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Abstract

Deep networks often suffer from vanishing or ex-
ploding gradients due to inefficient signal propa-
gation, leading to long training times or conver-
gence difficulties. Various architecture designs, so-
phisticated residual-style networks, and initializa-
tion schemes have been shown to improve deep
signal propagation. Recently, Pennington et al.
[2017]] used free probability theory to show that
dynamical isometry plays an integral role in ef-
ficient deep learning. We show that the simplest
architecture change of gating each residual connec-
tion using a single zero-initialized parameter sat-
isfies initial dynamical isometry and outperforms
more complex approaches. Although much sim-
pler than its predecessors, this gate enables training
thousands of fully connected layers with fast con-
vergence and better test performance for ResNets
trained on an image recognition task. We apply
this technique to language modeling and find that
we can easily train 120-layer Transformers. When
applied to 12 layer Transformers, it converges 56%
faster.

1 INTRODUCTION

Deep learning has enabled significant improvements in
state-of-the-art performance across domains [LeCun et al.}
2015, [He et al., [2016a, Klambauer et al., 2017, Radford
et al.,2019]]. The expressivity of neural networks typically
grows exponentially with depth [Poole et al., [2016]], en-
abling strong generalization performance, but often induces
vanishing/exploding gradients and poor signal propagation
through the model [He et al.,2015]]. Practitioners have relied
on residual [He et al.l 2016al] connections along with com-
plex gating mechanisms in highway networks [Srivastaval
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et al.,2015], careful initialization [Mishkin and Matas, 2015,
Xiao et al., 2018} [Zhang et al.,|2019]] and normalization such
as BatchNorm [loffe and Szegedy, [2015]] and LayerNorm
[Ba et al.,[2016] to mitigate this issue.

Recent theoretical work [Pennington et al.,[2017]] applied
free probability theory to randomly initialized networks and
demonstrated that dynamical isometry is a key indicator of
trainability. Motivated by this theory, we study the simplest
modification of deep networks that ensures initial dynamical
isometry, which we call ReZero. ReZero is a small addition
to any network that dynamically facilitates well-behaved
gradients and arbitrarily deep signal propagation. The idea is
simple: ReZero initializes each layer to perform the identity
operation. For each layer, we introduce a residual connection
for the input signal « and one trainable parameter « that
modulates the non-trivial transformation of a layer F'(),

xTip1 =T + o F(x;), ()

where o = 0 at the beginning of training. Initially the gradi-
ents for all parameters defining F' vanish, but dynamically
evolve to suitable values during initial stages of training.
We illustrate the architecture in Figure[I] ReZero provides
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(1) Deep Network (Net.)

(2) Residual Network

(3) Deep Net. + Norm

(4) Residual Net. + Pre-Norm
(5) Residual Net. + Post-Norm
(6) ReZero

Tip1 = F(x;)

Tit1 =z + F(x;)

Tiy1 = Norm(F(:m))

xit1 = @; + F(Norm(x;))
Tip1 = Norm(mi + F(mz))
Tit1 =T + o F(x;)

Table 1: Various forms of normalization and residual con-
nections. F' represents the transformation of an arbitrary
layer and “Norm” is a normalization (e.g. LayerNorm or
BatchNorm).

several benefits:

* Architecture agnostic: Unlike more complex
schemes, ReZero is simple and architecture agnostic,
making its implementation widely applicable to any
residual-style architectures without much tuning and
only a few lines of code.

Deeper learning: While simpler than existing ap-
proaches [Srivastava et al., 2015 |Zhang et al.,[2019],
ReZero effectively propagates signals through deep
networks, which allows for learning in otherwise un-
trainable networks. ReZero successfully trains 10,000
layers of fully-connected networks, and we are the first
to train Transformers over 100 layers without learning
rate warm-up, LayerNorm [Ba et al.| 2016 or auxiliary
losses [|Al-Rfou et al.,[2019].

Faster convergence: We observe accelerated conver-
gence in ReZero networks compared to regular resid-
ual networks with normalization. When ReZero is ap-
plied to Transformers, we converge 56% faster than
the vanilla Transformer to reach 1.2 BPB on the en-
wiki8 language modeling benchmark. When applied
to ResNets, we obtain 39% speed up to reach 80%
accuracy on CIFAR 10.

2 BACKGROUND AND RELATED
WORK

Networks with a depth of L layers and width w often have
an expressive power that scales exponentially in depth, but
not in width [Montufar et al., 2014, |[Poole et al., 2016]. Large
depth often comes with difficulty in training via gradient-
based methods. During training of a deep model, a signal
in the training data has to propagate forward from the in-
put to the output layer, and subsequently, the cost function
gradients have to propagate backwards in order to provide a
meaningful weight update. If the magnitude of a perturba-
tion is changed by a factor r in each layer, both signals and
gradients vanish or explode at a rate of r, rendering many
deep networks untrainable in practice.

To be specific, consider a deep network that propagates an
input signal o of width w through L layers that perform the

non-trivial, but width preserving functions F[W;] : R* —
R*, where W, denotes all parameters at layer i = 1,..., L.
The signal propagates through the network according to

There have been many attempts to improve signal propaga-
tion through deep networks and they often fall into one of
three categories—initialization schemes, normalization, and
residual connections. We show some of the popular ways to
combine residual networks with normalization in Table

2.1 CAREFUL INITIALIZATION

The dynamics of signal propagation in randomly initialized
deep and wide neural networks have been formalized via
mean field theory [Pennington et al., 2017, Xiao et al.,[2018|
Pennington et al., 2018]]. For some deep neural networks, in-
cluding fully connected and convolutional architectures, the
cosine distance of two distinct signals, x, - . /(||z;||||z}|]),
approaches a fixed point that either vanishes or approaches
unity at large depths. If this fixed point is 1 the behavior
of the network is stable and every input is mapped to the
same output, leading to vanishing weight updates. If this
fixed point is 0 the behavior of the network is chaotic and
even similar inputs are mapped to very different outputs,
leading to exploding weight updates. To understand whether
a network is in a stable or chaotic phase we consider the
input-output Jacobian

ox L

Jio = Dy 3
The mean squared singular values x of this matrix determine
the growth/decay of an average input signal perturbation as
it propagates through the network. The network exhibits a
boundary between the ordered and the chaotic phase, the
edge of chaos at x = 1. Training proceeds efficiently at
the edge of chaos. This behavior was recognized in [|Glorot
and Bengio, 2010, |He et al., 2015]], which motivated a re-
scaling of the weights such that y =~ 1 and on average signal
strengths are neither enhanced or attenuated.

Pennington et al.|[2017} 2018]] recognized that a unit mean
squared average of the input-output Jacobian is insufficient
to guarantee trainability. For example, if the singular vectors
of Jj, corresponding to very large/small singular values
align well with the perturbations in the data, training will
still be inefficient. They proposed the stronger condition of
dynamical isometry [Saxe et al.||2013]], which requires that
all singular values of Jj, are close to one. This means that
all perturbations of the input signal propagate through the
network equally well. The ReLU activation function maps
to zero for some perturbations of the input signal, and it
is therefore intuitive that deep networks with ReLU acti-
vations cannot possibly satisfy dynamical isometry, as was
rigorously established in [Pennington et al.,2017]]. For some



activation functions and network architectures, elaborate ini-
tialization schemes allow the network to satisfy dynamical
isometry at initialization, which significantly improves train-
ing dynamics [Schoenholz et al.| 2016, |[Poole et al.| 2016|
Yang and Schoenholz, 2017, |Gilboa et al.|[2019].

2.2 NORMALIZATION

An alternative approach to improve the trainability of deep
networks is to incorporate layers that explicitly provide
normalization. Many normalization modules have been pro-
posed, with the two most popular being BatchNorm [Ioffe
and Szegedyl |2015]] and LayerNorm [Ba et al.,2016]. In gen-
eral, normalization aims to ensure that initially, signals have
zero mean and unit variance as they propagate through a
network, reducing covariate shift [loffe and Szegedy,2015].

Normalization methods have shown success in accelerating
the training of deep networks, but they do incur a compu-
tational cost to the network and pose additional hyperpa-
rameters to tune (e.g. where to place the normalization). In
contrast to normalization methods, our proposed method is
simple and cheap to implement. ReZero alone is sufficient
to train deeper networks, even in the absence of various
norms. Although ReZero makes normalization superfluous
for convergence, we have found the regularizing effect of
BatchNorm to be complementary to our approach.

2.3 RESIDUAL CONNECTIONS

The identity mappings introduced for ResNet in [He et al.,
2016al] enabled a deep residual learning framework in the
context of convolutional networks for image recognition
that significantly increased the trainable depth. In [He et al.}
2016b] it was recognized that identity (pre-activation) resid-
ual connections allow for improved signal propagation.
Residual connections in ResNets allowed for training of
extremely deep networks, but the same has not been the
case for Transformer architectures. Deep Transformer archi-
tectures have thus far required extreme compute budgets or
auxiliary losses.

Careful initialization has been employed in conjunction with
residual connections. It has been proposed to initialize resid-
ual blocks around zero in order to facilitate better signal
propagation [Srivastava et al.,|2015| [He et al.,[2016b} |Goyal
et al., 2017, Hardt and Ma, 2016, He et al., 2019, |[Zhang
et al.,[2019]. Another example of carefully initialized resid-
ual connections was proposed as Gated ResNets [Srivastava
et al., [2015, Savarese et al., 2016]]. These connections are
defined by x; 11 = (1 — ;) - @; + «; - F(x;), which differs
from (T)). Gated ResNets eliminate the skip-connection once
the parameters «; grow during training, reducing the signal
propagation length of the network. These networks were an
intuitively motivated proposal based on Highway networks,
while ReZero is founded upon the field theoretic study of

deep signal propagation. In the absence of skip connections
the correlation function between input perturbations decays
exponentially with depth, instead of polynomially for net-
works containing skip connections (such as ReZero), as
explained in [[Yang and Schoenholz, 2017].

Recently, Skiplnit [De and Smithl [2020], an alternative to
the BatchNorm, was proposed for ResNet architectures that
is similar to ReZero. The authors find that in deep ResNets
without BatchNorm, a scalar multiplier is needed to ensure
convergence. We arrive at a similar conclusion for the spe-
cific case considered in [De and Smith} 2020f], and study
more generally signal propagation in deeper networks across
multiple architectures and beyond BatchNorm.

3 REZERO

We propose ReZer (residual with zero initialization), a
simple change to the architecture of deep residual networks
that facilitates dynamical isometry and enables the efficient
training of extremely deep networks. Rather than propa-
gating the signal through each of the non-trivial functions
F[W;] at initialization, we add a skip connection and rescale
the function by L learnable parameters c; (which we call
residual weights) that are initialized to zero. The signal now
propagates according to

Tit1 = L5 + azF[Wl](:cz) . (4)

At initialization the network represents the identity function
and it trivially satisfies dynamical isometry. We demon-
strate below for a toy model that this architecture can expo-
nentially accelerate training. The architecture modification
allows for the training of deep networks even when the in-
dividual layers’ Jacobian has vanishing singular values, as
is the case for ReLLU activation functions or self-attention
[Vaswani et al., 2017].

3.1 ATOY EXAMPLE

To illustrate how the ReZero connection accelerates training
let us consider the toy model of a deep neural network
described by L single-neuron hidden layers that have no
bias and all share the same weight w and «; = « Vi. The
network then simply maps an input x to the output

zrp = (14 aw)tag. 5)

Fixing the parameter « = 1 would represent a toy model
for a fully connected residual network, while initializing
a = 0 and treating « as a learned parameter corresponds
to a ReZero network. The input-output Jacobian is given
by Jio = (1 + aw)¥, indicating that for initialization with

!Codes for ReZero applied to various neural architectures:
https://github.com/majumderb/rezero
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Figure 2: Contour plot of the log gradient norm, log||OC||2,
over the network weight w and the residual weight o during
the training of the linear function z;—5 = 50 X x( via gra-
dient descent using a training set of xg = {1.,1.1,...,1.8}.
Gradient descent trajectories initialized at = 0 are shown
in red for five different initial w’s. The trajectory dynamics
avoid the poorly conditioned regions around o ~ 1 and
converge to the solution aw ~ 1.2.

w =~ 1 and o = 1 the output signal of a deep (e.g., L > 1)
network is extremely sensitive to any small perturbations of
the input, while with o = 0 the input signal magnitude is
preserved. While this example is too simple to exhibit an
order/chaos phase transition, it does accurately model the
vanishing and exploding gradient problem familiar in deep
networks. Assuming a learning rate A and a cost function C,
gradient descent updates the weights w according to

w  w — ALazo(1 4+ aw) 10,0 (2) |pme, . (6)

For a = 1, convergence of gradient descent with an initial
weight w = 1 requires steps no larger than 1, and hence a
learning rate that is exponentially small in depth L

Ao L7 (1 +w)-E7D )

where we only retained the parametric dependence on w
and L. For w > 1 the gradients in Equation [6] explode,
while for w ~ —1 the gradients vanish. Initializing o = 0
solves both of these problems— our experiments show that
with an initial &« = 0 and a small enough learning rate,
gradient descent changes the weights in a way that avoids
large outputs and keeps the parameter trajectory within a
feasible region while retaining the expressive power of the
network. The first non-trivial steps of the residual weight
updates are given by

a — —ANLwzg0.C(2)|p=a, , 8)

and gradient descent will converge with a learning rate that
is polynomial in the depth L of the network. In this simple
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Figure 3: ReZero for Transformers

example, the ReZero connection, therefore, allows for con-
vergence with dramatically fewer optimization steps com-
pared to a vanilla residual network. We illustrate the training
dynamics and gradients in Figure 2]

4  REZERO FOR DEEP NEURAL
NETWORKS

We now introduce the application of ReZero in more com-
plex and widely used neural network architectures such as
fully-connected neural networks, ResNets and Transformers.
Figure [3| shows a representative diagram when ReZero is
applied to a Transformer.

Fully-connected networks A fully-connected networks
with ReLU activations can be initialized with ReZero weight
() for each unit with a skip connection as defined in row 6
of Table [Tl

ResNets Residual connections enabled the first widely
used feed-forward networks for image recognition with hun-
dreds of layers [Srivastava et al.| [2015| [He et al., 2016al].
It was quickly realized that applying the residual connec-
tion after the activation function (in PreAct-ResNets [He
et al., 2016b]f|, see Table m), as well as initializing the net-
work closer to the identity mapping (in [Savarese et al.,
2016\ |Goyal et al.l 2017, [Hardt and Mal 2016, He et al.,
2019, [Zhang et al., 2019, [De and Smith| [2020])) leads to
improved performance. ReZero combines the benefits of
both approaches and is the simplest implementation in this
sequence of papers. Similar to fully-connected networks, ev-
ery residual block in a deep convolutional residual network
is added with the scalar multiplier « initialized at O along
with the residual connection (row 6, Table ).

Transformers Transformers architectures [[Vaswani et al.)
2017] recently gained significant popularity and success
both in supervised and unsupervised NLP tasks [Devlin
et al., 2019] |Al-Rfou et al., [2019]. Transformers are built
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Figure 4: Histograms of log singular values (log(\;,)) for the input-output Jacobian: (a) Transformer encoder at initialization;
depths 4, 12 and 64 layers. No evolution during training is shown for the 64 layer Transformer because this network diverges
rapidly. (b) ReZero Transformer encoder with 64 layers before/during training. Deep ReZero Transformers remain much
closer to dynamical isometry, where mean singular value )\, ~ 1. (c) Vanilla ResNet-110 during initial training (d) ReZero

ResNet-110 during initial training.

by stacking modules that first perform self-attention, then a
point-wise feed-forward transformation. The original Trans-
former [Vaswani et al., 2017|] implementation can be seen as
a residual network with post-normalization (row 5 in Table
[I). Inside a Transformer module the output of each sublayer
is added via a residual connection and then normalized by
LayerNorm,

x;+1 = LayerNorm (x; + sublayer(x;)) )

where sublayer € {self-attention, feed-forward}, as illus-
trated in Figure[3] In the ReZero Transformer this relation
is changed to @, 1 = x; + a;sublayer(x;).

4.1 SIGNAL PROPAGATION IN
REZERO-ENABLED NETWORKS

As discussed in §2.T| the perturbative signal propagation is
captured by the input-output Jacobian (3)), and good signal
propagation is associated with dynamical isometry, where
all singular values of this matrix are close to unity. We now
discuss the detailed distribution of singular values for vanilla
and ReZero variants of widely used deep networks: ResNets
and Transformers. Qualitatively similar conclusions hold
for fully connected networks.

ResNets ResNets are deep networks in which identity con-
nections allow signal to propagate deep through a network.
The signal propagation in these networks has been studied in
detail [[Yang and Schoenholz,2017], and it was shown that
the signal deteriorates only with the logarithm of the depth,
allowing for very deep networks. However, for very deep
networks the transformations of the layers still compound
and lead to very large singular values of the input-output

Jacobian, far from dynamical isometry. We show the dis-
tribution of singular values for a vanilla ResNets-110 in
Figure[dk. This distribution shows that there exist directions
in signal-space in which a perturbation gets magnified by a
factor of 10® at initialization. After some training the bulk
of the singular values moves closer to dynamical isome-
try at log()\j,) = 0. Figure [4d shows the singular value
distribution for a ReZero ResNet-110. Both before and dur-
ing training the network remains much closer to dynamical
isometry. Comparing the distributions directly demonstrates
that ReZero improves the signal propagation by a factor of
about 10% compared to vanilla variants.

Transformers Two crucial components relevant to the sig-
nal propagation in the original Transformer layers include
LayerNorm [Ba et al.,[2016] and (multi-head) self attention
[Vaswani et al., [2017]. Neither component by itself or in
conjunction with a vanilla residual connection can satisfy
dynamical isometry for all input signals, as we show with
a theoretical argument in Appendix §A. We verify these
claims in practice by evaluating the change of the atten-
tion output under an infinitesimal variation of each input
element, which yields the input-output Jacobian. We show
the input-output Jacobian for Transformer encoder layers
of various depths with Xavier uniform initialized weights
in Figure 4. While shallow Transformers exhibit a singular
value distribution peaked around unity, we clearly observe
that the Jacobian of deeper Transformers has a large number
of singular values that vanish to machine precision. While
the distribution varies depending on the details of the initial-
ization scheme, the qualitative statement holds more broadly
and is consistent with the common observation that deep
Transformer networks are extremely challenging to train.



In order to facilitate deep signal propagation we apply
ReZero by replacing LayerNorm and re-scaling the self-
attention block. Specifically, this modifies equation (9) to

x;11 = x; + a;sublayer(x;) , (10)

where «; is the learned residual weight parameter as in the
right panel of Figure [3] We share the same «; parameter
for a pair of multi-head self-attention and feed-forward net-
work within a Transformer layer. At initialization, o; = 0,
which allows for unimpeded signal propagation: All singular
values of the input-output Jacobian are 1 and the model triv-
ially satisfies dynamical isometry. To verify that the model
remains close to dynamical isometry throughout training
and for larger «;, we show a histogram of the Jacobian sin-
gular values during the training of a 64 layer Transformer
decoder language model on WikiText-2 [Merity et al.,|2017]
in Figure fb. During training the weight of the residual
connection gradually increases, allowing the Transformer
to model extremely complex functions while maintaining
signal propagation properties close to dynamical isometry.

S FASTER CONVERGENCE AT LARGE
DEPTH

In this section, we will experiment with ReZero-enabled
networks to investigate how these networks enables faster
learning in very deep networks. We experiment with (1)
fully connected ReLLU networks, (2) Convolutional ResNets,
and (3) Transformers.

5.1 FULLY CONNECTED NETWORKS

We study the effect of ReZero on deep ReLLU networks, and
compare it with some of the approaches that facilitate deep
learning listed in the rows of Table [T} Specifically, we will
compare a vanilla deep fully connected network (FC, row
1), a deep network with residual connections (FC+Res, row
2), a deep network with LayerNorm (FC+Norm, row 3),
and finally our proposed ReZero (row 6). We choose the
initial weights W; to be normally distributed with variances
optimal for training [He et al., 2015} |Yang and Schoenholz,
2017], e.g., 0‘2/‘, = 2/w for all but the vanilla residual net-
work where o, 2 0.25/w.

As a sample toy task, we train four different 32-layer net-
work architectures on the CIFAR-10 dataset for supervised
image classification. We are only interested in the training
dynamics and investigate how many iterations it takes for
the model to fit the data.

We show the evolution of the training loss in Figure[5] In our
simple experiment, the ReZero architecture converges to fit
the training data between 7 and 15 times faster than other
techniques. Note that without an additional normalization
layer the residual connection decreases convergence speed

\\ —— FC (1)
\ —— FC + Res (2)

g 0.8F FC + Norm (3) b
= —— FC + ReZero (6)
>
304
A
2 0.20
s
O

0.1

il

250 300

50 100 150 200
Epoch

Figure 5: Cross entropy loss during training of four variants
of 32 layer fully-connected networks with width 256 and
ReLU activations. Numbers in parentheses refer to the archi-
tectures in the corresponding rows of Table|l| We average
over five runs each and show 1o error bands. We train using
Adagrad [Duchi et al., {201 1]] with learning rate 0.01.

compared to a plain fully connected network. We speculate
that this is because at initialization the variance of the signal
is not independent of depth, see [Yang and Schoenholz,
2017].

With increasing depth, the advantages of the ReZero ar-
chitecture become more apparent. To verify that this archi-
tecture ensures trainability to large depth we successfully
trained fully connected ReZero networks with up to 10, 000
layers on a laptop with one GPUE] to overfit the training set.

5.2 CONVOLUTIONAL RESNETS

Here, we apply ReZero connections to deep convolutional
residual networks for image recognition [He et al.,[2016a].
While these networks are trainable without modification,
we observe that ReZero accelerates training and improves
accuracy.

In order to compare different methods (ResNet [He et al.|
2016al] modified by Gated ResNet [Srivastava et al., 2015,
Savarese et al., 2016], zero v [|Goyal et al.,[2017, [Hardt and
Ma, [2016], FixUp [Zhang et al., 2019], ReZero and Pre-Act
ResNet [He et al.l 2016b] modified with ReZero) to im-
prove deep signal propagation, we trained various versions
of residual networks on the CIFAR-10 image classification
dataset, each with identical hyperparameters. We discuss the
architectures and hyperparameters in detail in Appendices
§D and §E. In Table E] we present results for the validation
error, the number of epochs to reach 80% accuracy (to quan-
tify the initial training speed, similar to DAWNbench [Cole4
man et al., [2017]]), and loss on the training data. ReZero
performs better than the other methods for ensuring deep

2To train at these extreme depths we used the Adagrad opti-
mizer with a learning rate of 0.003.
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Figure 6: Validation error for four variants of ResNet-110.
Details of hyperparameters are in Appendix §E.

signal propagation: it accelerates training as much as FixUp,
but retains the regularizing properties of the BatchNorm
layer. Gated ResNets initially train very fast, but perform
significantly worse than ReZero on test data. The complete
evolution of validation error is shown in Figure [§| where we
compare ReZero with vanilla ResNets, Highway networks
and FixUp. We observe that at convergence, ReZero even
achieves lower validation error compared to other baselines.

Model Epochs to 80% Acc.
ResNet-110 23 +4
+ Gated ResNet 10+ 2
+ zero vy 36 £5
+ FixUp 15+1
+ ReZero 14+ 1
Pre-activation ResNet-18 26 £ 2
+ ReZero 12+1

Table 2: Comparison of ResNet variants on CIFAR-10. The
uncertainties correspond to standard error. Complete table
is in Appendix §E.

In order to demonstrate the accelerated training of ReZero
networks, we implemented superconvergence [Smith and
Topin, 2019]] in a Pre-activation ResNet-18 with ReZero
connections. The phenomenon of superconvergence uses
one cycle of an increasing and decreasing learning rate, in
which a large maximum learning rate serves as a regularizer.
This yields very fast convergence for some networks. We
find that the training duration to achieve 94% accuracy de-
creases from the 60 epochs for the baselin model to 45
epochs for a ReZero model.

——Post-Norm TX 7
3l Pre-Norm TX
——ReZero TX, o =1
——ReZero TX, a =0
21
,E-‘
T 15t
1.2+

5000 10000
steps

15000

Figure 7: Bits per byte on enwik 18 during training of three
variants of 12 layer Transformers normalization variants
against ReZero, as described in Post-Norm without
warm-up diverges within 100 training iterations, and is omit-
ted from graph. Numerical comparison is in Appendix §B.

5.3 TRANSFORMERS

To experiment with Transformers, we select language model-
ingon enwiki8 [Mahoneyl[2009] as a benchmark because
strong language models are a good indicator of downstream
NLP task performance [Radford et al.,[2019].

Convergence speed Since the introduction of Transform-
ers [ Vaswani et al.,2017]], there have been several competing
placements of the LayerNorm [Nguyen and Salazar, [2019,
Raffel et al.,|2019]] within the Transformer to achieve better
convergence [Radford et al.,[2019, [Xiong et al.,2020]]. We
experiment with 3 Transformer normalization methods and
compare against the ReZero Transformer. The Post-Norm
(Row 5 in Table[T) method is equivalent to the vanilla Trans-
former in [[Vaswani et al.| 2017]], the Pre-Norm (Row 4 in
Table [T) method was recently introduced in [Xiong et al.,
2020] and the GPT2-Norm (x;+1 = x; + Norm(F(x;)))
was used in the training of GPT2 [Radford et al., 2019],
which has successfully trained Transformers up to 48 layers.
Finally, we experiment with our proposed ReZero method
with « initialized to either zero or one. Details of our hyper-
parameter settings are in Appendix §B. In our preliminary
experiments, we also tried with a range of o values but found
that it generally isn’t important so long as « is sufficiently
small.

Our results show that Post-Norm (without warmup) diverges
during training while all other models are able to converge.
This is not surprising as the original Transformer implemen-
tation required a learning rate warm-up likely to overcome
its poor initial signal propagation, as confirmed in [Xiong
et al.| 2020]]. To verify this, we re-ran the Post-Norm setup

30ur implementation was inspired by the codes from
fast.ai available at |https://github.com/fastai/
imagenet-fast/tree/master/cifarl0l We replicated
this model and added ReZero.
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Model Layers Parameters BPB
Char-TX 12 41M 1.11
TX + Warm-up 12 38M 1.17
TX + ReZeroa =1 12 34M 1.17
TX + ReZeroa = 0 12 34M 1.17
Char-TX 64 219M 1.06
X 64 51M Diverged
TX + Warm-up 64 51M Diverged
TX + ReZeroa =1 64 51M Diverged
TX + ReZero a = 0 64 51IM 1.11
TX + ReZero 128 101M 1.08

Table 3: Comparison of Transformers (TX) on the
enwiki8 test set. Char-TX refers to the Character Trans-
former [Al-Rfou et al.,2019] and uses additional auxiliary
losses to achieve its performance.

with 100 steps of learning rate warm-up (Figure [/ and find
that the model is able to converge to 1.2 BPB in 13,690
iterations. Under this setting, we compared other Layer-
Norm placement schemes against Post-Norm. We find that
the other placements led to initially faster convergence, but
ultimately Post-Norm catches up in performance, resulting
in relatively slower convergence for Pre-Norm and GPT2-
Norm. However, other LayerNorm placements have an ad-
vantage over Post-Norm in that they do not require learning
rate warm-up, and thus have fewer hyperparameters to tune.
ReZero with @ = 1 does not show an improvement over
the vanilla Transformer, indicating the importance of ini-
tializing o = 0. With our proposed initialization of oo = 0,
ReZero converges 56% faster than the vanilla Transformer.

Deeper Transformers Deeper Transformers require sig-
nificantly more compute to train, with 78 layer Transformers
requiring a cluster of 256 GPUs [Microsoft,[2020]. This cost
comes from an increase in memory requirements and poor
signal propagation. The Character Transformer [Al-Rfou
et al., [2019]] mitigated this issue by having intermediate
layers predict the target objective as an auxiliary loss, thus
circumventing vanishing gradients. In this section, we ex-
tend our 12 layer ReZero Transformer from Section[5.3|to 64
and 128 layers and compare against the vanilla Transformer
(Post-Norm) and the Character Transformer. Our results (Ta-
ble 3) indicate that a 12 layer ReZero Transformer attains
the same BPB as a regular Transformer after convergence,
which shows that we do not lose any representational expres-
sivity in our model by replacing LayerNorm with ReZero.
We find that trying to train deep vanilla Transformers leads
to convergence difficulties. When scaled to 64 layers, the
vanilla Transformer fails to converge even with a warm-up
schedule. A ReZero Transformer with initialization of & = 1
diverges, supporting our theoretically motivated initializa-
tion at o = 0. The deeper ReZero Transformers are able to
attain better performance than the shallower Transformers.

0 200 400 600 800 1000 1200 1400
Training Iterations

Figure 8: Heat map for residual weight |«;| evolution during
training for 64L ReZero Transformer.

We also display results from Character Transformer [Al{
Rfou et al.,|2019], which had a similar setup, but required
more parameters and used intermediate and other auxiliary
losses to achieve their performance. In contrast, our 128
layer Transformer achieves similar performance and learns
effectively without any intermediate losses. We did not tune
our hyperparameters (Appendix §C) and our models can po-
tentially achieve better results with stronger regularization.

To probe deeper into our model, we examine the behavior
of residual weights «; during training for our 12 and 64
layer ReZero Transformers. The results for the 12 and 64
layer Transformer are qualitatively similar, and we show the
64 layer result in Figure [8] It is useful to view || as the
amount of contribution each layer provides to the overall
signal of the network. We see that an interesting pattern
emerges: During the early iterations of training, the resid-
ual weights quickly increase to a peak value, then slowly
decay to a small value later in training. Early in training, the
higher layers tend to be dominant (they peak earlier) and
toward the end of training each layer is used to a similar
degree. The average || at the end of training is 0.0898 and
0.0185 for the 12 and 64 layer models respectively, which
is approximately 1/ L. Interestingly, this pattern also occurs
in the 12 layer ReZero Transformer when we initialized o
to 1. The difference is that the model spends the first ~ 50
iterations forcing the «’s to small values, before reaching
a similar pattern to that in Figure[§] This empirical finding
supports our proposal that we should initialize o = 0 even
for shallow models.

6 CONCLUSION

We introduced ReZero, a simple architectural modification
that facilitates signal propagation in deep networks and
helps the network maintain dynamical isometry. Applying
ReZero to various residual architectures — fully connected
networks, Transformers and ResNets — we observed signifi-
cantly improved convergence speeds. Furthermore, we were
able to efficiently train Transformers with hundreds of lay-



ers, which has been difficult with the original architecture.
We believe deeper Transformers will open the door to future
exploration. In order to test whether zero initialization of
the residual weights is important, we trained transformer
networks with « initialized to either 1 or 0 and observed
a significant improvement in performance for o = 0 over
both the baseline and ov = 1 initialization. This is consistent
with our hypothesis that initial dynamical isometry drives
performance improvement.

While training models with ReZero Transformers, we dis-
covered interesting patterns in the values of residual weights
of each layer |«;| over the course of training. These pat-
terns may hint towards some form of curriculum learning
and allow for progressive stacking of layers to further ac-
celerate training [Gong et al., 2019]]. Patterns of residual
weights can be crucial to understand the training dynamics
of such deeper networks and might be important to model
performance, which we will explore in future work.
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