query (s, a), a
plug-in solver.

Initial: Sample size: N ;
for (s,a) in S ×A do

Collect N/|S||A| samples from P (·|s, a);

Compute P̂ (s′|s, a) = count(s,a,s′)
N/|S||A| ;

end
Construct the (perturbed) empirical TBSG;
Ĝ = (S,A, P̂ , r, γ);
Ĝp = (S,A, P̂ , rp, γ);
Plan with an arbitrary plug-in solver and receive the
(perturbed) empirical Nash equilibrium strategy π̂∗

(π̂∗p);
Output: π̂∗ (π̂∗p)

3 TECHNICAL LEMMAS FROM MDP

In this section, we present several technical lemmas that
is originated in MDP analysis [Azar et al., 2013, Agarwal
et al., 2019, Li et al., 2020]. These lemmas can be easily
adapted to TBSG and we present them to give some intuition
on our TBSG analysis.

Lemma 1. For any strategy π, we have

Qπ − Q̂π = γ(I − Pπ)−1(P̂ − P )V̂ π

= γ(I − P̂π)−1(P − P̂ )V π.

This lemma portrays the concentration of Q̂π. Note that
there are two kinds of factorization and requires different
analysis. In the problem-dependent bound, we use the first
one and in the problem-independent bound, we use the
second one.

Definition 3. (One-step Variance) We define the one-step
variance of a state-action pair (s, a) with respect to a certain
value function V to be

V ars,a(V ) := P (s, a)V 2 − (P (s, a)V )2,

which is the variance of the next state value. We de-
fine V arP (V ) ∈ R|S||A| to be a vector consisting of all
V ars,a(V ).

We define the one-step variance to facilitate the usage of
Bernstein’s inequality on term (P̂ − P )V̂ π. A detailed in-
troduction of variance in MDP can be found in Azar et al.
[2013]. The following two lemmas show how to bound the
one-step variance term.

Lemma 2. For any policy π and V π is the value function
in a MDP with transition P , we have∣∣(I−γPπ)−1

√
V arP (V̂ π)

∣∣ ≤√ 2

(1− γ)3
+

∣∣Qπ − Q̂π∣∣
1− γ

.

Lemma 3. For any policy π and V π is the value function
in a MDP with transition P , if N & |S||A|

1−γ log
(

1
(1−γ)δ

)
,

with probability larger than 1− δ, we have∣∣(I − γP̂π)−1
√
V arP (V π)

∣∣ ≤ 16√
(1− γ)3

.

Lemma 2 correspond to the first factorization in Lemma 1
and Lemma 3 is correspond to the second one. Lemma 2
is derived by utilizing the variance-Bellman-equation and
Lemma 3 is derived by a taylor expansion type analysis. If
we can apply Bernstein’s inequality to (P̂ − P )V̂ π or (P̂ −
P )V π to generate the

√
V arP (V̂ π) or

√
V arP (V π) term,

then with Lemma 2 or Lemma 3, we can bound |Qπ − Q̂π|.

By concentration inequalities, we can bound (P −P̂ )V π for
fixed π. However, if π = (µ̂∗, c(µ̂∗)) or π = (µ∗, ĉ(µ)), the
complex statistical dependence between π and P̂ hinders the
conventional concentration and subtle techniques are needed.
In addition, (P − P̂ )V̂ π suffers from the dependence even
for fixed π. The key contribution in the next two section is
to use novel TBSG techniques to make the concentration
arguments applicable to these two terms.



 4 WARM UP: PROBLEM-DEPENDENT
UPPER BOUND

In this section, we show that if a TBSG G enjoys a sub-
optimality gap of ∆, then with Õ(|S||A|(1 − γ)−3∆−2)

samples, the empirical Nash equilibrium strategy π̂∗ in Ĝ
is exactly the Nash equilibrium strategy π∗ in G with high
probability. To begin with, we introduce a novel absorbing
TBSG technique, which is motivated by the absorbing MDP
technique developed in [Agarwal et al., 2019]. An absorbing
TBSG G̃s,a,u is identical to the empirical TBSG Ĝ except
that the transition distribution of a specific state-action pair
(s, a) is set to be absorbing. Similar techniques have been
developed for MDP [Li et al., 2020] and simultaneous game
[Zhang et al., 2020].

Definition 4. (Absorbing TBSG) For a TBSG G =
(Smax,Smin,A, P, r, γ) and a given state-action pair
(s, a) ∈ (Smax∪Smin)×A, the absorbing TBSG G̃s,a,u =

(Smax,Smin,A, P̃ , r̃, γ), where

P̃ (s|s, a) = 1, P̃ (·|s′, a′) = P (·|s′, a′),∀(s′, a′) 6= (s, a),

r̃(s, a) = u, r̃(s′, a′) = r(s′, a′),∀(s′, a′) 6= (s, a).

Remark 1. Absorbing TBSG is independent of P̂ (s, a),
which is a kind of leave-one-out analysis. Note that P̃ (s, a)
can be set to arbitrary fixed distribution. We use the ab-
sorbing distribution for simplicity and correspondence to
its name.

For simplicity, we ignore (s, a) in absorbing TBSG when
there is no misunderstanding. We use π̃u, Q̃u, Ṽu to denote
the strategy, state-action value and state value in the absorb-
ing TBSG. These terms actually depend on (s, a) and we
omit (s, a) when there is no confusion. Note that G̃u has no
dependence on P̂ (s, a), which makes the concentration on
(P̂ (s, a)−P (s, a))Ṽu possible. The key property of absorb-
ing TBSG is that it can recover the Q-value of the empirical
MDP by tuning the parameter u. Moreover, the Q-value of
absorbing TBSG is 1

1−γ -lipschitz to u, which means we can
use an ε-cover on the range of u to approximately recover
the Q value in the empirical TBSG.

Lemma 4. (Properties of absorbing TBSG) Set u∗ =
r(s, a) + γ(P (s, a)V ∗) − γV ∗(s), uµ = r(s, a) +
γ(P (s, a)V µ)− γV µ(s). Then we have

Q∗u∗ = Q∗, Qµ,∗uµ = Qµ,∗,

|Q∗u −Q∗u′ | ≤
|u− u′|
1− γ

, |Qµ,∗u −Qµ,∗u′ | ≤
|u− u′|
1− γ

.

We can concentrate (P̂ (s, a) − P (s, a))V̂ µ,∗ by a union
bound and an additional approximation error term as we

construct an absorbing TBSG G̃ on empirical TBSG Ĝ. Com-
bining Lemma 1 and Lemma 2, we can bound |Qµ,ĉ(µ) −
Q̂µ,c(µ)|.

Lemma 5.∣∣Q∗ − Q̂∗∣∣ ≤ max{
∣∣Qµ,ĉ(µ) − Q̂µ,∗

∣∣, ∣∣Qĉ(ν),ν − Q̂∗,ν
∣∣}.

Lemma 5 shows that we can bound the error of estimate the
optimal state-action value

∣∣Q∗ − Q̂∗∣∣ by policy evaluation
error

∣∣Qµ,ĉ(µ) − Q̂µ,∗
∣∣ and

∣∣Qĉ(ν),ν − Q̂∗,ν
∣∣.

Now we show how to use absorbing TBSG and suboptimal-
ity gap to prove that π̂∗ = π∗ with large probability. The
key is to prove that if |Q∗− Q̂∗| ≤ ∆

2 , then by the definition
of suboptimality gap, Q̂∗ enjoys the gap for policy π∗. As
π̂∗ is the Nash equilibrium policy in Ĝ, it is the only policy
that can enjoy the gap, which means π̂∗ = π∗.

Lemma 6. IfQ∗ enjoys a suboptimality gap of ∆ and
∣∣Q∗−

Q̂∗
∣∣ ≤ ∆

2 , then we have π̂∗ = π∗.

Combining all the parts together, we get our problem-
dependent result. Theorem 1 indicates that with a subopti-
mality gap, we can accurately recover the Nash equilibrium
strategy with polynomial sample complexity. The detailed
proof is provided in Appendix B.

Theorem 1. If G enjoys a suboptimality gap of ∆ and the
number of samples satisfies

N ≥ C|S||A|
(1− γ)3∆2

log(
|S||A|

(1− γ)δ∆
)

for some constant C and ∆ ∈ (0, (1 − γ)−
1
2 ], then with

probability at least 1−δ, we have π̂∗ = π∗, which means the
empirical Nash equilibrium strategy we obtained is exactly
the Nash equilibrium strategy in the true TBSG.

Note that this result can recover π∗ exactly, but at a price
of restrictive sample complexity. We need to know the sub-
optimality gap ∆ beforehand and we have little knowledge
about the empirical Nash equilibrium strategy if the sam-
ple complexity is smaller than C|S||A|

(1−γ)3∆2 log( |S||A|(1−γ)δ∆ ). In
the next section, we will give a problem-independent result,
which has no dependence on the suboptimality gap of G.

5 PROBLEM-INDEPENDENT UPPER
BOUND

Two flaws exist in our problem-dependent result. One is
if the suboptimality gap is considerably small, the bound
Õ(|S||A|(1−γ)−3∆−2) becomes meaningless. In addition,
when N < |S||A|(1− γ)−3∆−2, the quality of empirical



 Nash equilibrium strategy π̂∗ is completely unknown. In this
section, we aim to give a minimax sample complexity result
without the assumption of suboptimality gap. Interestingly,
though the suboptimality gap is not assumed, we artificially
create the suboptimality gap instead and the role of subopti-
mality gap is different from the first part analysis, which we
will specify later. We now introduce the reward perturbation
technique that can artificially create a suboptimality gap.

5.1 REWARD PERTURBATION TECHNIQUE

Here we use a reward perturbation technique to create a
suboptimality gap in TBSG, which is inspired by a similar
argument in MDP analysis [Li et al., 2020]. We give a proof
that is different from the one in [Li et al., 2020] and our
analysis for TBSG can generalize to MDP automatically as
MDP is a degenerated version of TBSG. We show that by
randomly perturb the reward function, with large probability,
the perturbed TBSG enjoys a suboptimality gap. First we
define the perturbed TBSG.

Definition 5. (Perturbed TBSG) For a TBSG
G = (S,A, P, r, γ), the perturbed TBSG is
Gp = (S,A, P, rp, γ), where

rp = r + ζ

and ζ ∈ R|S||A| is a vector composed of independent ran-
dom variables following uniform distribution on [0, ξ].

We use subscript πp to denote the strategy in perturbed
TBSG as well as Vp and Qp. The key property of perturbed
TBSG is that it enjoy a suboptimality gap of ξδ(1−γ)

4|S|2|A| with
probability at least 1− δ.

Lemma 7. (TBSG version of suboptimality gap lemma in
[Li et al., 2020]) For a fixed policy ν, with probability at
least 1− δ, the perturbed TBSG Gp enjoys a suboptimality
gap of ξδ(1−γ)

4|S|2|A| for the Nash equilibrium strategy and a same
gap for counterstrategy of ν.

Our proof is substantially different from [Li et al., 2020],
which consists of two important observation. Here we con-
sider the case where only r(s, a1) is perturbed to r(s, a1) +
τ . First, the Nash equilibrium strategy π∗τ is a piecewise
constant function of τ , if some tie breaking rule is given.
Second, we show that Q∗τ (s, a1) = k1(πτ )τ + b1(πτ ) and
Q∗τ (s, a2) = k2(πτ )τ+b2(πτ ) are piecewise linear function
and k2(πτ ) ≤ γk1(πτ ),∀τ . Intuitively, these two observa-
tion means thatQ∗τ (s, a2) grows at most γ times the speed of
Q∗τ (s, a1), which further implies |Q∗τ (s, a1)−Q∗τ (s, a2)| ≤
w can only holds for a small interval of τ .

Lemma 8. Consider a TBSG Gτ = (S,A, P, rτ , γ) where
rτ = r + τ1s,a. Then the following facts hold.

• Given a rule to select optimal action when there are
multiple optimal actions, π∗τ is a constant (vector) func-
tion of τ .

• Q∗τ is a piecewise linear (vector) function of τ .

• Q∗τ (s, a′) = kQ∗τ (s, a) + b, where 0 ≤ k ≤ γ and b
are a function of π∗τ .

With the above argument, we can prove that for arbi-
trary s, a, a′, if we increase r(s, a), then the growth of
Q∗τ (s, a′) is at most γ times of Q∗τ (s, a), which means
|Q∗τ (s, a′) − Q∗τ (s, a)| only holds for a small range of
rτ (s, a). With a union bound argument, we prove the exis-
tence of suboptimality gap. The proof for counterstrategy is
similar and the details are given in the appendix.

5.2 MINIMAX SAMPLE COMPLEXITY

In this section, we show how to use the reward perturbation
technique to derive the minimax sample complexity result.
First, we show that the optimal strategy in perturbed empiri-
cal TBSG is contained in a finite set that has no dependence
on P̂ (s, a).

Lemma 9. Set U to be a set of equally spaced points in
[− 1

1−γ ,
1

1−γ ] and |U | = 16|S|2|A|
(1−γ)2ξδ . We define

M∗ = {µ̃∗p,u : u ∈ U},Mµ∗ = {c̃p,u(µ∗) : u ∈ U}.

With probability at least 1 − δ, we have µ̂∗p ∈ M∗ and
ĉp(µ∗) ∈Mµ∗ .

Lemma 9 means with large probability µ̂∗p and ĉp(µ∗) lie in
a finite set, which is independent of P̂ (s, a). This indepen-
dence allows the usage of Bernstein’s inequality and with the
union bound, we can prove the concentration of (P̂ (s, a)−
P (s, a))V

µ̂∗p,∗
p and (P̂ (s, a) − P (s, a))V

µ∗,ĉp(µ∗)
p . Then,

with Lemma 1 and Lemma 3, we can bound |Qµ̂
∗
p,∗

p −
Q̂
µ̂∗p,c(µ̂

∗
p)

p | and |Qµ
∗,ĉp(µ∗)

p − Q̂µ∗,∗p |.

Lemma 10. For perturbed empirical Nash equilibrium
strategy π̂∗p = (µ̂∗p, ν̂

∗
p), we have

|Qµ̂p,∗ −Q∗|

≤|Qµ̂
∗
p,∗

p − Q̂µ̂
∗
p,c(µ̂

∗
p)

p |+ |Qµ
∗,ĉp(µ∗)

p − Q̂µ
∗,∗

p |+ 4ξ

1− γ
.

Lemma 10 shows how to bound |Qµ̂p,∗ −Q∗| by perturbed
TBSG. In the same manner, we can bound |Q∗,ν̂p − Q∗|.
Selecting an appropriate ξ, we can show that perturbed
empirical Nash equilibrium strategy π̂∗p is an ε-Nash equi-
librium strategy. The detailed proof is provided in Appendix
C.



 Theorem 2. If the number of samples satisfies

N ≥ C|S||A|
(1− γ)3ε2

log(
|S||A|

(1− γ)δε
)

for some constant C, then with probability at least 1 − δ
and ε ∈ (0, (1−γ)−1], we have that π̂∗p is an ε-approximate
Nash equilibrium strategy in G.

Remark 2. Compared with Theorem 3.6 in [Zhang et al.,
2020], Theorem 2 extends the range of epsilon to (0, (1−
γ)−1], which is the full possible range. In addition, Zhang
et al. [2020] requires a smooth planning oracle, which is
computationally inefficient. Our algorithm only needs a
standard planning oracle to solve the empirical TBSG.

In addition, we can derive the following improved result for
problem-dependent bound by choosing ε = ∆

2 and further
analysis on suboptimality gap, which is provided in the
Appendix C.

Theorem 3. If G enjoys a suboptimality gap of ∆ and the
number of samples satisfies

N ≥ C|S||A|
(1− γ)3∆2

log(
|S||A|

(1− γ)δ∆
)

for some constant C and ∆ ∈ (0, (1 − γ)−1], then with
probability at least 1−δ, we have π̂∗p = π∗, which means the
empirical Nash equilibrium strategy we obtained is exactly
the Nash equilibrium strategy in the true TBSG.

Theorem 3 is strictly stronger than Theorem 1. The differ-
ence between Theorem 1 and Theorem 3 is that the range of
suboptimality gap ∆ is extended to (0, (1− γ)−1], which is
the full possible range of suboptimality gap.

6 RELATED LITERATURE

TBSG TBSG has been widely studied since [Shapley,
1953]. For a detailed introduction of stochastic game, read-
ers can refer to [Neyman et al., 2003]. In the old days, people
focus on dynamic programming type algorithms to solve
TBSG. Strategy iteration, as the counterpart of value iter-
ation in MDP and parallelized simplex method, is proved
to be a strong polynomial time algorithm [Hansen et al.,
2013, Jia et al., 2020]. Reinforcement learning approach has
been studied recently for TBSG to relieve the high compu-
tational cost of dynamic programming. Several works are
proposed for the generative model setting, [Sidford et al.,
2020, Jia et al., 2019, Zhang et al., 2020]. [Sidford et al.,
2020] first gives a sample efficient algorithm for tabular
TBSG, while their result achieves minimax sample complex-
ity Õ(|S||A|(1 − γ)−3ε−2) only for ε ∈ (0, 1]. [Jia et al.,
2019] adapts the MDP algorithm in [Sidford et al., 2018] for
feature-based TBSG, but leaves a gap of 1

1−γ between opti-
mal sample complexity. [Cui and Yang, 2020] uses a similar

algorithm as ours in feature-based TBSG, while their result
only holds for ε-Nash equilibrium value, which results in a

1
(1−γ)2 gap in finding ε-Nash equilibrium strategy. [Zhang
et al., 2020] considers simultaneous stochastic game, and
their approach consists of solving a regularized simultane-
ous stochastic game, which is computationally costly. For
the online sampling setting, a recent work [Bai et al., 2020]
uses an upper confidence bound algorithms that can find
an approximate Nash equilibrium strategy in Õ(|S||A||B|)
steps.

Generative Model Generative model is a sampling oracle
setting in MDP, which has been shown to simplify the explo-
ration and exploitation tradeoff. This concept is formalized
in [Kakade et al., 2003] and a Õ(|S||A|poly((1−γ)−1)ε−2)
sample complexity has been proved there. [Azar et al.,
2013] proves the minimax sample complexity Õ(|S||A|(1−
γ)−3ε−2). However, the upper bound there is only for
ε ∈ (1− γ)−1/2|S|−1/2. Many works have devoted to im-
prove the dependence on ε. Recently, [Sidford et al., 2018]
gives a minimax model-free algorithm for ε ∈ (0, 1] and
[Agarwal et al., 2019] gives a minimax model-based algo-
rithm for ε ∈ (0, (1 − γ)−1/2]. Finally, [Li et al., 2020]
uses a perturbed MDP technique to prove minimax sample
complexity with full range of ε.

Suboptimality Gap Suboptimality gap originated in ban-
dit theory. Multi-armed bandits and linear bandits enjoy
a logarithmic gap-dependent regret and a square root gap-
independent regret [Auer et al., 2002, Abbasi-Yadkori et al.,
2011]. MDP with suboptimality gap have been studied in
[Auer et al., 2009] and recently Õ(|S||A|poly(H) log(T ))
regret has been proved for both model-based and model free
algorithms [Simchowitz and Jamieson, 2019, Yang et al.,
2020]. [Du et al., 2020] utilized the suboptimality gap in gen-
eral function approximation setting and proved that optimal
policy can be found in Õ(dimE) trajectories in deterministic
MDP. Most of the gap-dependent analysis in MDP focus on
online RL and to the best of our knowledge, we are the first
to study this notion in TBSG with a generative model.

7 CONCLUSION

In this work, we completely solve the sample complexity
problem of TBSG with generative model oracle. We prove
that the simplest model-based algorithm, plug-in solver ap-
proach, is minimax sample optimal for full range of ε by
using absorbing TBSG and reward perturbation techniques.
Our proof is based on suboptimality gap, a notion originated
from bandit theory and receives great attention in RL. We
believe that our work can shed some light on suboptimality
gap and TBSG.
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