

Faster Lifting for Two-Variable Logic Using Cell Graphs

Timothy van Bremen1 Ondřej Kuželka2

1KU Leuven, Belgium
2Czech Technical University in Prague, Czech Republic

Abstract

We consider the weighted first-order model count-
ing (WFOMC) task, a problem with important ap-
plications to inference and learning in structured
graphical models. Bringing together earlier work
[Van den Broeck et al., 2011, 2014], a formal proof
was given by Beame et al. [2015] showing that the
two-variable fragment of first-order logic, FO2, is
domain-liftable, meaning it admits an algorithm
for WFOMC whose runtime is polynomial in the
given domain size. However, applying this theoreti-
cal upper bound is often impractical for real-world
problem instances. We show how to adapt their
proof into a fast algorithm for lifted inference in
FO2, using only off-the-shelf tools for knowledge
compilation, and several careful optimizations in-
volving the cell graph of the input sentence, a novel
construct we define that encodes the interactions
between the cells of the sentence. Experimental re-
sults show that, despite our approach being largely
orthogonal to that of FORCLIFT [Van den Broeck
et al., 2011], our algorithm often outperforms it,
scaling to larger domain sizes on more complex
input sentences.

1 INTRODUCTION

Given a sentence ϕ in first-order logic and a domain size
n ∈ N, the first-order model counting (FOMC) prob-
lem asks for the number of models of ϕ over the domain
{1, . . . , n}. Closely related to FOMC is its weighted variant,
weighted first-order model counting (WFOMC), in which
each predicate Ri appearing in ϕ is associated with positive
and negative weights (wRi

, w̄Ri
), and the task becomes to

compute the weighted sum of models of ϕ over {1, . . . , n}.

Efficient algorithms for WFOMC have applications in areas
as diverse as probabilistic inference and weight learning in

Markov logic networks [Van den Broeck et al., 2014, Van
Haaren et al., 2016], and enumeration problems in combina-
torics. In the context of many applications—especially those
in probabilistic inference—it is often desirable to compute
the weighted first-order model count in a manner whose
runtime grows efficiently with n, the input domain size.

Unfortunately, it has been shown that (assuming E ̸= NE)
an algorithm that is efficient in terms of domain size for
any first-order sentence does not exist, via a reduction to
spectrum membership [Jaeger, 2015]. Therefore, over the
past several years, an effort has been made to map out
fragments of first-order logic that do allow for efficient
inference in the size of the input domain: so-called domain-
liftable fragments. In a seminal result, Van den Broeck et al.
[2014] showed that the syntactic fragment of first-order
logic limited to two variables, FO2, is domain-liftable. This
result was very recently extended to C2, the two-variable
fragment with counting quantifiers, allowing many inter-
esting properties on graphs to be modelled and efficiently
counted [Kuzelka, 2021].

However, in spite of the theoretical domain-liftability of two-
variable logic, computing the WFOMC for sentences in this
fragment is still quite challenging in practice. As we show
later in the paper, FORCLIFT [Van den Broeck et al., 2011]
struggles to scale given larger input sentences that are com-
mon in modelling problems with a richer structure, and other
lifted inference systems such as ALCHEMY2 [Gogate and
Domingos, 2011] and GC-FOVE [Taghipour et al., 2013]
focus on Markov logic networks and parfactors respectively
as input models. While translations from WFOMC to infer-
ence in these models do exist, the structure in the original
problem is typically lost, limiting their utility for highly
structured combinatorial problems. In this paper, we seek to
close this gap by proposing a fast and easy-to-implement al-
gorithm for WFOMC in FO2. The algorithm only requires
access to an off-the-shelf d-DNNF compiler, and most im-
portantly scales to large domains even on complex input
sentences.

Accepted for the 37th Conference on Uncertainty in Artificial Intelligence (UAI 2021).

mailto:timothy.vanbremen@cs.kuleuven.be
mailto:ondrej.kuzelka@fel.cvut.cz

 Note that, despite the relatively limited expressivity of two-
variable logic as an input language, practical algorithms
for this fragment have important consequences for efficient
lifting of more expressive input languages: in particular,
Kuzelka [2021] showed that WFOMC in the far more ex-
pressive fragment C2 can be reduced to a series of calls to
an FO2 WFOMC oracle, thus underlining the importance
of an efficient method for two-variable logic like the one
proposed here. Indeed, later in the paper we show how our
algorithm can be applied in this way to quickly count k-
regular graphs on n nodes, a property expressible in C2 but
not FO2.

2 RELATED WORK

Poole [2003] proposed using an algorithm for reasoning
about populations in the setting of Bayesian networks, form-
ing the foundation for research in lifted inference. Various
extensions to this technique were put forth over the years
(see, for example, [de Salvo Braz et al., 2005, Taghipour
et al., 2013, Braun and Möller, 2016], among many others),
but in most cases these works focused on reasoning over
first-order counterparts of graphical models directly.

More recently, the same ideas have been applied in the
framework of first-order logic [Gogate and Domingos, 2011,
Van den Broeck et al., 2011], with the latter paper first in-
troducing the formal notion of weighted first-order model
counting, and proposing a practical approach, FORCLIFT,
for performing lifted inference in this setting. This tool was
improved and eventually extended to operate on the full frag-
ment of two-variable logic [Van den Broeck et al., 2014]. On
the other hand, Beame et al. [2015] examined the WFOMC
problem from a theoretical perspective and showed various
lower and upper bounds for the problem, including #P1-
completeness of the three-variable fragment FO3, and gave
a consolidated and formal proof of the tractability of FO2

which we build upon later in this paper. Since then, the “fron-
tier of tractability” has been further mapped out [Kazemi
et al., 2016, Kuusisto and Lutz, 2018, Kuzelka, 2021].

One limitation in the existing literature is that presentations
of implementations in previous work, where they exist, have
usually dealt with relatively simple models in the fragment
they lift: for example, Van den Broeck et al. [2011] evaluate
FORCLIFT over examples such as the classic “friends and
smokers” and “friends-smokers-drinkers”, which each con-
tain only a few predicates and clauses. Thus, the focus so
far has primarily been on proving domain-liftability of new
fragments, rather than studying how these algorithms scale
in practice. In this paper, we hope to shift this focus, and
examine how these ideas can be applied to more complex
models while still scaling quickly.

To this end, very recent work by van Bremen and Kuzelka
[2020] investigated a practical approximate approach to

the WFOMC problem, geared towards dealing with com-
plex non-liftable models. However, as their approach is not
strictly domain-lifted and requires grounding out the input
sentence, we do not consider it further here.

3 BACKGROUND

In this section we provide some background on (weighted)
model counting in propositional and first-order logic, and
review the domain-liftability result for FO2.

3.1 FIRST-ORDER LOGIC

We deal with the function-free, finite domain fragment
of first-order logic. An atom of arity k takes the form
P (t1, . . . , tk), where P/k comes from a vocabulary of pred-
icates, and each argument ti is either a constant from a finite
domain D, or a logical variable from a vocabulary of vari-
ables. A literal is an atom or its negation. A formula is
formed by connecting one or more literals together using
conjunction or disjunction. A formula may optionally be
surrounded by one or more quantifiers of the form ∃x or
∀x, where x is a logical variable. A logical variable in a
formula is said to be free if it is not bound by any quantifier.
A formula with no free variables is called a sentence. We
follow the usual semantics of first-order logic.

Definition 1. The first-order model count (FOMC) of a
sentence ϕ over a domain of size n is defined as:

FOMC(ϕ, n) = |modelsn(ϕ)|

where modelsn(ϕ) denotes the set of all models of ϕ over
the domain D = {1, . . . , n}.

We define the weighted first-order model count of a sentence
in terms of weightings.

Definition 2. Denote the set of predicates appearing in a
sentence ϕ by Pϕ. A weighting on ϕ is a pair of mappings
w : Pϕ → R and w̄ : Pϕ → R.

Definition 3. Let (w, w̄) be a weighting on a sentence ϕ.
The weighted first-order model count (WFOMC) of ϕ over
a domain of size n under (w, w̄) is:

WFOMC(ϕ, n,w, w̄) =
∑

µ∈modelsn(ϕ)

∏
L∈µT

w(pred(L))·

∏
L∈µF

w̄(pred(L))

where µT denotes the set of true ground atoms in the model
µ, and µF the false ground atoms. The notation pred(L)
maps an atom L to its corresponding predicate name.

In general, the weighted first-order model count of any sen-
tence ϕ can always be computed by grounding the sentence

 out over the input domain to a propositional formula ϕG,
and computing the propositional weighted model count
WMC(ϕG, wG, w̄G), extending the original weight func-
tions to the literals in ϕG in the natural way. However, such
an approach is usually intractable for all but the smallest do-
mains, motivating the search for more tractable algorithms
as described in the following section.

Finally, to motivate Definition 3 we point out that infer-
ence in Markov logic networks [Richardson and Domingos,
2006] can be reduced to WFOMC using the reduction de-
scribed in [Van den Broeck et al., 2011]. A similar reduction
for probabilistic logic programs was also shown in [Van
den Broeck et al., 2014], but this reduction is constrained to
work only on a rather limited class of “tight” logic programs.
More recent results have also shown how to apply WFOMC
algorithms to weight learning in Markov logic networks
as well [Van Haaren et al., 2016, Kuzelka and Kungurtsev,
2019, Kuzelka et al., 2020]. In this paper for the sake of
simplicity (and ease of checking correctness) we instead
focus on combinatorial applications1; however, all of our
results can also easily be applied to probabilistic inference
and learning.

3.2 DOMAIN-LIFTABILITY OF FO2

Given a fragment F of first-order logic, we may consider
its data complexity for WFOMC: fixing the input sentence
as some ϕ ∈ F and weights (w, w̄), what is the complexity
of computing WFOMC(ϕ, n,w, w̄) when treating the do-
main size n as the input? In Appendix C of [Beame et al.,
2015], the authors consolidate work from earlier papers to
prove that the two-variable fragment FO2 enjoys FP data
complexity, or in other words is domain-liftable. The proof
for this result is important, as we will build on it—and cer-
tain concepts therein, such as that of cells—throughout the
remainder of the paper. We therefore repeat the high-level
ideas of their argument here2, and refer the reader to their
paper for the details.

Definition 4. A cell of a first-order formulaψ is a maximally
consistent set of literals formed from atoms in ψ using only
a single variable x.

Cells are also referred to as 1-types in the logic literature
(see, for example, [Libkin, 2004]), but we use the term
“cells” for the sake of consistency with [Beame et al., 2015].

Example 1. Consider the formula ψ(x, y) = (F (x, y) ∨
G(x))∧ (¬G(x)∨¬H(x)). Then there are 23 = 8 possible
cells on ψ(x, y); one such example is ¬F (x, x) ∧G(x) ∧
H(x).

1As Kuusisto and Lutz [2018] point out, WFOMC provides a
logic-based way of classifying combinatorial problems.

2To improve clarity, we diverge slightly from the presentation
of Beame et al. [2015] by including reflexive binary atoms in cells.

Theorem 1 ([Beame et al., 2015]). The fragment of first-
order logic limited to two variables, FO2, is domain-
liftable.

Proof sketch. Suppose we wish to compute
WFOMC(ϕ, n,w, w̄) for some input sentence ϕ ∈ FO2,
domain size n ∈ N, and weights (w, w̄). Begin by applying
the reduction in [Grädel et al., 1997] and eliminating exis-
tential quantifiers as shown in [Van den Broeck et al., 2014]
to get a universally quantified sentence ϕ = ∀x∀yψ(x, y)
such that all atoms in ψ have arity at most 2.

Suppose ψ has u distinct predicates appearing in it. Take the
2u cells on ψ and denote them C1, . . . , C2u . Now, consider
the possible partitions of [n] into 2u disjoint sets. Each of
these partitions can be thought of as representing a series
of assignments of subsets of the n domain elements to each
of the cells. Then the models of ϕ over the domain [n]
correspond to the models of the following sentence:

η =
∧

i,j∈[2u],i<j

∀x : Si∀y : Sj (ψ(x, y) ∧ ψ(y, x))∧

∧
k∈[2u]

∀x : Sk∀y : Sk ψ(x, y)

where Si denotes the elements of [n] assigned to the cell Ci,
and the notation ∀x : Si denotes universal quantification
limited to the set Si. Since we know the truth values of
the unary and reflexive binary atoms given by each cell
assignment Ci, we may simplify the body of each conjunct
by replacing every unary and reflexive binary atom with
true or false as appropriate. Write ψi(x, y) for the simplified
version of ψ(x, y) when both x and y belong to the same
cell Ci, and ψij(x, y) for the simplified version of ψ(x, y)∧
ψ(y, x) when x and y belong to Ci and Cj respectively. We
then have:

η =
∧

i,j∈[2u],i<j

∀x : Si∀y : Sj (ψij(x, y))∧

∧
k∈[2u]

∀x : Sk∀y : Sk ψk(x, y)

Observe that each conjunct in the formula above is indepen-
dent (that is, they do not share any propositional variables
when grounded out). Denote rij = WMC(ψij(a, b), w, w̄),
sk = WMC(ψk(a, b) ∧ ψk(b, a), w, w̄), and wk =
WMC(ψk(c, c), w, w̄). Summing across the different possi-
ble configurations of cell cardinalities, and multiplying by a
multinomial coefficient to account for the different possible
selections of domain elements for a given configuration, we
get:

WFOMC(ϕ, n,w, w̄) =
∑

n1+···+n2u=n

(
n

n1, . . . , n2u

)
·

∏
i,j∈[2u],i<j

r
ninj

ij

∏
i∈[2u]

s
ni(ni−1)/2
i wni

i (1)

 Clearly, evaluating this equation can be done in time poly-
nomial in the domain size, and so we have that FO2 is
domain-liftable.

4 ALGORITHM

We are now ready to present our algorithm for computing
the WFOMC of a given two-variable sentence. Although
it is tempting to apply the approach presented in the proof
of Theorem 1 directly, there are several practical barriers to
doing so; namely:

1. We must make a propositional weighted model counter
call for each rij , si, and wi term. We can avoid this
using knowledge compilation.

2. The number of possible cells grows exponentially in
the number of predicates in the input sentence (2m for
m predicates). We can reduce the number of cells we
need to consider using model enumeration.

3. In turn, the number of cell pairs included in each of
the sum terms of Equation (1) grows quadratically in
the number of cells: for each cell j, we must consider
the terms rij for all i < j (as well as the si and wi

terms). We address this problem by making our algo-
rithm weight-aware using independent sets.

4. The number of terms in the outermost sum of Equa-
tion (1) grows in the number of partitions of the domain
size n, and there is no mechanism in place to reuse re-
sults computed within any of the terms. We address
these problems through the use of dynamic program-
ming.

5. In many cases, we find that certain groups of cells are
identical in how they interact with other cells (the rij
terms) and themselves (the si and wi terms), but there
is no procedure taking advantage of this. We solve this
by showing how to identify and exploit cell symmetries.

The latter three optimizations all rely on a construct, which
we call the cell graph, that can be computed from the input
sentence.

Definition 5. The cell graph Gϕ of a sentence ϕ is a com-
plete graph (V,E) where:

1. V is the set of cell labels ({1, . . . , 2u}) on ϕ

2. Each node i ∈ V has a self-loop labelled with the tuple
(si, wi)

3. Each edge from node i to j (i < j) is labelled with rij

Although this construct seems simple, we will see later
that it is helpful to think of the optimizations presented
here as being performed over this cell graph. Each of the
improvements are explained individually below.

4.1 KNOWLEDGE COMPILATION

The first, and simplest, improvement is to make use of
knowledge compilation to make the repeated calls to a
propositional weighted model counter faster. Observe that
each of the rij and si terms corresponds to a different con-
ditioning of the unary and reflexive binary ground atoms
of the propositional formula ψ(a, b) ∧ ψ(b, a). Thus, after
preprocessing the input sentence, we can employ the d-
DNNF compiler DSHARP [Muise et al., 2012] to construct
a smooth d-DNNF from which we may efficiently condition
on the different cells to extract the values of the rij and si
terms.

4.2 MODEL ENUMERATION

Another important observation is that for most sentences,
there will be several cells that are impossible. We therefore
do not need to consider any cell cardinality configuration
that assigns a non-zero value to any of these cells.

Example 2. Consider the formula ψ(x, y) = (F (x, y) ∨
G(x)) ∧ (¬G(x) ∨ ¬H(x)). Here, it is clear that after con-
ditioning on any cell setting both G(x) and H(x) to true,
the residual formula will always be unsatisfiable.

We will call cells that are guaranteed to lead to a satisfiable
residual formula valid cells. To easily obtain the set of valid
cells of a formula, we can enumerate3 the models of the
d-DNNF corresponding to ψ(c, c) and obtain a set M of
valid cells. We may then consider only those |M | cells for
the remainder of the algorithm.

We can also update our cell graph by simply deleting any
node (along with any edges connecting to it) that corre-
sponds to a cell that is not valid. From now on, we will
assume that our cell graph has been defined accordingly.

4.3 WEIGHT-AWARENESS

In the previous section, we considered cells that lead to
unsatisfiability of the entire formula when we condition on
them. Here, we consider a similar idea, but instead we find a
group of cells C such that when conditioning the formula by
setting the cell for x as c ∈ C, any further conditioning on
y with another cell in C determines a weighted model count
of 1. Concretely, this means that sc = 1, and moreover for
any other cell d ∈ C, we have that rcd = 1 (or rdc = 1) as
well. We can find such cells by computing an independent
set of its independent cell graph.

Definition 6. The independent cell graph I(Gϕ) is a graph
formed from the cell graph Gϕ by:

3Note that d-DNNFs support fast (polytime) model enumera-
tion, just like they do for model counting [Darwiche and Marquis,
2002].

 1. Deleting edges (i, j) such that rij = 1

2. Deleting any self-loop (i, i) such that si = 1

This yields the following result, which can be easily ob-
tained through some algebraic manipulations on Equa-
tion (1) in combination with the properties identified in
Definition 6 (a full proof is given in the supplementary ma-
terial).

Theorem 2. Let ϕ be a sentence, and denote some maximal
independent set of I(Gϕ) by I1. Now, let k = |I1|, and
suppose without loss of generality we reorder the |M | cells
such that the first k cells are those of the independent set.
Then4:

WFOMC(ϕ, n,w, w̄) =
∑

nk+1+···+n|M|≤n

(
n

nk+1, . . . , n|M |

)
·

∏
i,j:i,j ̸∈{1,2,...,k},i<j

r
ninj

ij

∏
i ̸∈{1,2,...,k}

wni
i s

ni(ni−1)/2
i ·

 k∑
i=1

wi

∏
j ̸∈{1,2,...,k}

r
nj

i,j

n−nk+1−···−n|M|

(2)

Applying this yields a speedup on the order of nk−1.

4.4 DYNAMIC PROGRAMMING

Unfortunately, for many cells, we may have that si ̸= 1.
In this case, we can identify a second set of cells whose
interactions with cells in I1 is limited.

Definition 7. The reduced independent cell graph of I(Gϕ)
with respect to an independent set I1 of I(Gϕ), denoted by
R(I1, I(Gϕ)), is formed from I(Gϕ) by:

1. Removing all vertices present in I1 and their neigh-
bours

2. Removing all self-loops

From R(I1, I(Gϕ)) we can again compute a maximal in-
dependent set I2. Note that, by construction, the cells in
I2 have limited interaction with one another (i.e. we have
rij = 1 for i, j ∈ I2), and also with those in I1 (rij = 1 for
i ∈ I1, j ∈ I2). Suppose we again reorder the cells, so that
those in I1 are precisely the cells {1, . . . , k}, and those in
I2 the cells {k + 1, . . . , k + l}. Now, define inductively:

g0(nk+l+1, . . . , n|M |, N) = k∑
i=1

wi

∏
j ̸∈{1,2,...,k+l}

r
nj

i,j

n−N−nk+l+1−···−n|M|

(3)

4We abuse notation slightly here and throughout the paper by
using

(
N

k1,...,kn

)
to denote

(
N

k1,...,kn,N−
∑

i ki

)
when

∑
i ki < N .

and

gp(nk+l+1, . . . , n|M |, N) =

n−N−nk+l+1−···−n|M|∑
nk+p=0

(
n−N − nk+l+1 − · · · − n|M |

nk+p

)
·

w
nk+p

k+p s
nk+p(nk+p−1)/2
k+p ·

 ∏
j ̸∈{1,2,...,k+l}

r
nk+pnj

(k+p),j

 ·
gp−1(nk+l+1, . . . , n|M |, N + nk+1) (4)

for 0 < p ≤ l. Using these definitions along with the idea
applied in Theorem 2, we have the following result.

Theorem 3. Let ϕ be a sentence, and I1 and I2 be indepen-
dent sets of Gϕ and R(I1, Gϕ) respectively. Suppose, with-
out loss of generality, that we reorder the cells in ϕ such that
{1, . . . , k} are precisely the cells in I1 and {k+1, . . . , k+l}
the cells in I2. Then:

WFOMC(ϕ, n,w, w̄) =∑
nk+l+1+···+n|M|≤n

(
n

nk+l+1, . . . , n|M |

)
·

∏
i,j:i,j ̸∈{1,2,...,k+l},i<j

r
ninj

ij

∏
i ̸∈{1,2,...,k+l}

wni
i s

ni(ni−1)/2
i ·

gl(nk+l+1, . . . , n|M |, 0)

Here, the individual gp functions can be memoized, allowing
for a dynamic programming algorithm that saves computa-
tion when we have multiple cells in I2.

4.5 CELL SYMMETRIES

We can do even better than the improvements outlined above.
The final observation that we make is that one often finds
groups of cells that not only interact with each other in the
same way, but also interact with cells outside of the group
in the same way too. We will call such groups symmetric
cliques5.

Definition 8. Let ϕ be a sentence, and let C denote the set
of (valid) cells on ϕ. Then a subset B ⊆ C of cells is called
a symmetric clique if it satisfies the following conditions:

1. si = sj for all i, j ∈ B, i ̸= j

2. wi = wj for all i, j ∈ B, i ̸= j

3. rik = rjk for all i, j ∈ B, k ∈ C \B, i ̸= j, i, j < k

4. rij = rkl for all i.j, k, l ∈ B, i < j, k < l

5Strictly speaking, any group of nodes in the cell graph forms a
clique in the graph-theoretic sense, since the cell graph is complete.
However, we still use this name in a slightly different sense as we
feel it best conveys the way they behave.

 In order to efficiently partition the set of cells into a family
of symmetric cliques, we can use a simple greedy algorithm
like the one shown in Algorithm 1. We start a clique with
some cell, and continue trying to add cells that satisfy the
symmetric clique property w.r.t. the cells in the current
clique (line 5). Once we have checked all cells, we start
a new clique and continue until all of the cells have been
assigned to a clique.

Algorithm 1 An algorithm for finding symmetric cliques
Input: A set of cells C of a sentence ϕ

Output: A family FC of symmetric cliques on C

1: FC ← ∅
2: while C ̸= ∅ do
3: cur ← ∅
4: for cell c ∈ C do
5: if Compatible(c, cur) then
6: cur ← cur ∪ {c}
7: C ← C \ {c}
8: FC ← FC ∪ {cur}
9: return FC

After identifying the symmetric cliques of the input sentence,
we can view each of these cliques as forming a new “pseudo-
node” in the cell graph, replacing all of the cells in the
clique.

Definition 9. Let ϕ be a sentence with (valid) cells C. De-
note by FC the family of symmetric cliques on C. Then the
collapsed cell graph of ϕ, denoted by Col(Gϕ,FC) is the
cell graph formed by deleting all nodes from Gϕ, except for
one cell per clique in FC , and relabelling the cells in some
consistent order {1, . . . , |FC |)}.

Using these symmetric cliques, we can still evaluate the
WFOMC using the techniques from Sections 4.3 and 4.4.
We will now view I1 and I2 as being computed over the
collapsed (reduced) (independent) cell graph, and the equa-
tions given in those sections as being evaluated over the
collapsed cell graph formed by the symmetric cliques rather
than the cells of the input sentence directly. This means that
the symmetric cliques will act like new cells, inheriting the
corresponding rij , si, and wi values of their constituents.
The only difference is that when encountering a collapsed
clique node, we must take care to account for the si-terms
for all of the cells in the clique, as well as the internal rij
terms for cells i < j inside the clique. We can do this by
defining an auxiliary term that deals with this. Suppose that
c is a symmetric clique comprising the cells {1, . . . , k}. We
can define:

Jc(n̂) =
∑

n1+···+nk=n̂

(
n̂

n1, . . . , nk

)
s
(n1

2)+···+(nk
2)

1 ·

∏
i,j:1≤i,j≤k,i<j

r
ninj

ij

Intuitively, n̂ represents the number of elements assigned to
the symmetric clique c, and the J-function above encodes
the different ways the possible assignments to its constituent
cells affect the internal si and rij terms.

Using this, we may then rewrite Equation (4) as:

gp(nk+l+1, . . . , n|M |, N) =

n−N−nk+l+1−···−n|M|∑
nk+p=0

(
n−N − nk+l+1 − · · · − n|M |

nk+p

)
·

w
nk+p

k+p Jk+p(nk+p) ·

 ∏
j ̸∈{1,2,...,k+l}

r
nk+pnj

(k+p),j

 ·
gp−1(nk+l+1, . . . , n|M |, N + nk+1)

Note that Equation (3) does not change.

Going back to Theorem 3, we can rewrite the expression
for the WFOMC to be defined over the symmetric cliques
instead:

WFOMC(ϕ, n,w, w̄) =∑
nk+l+1+···+n|FC |≤n

(
n

nk+l+1, . . . , n|FC |

)
·

∏
i,j:i,j ̸∈{1,2,...,k+l},i<j

r
ninj

ij

∏
i ̸∈{1,2,...,k+l}

wni
i Ji(ni)·

gl(nk+l+1, . . . , n|FC |, 0) (5)

For the equation above to hold, we must ensure that only
J-functions evaluating to 1 are allowed into the expression
for g0. In other words, I1 must not contain any symmetric
clique i such that Ji(n̂) ̸= 1 for some n̂. To do this, we may
adapt the construction of the collapsed cell independent
graph by removing the self-loop from the clique node for c
only when we have Jc(n̂) = 1 for all n̂ ∈ {1, . . . , n}.

The final point we address is how to evaluate the J-functions
efficiently. It turns out dynamic programming can be used
again here. Given some symmetric clique c = {1, . . . , k},
we may define inductively:

dk,c(n̂) =
(s
r

)n̂(n̂−1)/2

and

di,c(n̂) =

n̂∑
ni=0

(
n̂

ni

)(s
r

)ni(ni−1)/2

di+1,c(n̂− ni)

for 1 ≤ i < k, where s is the value sk for some arbitrary
node k in the clique, and r the value rij for some two nodes
i < j in the clique.6 One can verify then that:

Jc(n̂) = rn̂(n̂−1)/2d1,c(n̂) (6)
6We implicitly assume here that the clique comprises at least

two nodes; otherwise evaluation of the J-function is trivial.

 Just as in Section 4.4, we can again employ dynamic
programming to memoize the values of the individual d-
function calls. This means that we can evaluate any J-
function over all n̂ ∈ {1, . . . , n} at the same time using
a number of arithmetic operations which is quadratic in the
domain size n.

4.6 FINAL ALGORITHM

The pseudocode for our algorithm incorporating all of
the improvements outlined above, which we dub FAST-
WFOMC, is summarized in Algorithm 2. Lines 2 to 4 pre-
process the input sentence to obtain a Skolemized formula
containing only unary and binary predicates, and compile
the requisite d-DNNFs. The set of valid cells is computed
on line 5, and then the rij , si, and wi terms are calculated
by conditioning on the d-DNNFs for each of the cells (lines
6–11). On the basis of these values the cell set gets parti-
tioned into a family of symmetric cliques (line 12), and the
remainder of the code essentially implements Equation (5).
The functions GetGTerm and GetJTerm are computed us-
ing Equations (4) and (6) respectively, but their complete
pseudocode is given in the supplementary material to this
paper.

Algorithm 2 FASTWFOMC
Input: FO2 sentence ϕ, weights (w, w̄), domain size n

Output: WFOMC(ϕ, n, w, w̄)

1: /* Initialization */:
2: ψ ← Preprocess(ϕ)
3: d-DNNF1 ← Compile(ψ(a, b) ∧ ψ(b, a))
4: d-DNNF2 ← Compile(ψ(c, c))
5: C ← Models(d-DNNF2)
6: for i, j ∈ {1, . . . , |FC |} do
7: rij ←WeightedModels(d-DNNF1(i, j))

8: for i ∈ {1, . . . , |FC |} do
9: si ←WeightedModels(d-DNNF1(i, i))

10: for i ∈ {1, . . . , |FC |} do
11: wi ←WeightedModels(d-DNNF2(i))

12: FC ← PartitionIntoCliques(C)
13: sum← 0
14: /* Main loop */:
15: for {nk+l+1, . . . , n|FC |} s.t.

∑
i ni ≤ n do

16: term←
(

n
nk+l+1,...,n|FC |

)
17: for i, j ∈ {k + l + 1, . . . , |FC |} do
18: term← term · rninj

ij

19: for i ∈ {k + l + 1, . . . , |FC |} do
20: term← term · wni

i · GetJTerm(i, ni)

21: term ← term ·
GetGTerm(l, 0, nk+l+1, . . . , n|FC |)

22: sum← sum+ term

23: return sum

5 EXPERIMENTS

We implemented FASTWFOMC in Python7 and used the
DSHARP [Muise et al., 2012] compiler to construct the d-
DNNFs. All experiments were performed on a computer
with a six-core Intel i7 2.2GHz processor and 16 GB of
RAM.

We compared FASTWFOMC to FORCLIFT [Van den
Broeck et al., 2011], which to our knowledge is the only
other tool capable of directly computing the WFOMC of a
first-order sentence using lifted inference.

5.1 BENCHMARKS

We tested our algorithm on the benchmarks below. We fo-
cused on problems from enumerative combinatorics since
their solutions are easily checked against The On-line Ency-
clopedia of Integer Sequences (OEIS)8, but one could easily
adapt these into, for example, Markov logic networks us-
ing the usual encoding described in [Van den Broeck et al.,
2014]:

• 3-regular: counting 3-regular graphs on n nodes. A
graph is said to be k-regular if each node has precisely
k neighbours.

• 4-coloured: counting 4-coloured graphs on n
nodes. A k-colourable graph is a graph whose nodes
are coloured with one of k colours, such that no two
nodes of the same colour are adjacent to one another.
A k-coloured graph is a k-colourable graph along with
a valid colouring function.

• derangements: counting derangements on n items.
A derangment is a permutation that maps no item to
itself. This example models the following classic com-
binatorial word problem: n people go to the theatre
and leave their hats in the cloakroom. Something goes
wrong and the hats get mixed up. What is the proba-
bility that no person goes home with the same hat they
came with?

• 3-matchings: counting the number of ways of con-
structing three non-overlapping maximal matchings on
K2n, the complete graph with 2n vertices.

For the three benchmarks above whose sentences are in
C2 but not expressible in FO2 (all but 4-coloured), we
employed the encoding of Kuzelka [2021] which splits the
WFOMC task into several oracle calls of a two-variable
sentence containing no counting quantifiers, with varying
weights. We measure the time taken for one such call. In
addition, for all of the benchmarks above, we used the stan-
dard technique described by Van den Broeck et al. [2014]

7Source code for FASTWFOMC is available online at https:
//people.cs.kuleuven.be/~timothy.vanbremen/.

8https://oeis.org/

https://people.cs.kuleuven.be/~timothy.vanbremen/
https://people.cs.kuleuven.be/~timothy.vanbremen/
https://oeis.org/

0 50 100 150
10−2

10−1

100100

101

102

103

n

R
un

tim
e

(s
)

FASTWFOMC-NOOPT

FASTWFOMC
FASTWFOMC-FLOAT

FORCLIFT

(a)

0 100 200 300 400 500
10−2

10−1

100100

101

102

n

R
un

tim
e

(s
)

FASTWFOMC-NOOPT

FASTWFOMC
FASTWFOMC-FLOAT

FORCLIFT

(b)

0 100 200 300 400 500
10−2

10−1

100100

101

102

n

R
un

tim
e

(s
)

FASTWFOMC-NOOPT

FASTWFOMC
FASTWFOMC-FLOAT

FORCLIFT

(c)

0 5 10 15 20 25 30 35 40
10−2

10−1

100100

101

102

103

n

R
un

tim
e

(s
)

FASTWFOMC-NOOPT

FASTWFOMC
FASTWFOMC-FLOAT

FORCLIFT

(d)

Figure 1: (a) A comparison of the runtime of FASTWFOMC and FORCLIFT on 3-regular for various domain sizes. (b)
The same, for 4-coloured. (c) The same, for derangements. (d) The same, for 3-matchings.

to Skolemize the input sentence where appropriate. These
transformations can result in a sentence passed to FAST-
WFOMC and FORCLIFT with more predicates and clauses
than their original encoding. Both the original and (where
applicable) transformed sentences are given in the supple-
mentary material.

Finally, as FORCLIFT does not support negative weights,
when weights of −1 were present due to Skolemization, we
simply adjusted these to 1 for FORCLIFT for comparison
purposes (note that this should have no impact on perfor-
mance).

5.2 RESULTS

We compared the performance on the four benchmarks in
Figure 1. Note that FORCLIFT does not support exact arith-
metic and instead performs approximate calculations in log
mode, whereas FASTWFOMC by default uses arbitrary pre-
cision integers, which is important for combinatorial appli-
cations like the ones here. Since solutions at this scale often
have tens of thousands of digits, performing this arithmetic
can become a dominating factor for FASTWFOMC as the
domain size grows large. Therefore, for illustrative purposes,
we also graphed the performance of a floating point version
of FASTWFOMC. Unlike FORCLIFT, we employ arbitrary-
precision (rather than native) floats through the MPFR li-
brary [Fousse et al., 2007], meaning FASTWFOMC still
suffers a small performance handicap here. We also point
out that unlike FORCLIFT (Scala), FASTWFOMC is imple-
mented in an interpreted language (Python), which again
accounts for a small performance difference. Lastly, as a sec-
ond baseline in order to better measure the impact of several
of the improvements explained in the paper, we also con-
sidered an “unoptimized” version of FASTWFOMC which
sets I1 = I2 = ∅ in all cases and does not exploit symmetric
cliques.

In Figure 1a, we compare the performance of FAST-
WFOMC with FORCLIFT on the 3-regular problem
for varying values of the domain size n. FORCLIFT takes
over 400 seconds on a domain size of n = 30, whereas

FASTWFOMC is far more resilient, taking a fraction of a
second for the same domain size, and scaling comfortably
in under 6 seconds to 150 nodes. FASTWFOMC is thus
the clear winner here, especially considering that in this
application, due to counting quantifiers several such oracle
calls would actually be necessary to count 3-regular graphs.

In Figure 1b, we repeat the exercise for 4-coloured, and
find that FASTWFOMC also performs better here, with the
exact version running over twice as fast as FORCLIFT’s float-
ing point implementation even at 500 nodes (31.2 vs 76.9
seconds). On the floating point version of FASTWFOMC,
which is a more direct comparison, the improvement is far
more pronounced (< 1 vs 76.9 seconds). FASTWFOMC
therefore again seems to be the clear winner on this bench-
mark.

Next, in Figure 1c, we compare the algorithms on
derangements. Here FORCLIFT is able to solve the prob-
lem in near-constant time regardless of the domain size (we
suspect its runtime is linear, though), whereas the runtime
of FASTWFOMC seems to grow polynomially with the
domain size. We conclude that FORCLIFT performs better
on this benchmark for large domain sizes. We suspect that
this might be due to the presence of the domain recursion
rule used in FORCLIFT, for which no analogue exists in our
algorithm. In future work, we would like to investigate this
more closely.

In Figure 1d, we compare the algorithms on
3-matchings. The difficulty of this problem grows
rapidly with the domain size, but FASTWFOMC seems
to outperform FORCLIFT by an increasing margin as the
domain size grows: on a domain size of 20 (corresponding
to K40), FASTWFOMC takes 3.1 seconds while FORCLIFT
takes 11 seconds, for a roughly 3-fold speedup. When the
domain size is increased to 40, this improvement grows to
a factor of about 5 (116.9 vs 571.2 seconds). As a result,
FASTWFOMC once again comes out ahead here.

Finally, we observe that in virtually all cases, our unopti-
mized implementation of FASTWFOMC was outperformed
by both FORCLIFT and our original implementation of FAST-

 WFOMC, showing the importance of the improvements
presented in the paper.

6 CONCLUSION

We presented FASTWFOMC, an algorithm for comput-
ing the weighted first-order model count of a two-variable
sentence in a domain-lifted manner, and showed its improve-
ment over FORCLIFT. There are several avenues for future
work, including support for closer integration with more
expressive fragments such as S2FO2 [Kazemi et al., 2016]
and C2 [Kuzelka, 2021], as well as alternative heuristics for
optimally choosing the independent sets I1 and I2.

Acknowledgements

TvB was supported by the Research Foundation –
Flanders (G095917N). OK was supported by Czech
Science Foundation project “Generative Relational
Models” (20-19104Y) and by the OP VVV project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for
Informatics”.

References

Paul Beame, Guy Van den Broeck, Eric Gribkoff, and Dan
Suciu. Symmetric weighted first-order model counting.
In PODS, pages 313–328. ACM, 2015.

Tanya Braun and Ralf Möller. Lifted junction tree algorithm.
In KI, volume 9904 of Lecture Notes in Computer Science,
pages 30–42. Springer, 2016.

Adnan Darwiche and Pierre Marquis. A knowledge compi-
lation map. J. Artif. Intell. Res., 17:229–264, 2002.

Rodrigo de Salvo Braz, Eyal Amir, and Dan Roth. Lifted
first-order probabilistic inference. In IJCAI, pages 1319–
1325. Professional Book Center, 2005.

Laurent Fousse, Guillaume Hanrot, Vincent Lefèvre, Patrick
Pélissier, and Paul Zimmermann. MPFR: A multiple-
precision binary floating-point library with correct round-
ing. ACM Trans. Math. Softw., 33(2):13, 2007.

Vibhav Gogate and Pedro M. Domingos. Probabilistic theo-
rem proving. In UAI, pages 256–265. AUAI Press, 2011.

Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On
the decision problem for two-variable first-order logic.
Bull. Symb. Log., 3(1):53–69, 1997.

Manfred Jaeger. Lower complexity bounds for lifted in-
ference. Theory Pract. Log. Program., 15(2):246–263,
2015.

Seyed Mehran Kazemi, Angelika Kimmig, Guy Van den
Broeck, and David Poole. New liftable classes for first-
order probabilistic inference. In NIPS, pages 3117–3125,
2016.

Antti Kuusisto and Carsten Lutz. Weighted model count-
ing beyond two-variable logic. In LICS, pages 619–628.
ACM, 2018.

Ondrej Kuzelka. Weighted first-order model counting in the
two-variable fragment with counting quantifiers. J. Artif.
Intell. Res., 70:1281–1307, 2021.

Ondrej Kuzelka and Vyacheslav Kungurtsev. Lifted weight
learning of markov logic networks revisited. In AISTATS,
volume 89 of Proceedings of Machine Learning Research,
pages 1753–1761. PMLR, 2019.

Ondrej Kuzelka, Vyacheslav Kungurtsev, and Yuyi Wang.
Lifted weight learning of markov logic networks (revis-
ited one more time). In PGM, volume 138 of Proceedings
of Machine Learning Research, pages 269–280. PMLR,
2020.

Leonid Libkin. Elements of Finite Model Theory. Texts
in Theoretical Computer Science. An EATCS Series.
Springer, 2004.

Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck,
and Eric I. Hsu. Dsharp: Fast d-DNNF compilation with
sharpSAT. In Canadian Conference on AI, volume 7310
of Lecture Notes in Computer Science, pages 356–361.
Springer, 2012.

David Poole. First-order probabilistic inference. In IJCAI,
pages 985–991. Morgan Kaufmann, 2003.

Matthew Richardson and Pedro M. Domingos. Markov
logic networks. Machine Learning, 62(1-2):107–136,
2006.

Nima Taghipour, Daan Fierens, Jesse Davis, and Hendrik
Blockeel. Lifted variable elimination: Decoupling the
operators from the constraint language. J. Artif. Intell.
Res., 47:393–439, 2013.

Timothy van Bremen and Ondrej Kuzelka. Approximate
weighted first-order model counting: Exploiting fast ap-
proximate model counters and symmetry. In IJCAI, pages
4252–4258. ijcai.org, 2020.

Guy Van den Broeck, Nima Taghipour, Wannes Meert, Jesse
Davis, and Luc De Raedt. Lifted probabilistic inference
by first-order knowledge compilation. In IJCAI, pages
2178–2185. IJCAI/AAAI, 2011.

Guy Van den Broeck, Wannes Meert, and Adnan Darwiche.
Skolemization for weighted first-order model counting.
In KR. AAAI Press, 2014.

 Jan Van Haaren, Guy Van den Broeck, Wannes Meert, and
Jesse Davis. Lifted generative learning of markov logic
networks. Mach. Learn., 103(1):27–55, 2016.

	Introduction
	Related Work
	Background
	First-order logic
	Domain-liftability of FO2

	Algorithm
	Knowledge compilation
	Model enumeration
	Weight-awareness
	Dynamic programming
	Cell symmetries
	Final algorithm

	Experiments
	Benchmarks
	Results

	Conclusion

