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Abstract

Finding a consistent DAG extension for a given
partially directed acyclic graph (PDAG) is a basic
building block used in graphical causal analysis.
In 1992, Dor and Tarsi proposed an algorithm with
time complexity O(n4), which has been widely
used in causal theory and practice so far. It is a
long-standing open question whether an extension
can be computed faster and, in particular, it was
conjectured that a linear-time method may exist.
The main contributions of our work are two-fold:
Firstly, we propose a new algorithm for the ex-
tension problem for PDAGs which runs in time
O(n3); secondly, we show that, under a compu-
tational intractability assumption, our cubic algo-
rithm is optimal. Thus, our impossibility result
disproves the conjecture that a linear-time method
exists. Based on these results, we present a full
complexity landscape for finding extensions in var-
ious causal graphical models. We extend the tech-
niques to recognition problems and apply them to
design an effective algorithm for closing a PDAG
under the orientation rules of Meek.

1 INTRODUCTION

Directed acyclic graphs (DAGs) are one of the most fun-
damental graphical models used in causal analysis. They
allow an intuitive and mathematically sound formalism for
representing and reasoning about causal knowledge [Spirtes
et al., 2000, Pearl, 2009]. However, since in practice the un-
derlying DAGs are unknown or uncertain to the researcher,
a crucial task is to learn such structures from data. In par-
ticular, an important issue here is to decide whether there
exists a causal explanation for the given data at all.

Verma and Pearl [1992] initiated systematic research in this
direction by proposing an algorithm for deciding if a set

of observed independencies over random variables has an
explanation expressed by a causal DAG. The algorithm first
extracts as much information as possible from the indepen-
dence statements and constructs a structure in form of a
partially direct acyclic graph (PDAG). Such structures con-
tain directed and undirected edges, but do not contain any
directed cycles. Next, the algorithm extends the PDAG to
a consistent, i. e., Markov equivalent DAG, if the PDAG
admits such a DAG extension. Finding consistent exten-
sions turned out to be an important building block, which
is also required by subsequent learning methods [Meek,
1995, Spirtes et al., 2000, Chickering, 2002]. It is commonly
used in software packages for causal analysis [Scutari, 2010,
Kalisch et al., 2012, Textor et al., 2016]. In our paper, we
investigate this and related problems from an algorithmic
and complexity-theoretical perspective.

The algorithm of Verma and Pearl [1992] finds a consistent
DAG extension in time O(n4m), where n denotes the num-
ber of nodes and m the number of edges. In 1992, Dor and
Tarsi proposed a faster method of time complexity1 O(n4);
or O(∆2m) for PDAGs with maximum degree ∆. So far, it
is the best-known algorithm for this problem and it is com-
monly used as a subroutine to solve more complex tasks.
It is a long-standing open question whether the consistent
DAG extension problem for PDAGs can be solved faster
than in time O(n4), in particular, if it is solvable in time
O(n+m). Dor and Tarsi [1992] conjectured: “We believe
that a linear-time chordality algorithm can be modified to a
general linear-time algorithm for PDX2.” The main contri-
butions of our work are two-fold.

• Firstly, we propose a new algorithm for the extension
problem for PDAGs which runs in time O(n3), or,
more precisely, in time O(∆m). Moreover, it solves
the problem for d-degenerate3 graphs in time O(dm).

1Originally, O(nm) ∈ O(n3) was claimed incorrectly.
A refined analysis was given by Chickering [2002].

2PDX stands for the consistent extension problem for PDAGs.
3For a definition, see Sec. 4.
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 • Secondly, using fine-grained complexity analysis, we
show that our algorithm is optimal under the Strong
Triangle Conjecture.

Thus, under the above computational intractability assump-
tion, the conjecture of Dor and Tarsi that there exists a
linear-time algorithm to find a consistent DAG extension
for PDAGs is not true. On the other hand, from our positive
result it follows that, e. g., for forests, constant-treewidth,
and planar graphs the problem can be solved in linear time.

We complete the investigation of the extension problem by
proposing a linear-time algorithm for Maximally Oriented
PDAGs (MPDAGs) [Meek, 1995, Perković et al., 2017],
which form a subclass of PDAGs. The algorithm is based on
a novel graphical characterization of extendable MPDAGs.
Such models occur naturally when combining structures
learned from observed data with background knowledge.
They provide a useful framework for representing and ana-
lyzing sets of Markov equivalent DAGs.

With these results, we obtain the full and precise complexity-
theoretic classification of the extension problem on various
graphical causal models, including Completed Partially Di-
rected Acyclic Graphs (CPDAGs) [Andersson et al., 1997a,
Spirtes et al., 2000, Chickering, 2002] and Chain Graphs
(CGs) [Lauritzen and Wermuth, 1989, van der Zander and
Liśkiewicz, 2016], which is presented in Table 1. Linear-
time algorithms are already known for CPDAGs and CGs.

Table 1: Lower and upper bounds on the time complexity of
the extension problem for PDAGs, CPDAGs, maximally ori-
ented PDAGs, and Chain Graphs. Previously known bounds
were proven by †: Dor and Tarsi [1992] (see also [Chick-
ering, 2002]), ∗: Hauser and Bühlmann [2012] and ‡: An-
dersson et al. [1997b]. Our novel lower bound from Corol-
lary 3.4 holds for combinatorial algorithms under the Strong
Triangle Conjecture. Bounds in gray are trivial.

Model Time Complexity Source
Upper Bound Lower Bound

PDAG O(n4) †

O(n3) Thm. 4.6
Ω(n3−o(1)) Cor. 3.4

CPDAG O(n+m) Ω(n+m) ∗

MPDAG O(n4) Ω(n+m) †

O(n+m) Thm. 5.6

CG O(n+m) Ω(n+m) ‡

In order to leverage the linear-time algorithms for CPDAGs,
MPDAGs and Chain Graphs, it is necessary to check
whether a graph belongs to one of these classes. Hence,
we expand our analysis to the recognition problem for these
graphs. Interestingly, the lower-bound techniques can also

Table 2: A summary for the complexity of the recognition
problem for the models as in Table 1.

Model Time Complexity Source
Upper Bound Lower Bound

PDAG O(n+m) Ω(n+m)

CPDAG O(n+m) Ω(n+m) Obs. 6.2

MPDAG O(n3) Thm. 6.1
Ω(n3−o(1)) Cor. 3.4

CG O(n+m) Ω(n+m) Obs. 6.2

be applied in this setting – yielding an Ω(n3−o(1)) bound
for MPDAG recognition. We match this bound with an al-
gorithm that recognizes MPDAGs in time O(n3). Table 2
summarizes the complexities of the recognition problems.

Finally, we combine our new algorithmic techniques to de-
sign an effective method for closing a PDAG under the
orientation rules of Meek [1995]. This task of maximally
orienting a PDAG is an important primitive used in algo-
rithms for learning causal graphs. It also occurs in other
settings, such as enumeration problems [Spirtes et al., 2000,
Wienöbst and Liśkiewicz, 2020, Guo and Perković, 2020].

The paper is organized as follows. In Sec. 2, we formally
introduce the graph classes and problems considered in this
work. We derive lower bounds in Sec. 3 and give efficient al-
gorithms for the extension problem on PDAGs and MPDAG
in Sec. 4 and Sec. 5, respectively. In Sec. 6, we study the
recognition problems. We apply the new techniques to the
problem of maximally orienting a PDAG in Sec. 7. Due
to space constraints, some proofs (marked with a H) are
relocated to the supplementary materials.

2 PRELIMINARIES

We investigate partially directed graphs, which are triples
G = (VG, EG, AG) consisting of a set of vertices, a set of
undirected edges, and a set of directed edges (called arcs)
AG ⊆ VG × VG. If G is clear from the context, we omit
the subscripts in V , E, and A. We stipulate that for all pairs
x, y ∈ V at most one of the following is true: {x, y} ∈ E,
(x, y) ∈ A, or (y, x) ∈ A. That is, an edge is either undi-
rected or directed in one direction. In these cases, we say x
and y are adjacent and write x ∼G y. We count the neigh-
bors of v ∈ V as δ(v) = |{w | {v, w} ∈ E }|, δ+(v) =
|{w | (v, w) ∈ A }|, δ−(v) = |{w | (w, v) ∈ A }|. The
degree of v is defined as ∆(u) = δ(u) + δ+(u) + δ−(u),
and the maximum degree of G as ∆(G) = maxv∈V ∆(v).
We use the abbreviations n = |V |, m = |E| + |A|, and
∆ = ∆(G). All graphs in this paper are connected, thus,
m ≥ n − 1. We denote the induced subgraph of G on
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Figure 1: Relation between subclasses of PDAGs: MPDAGs,
CGs, CPDAGs, and DAGs.
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Figure 2: The four Meek rules that are used to characterize
MPDAGs [Meek, 1995, Perković, 2020].

a set C ⊆ V by G[C]. An undirected (connected) com-
ponent is a maximal undirected connected subgraph (not
necessarily induced). A clique is a set of vertices that are
pairwise adjacent. A cycle is a sequence of distinct nodes
(c1, c2, . . . , ck), with k ≥ 3 and edges ci−ci+1 or ci ci+1

for i ∈ {1, . . . , n − 1}, and ck − c1 or ck c1. A cycle
is undirected if all edges are undirected, directed if they
are all directed, and semi-directed if at least one edge is
directed. A v-structure is an induced subgraph x y z
with x 6∼G z. The skeleton of G = (V,E,A) is the undi-
rected graph

(
V, { {x, y} | x ∼G y }

)
. An undirected graph

is called chordal if contains no induced subgraph, which is
a cycle of length larger or equal to four.

Directed acyclic graphs (DAGs) have E = ∅ and contain
no directed cycle. Each DAG has a (not necessarily unique)
topological ordering: a permutation π of the vertices such
that u precedes v in π for every edge u v. DAGs can be
partitioned into Markov equivalence classes, which contain
DAGs representing the same conditional independence re-
lations [Pearl, 2009]. Verma and Pearl [1990] showed that
two DAGs are in the same Markov equivalence class if, and
only if, they have the same skeleton and v-structures.

We consider various graphical models: PDAGs (partially
directed acyclic graphs) are partially directed graphs without
a directed cycle; Chain Graphs (CGs) are partially directed
graphs that do not contain a semi-directed cycle; MPDAGs
(maximally oriented PDAGs) are PDAGs that are closed
under the four Meek rules illustrated in Fig. 2. CPDAGs
(completed PDAGs) represent a Markov equivalence class C.
They contain an undirected edge {u, v} ∈ E if there are

DAGs D1, D2 ∈ C with (u, v) ∈ AD1 and (v, u) ∈ AD2 ;
and a directed edge (u, v) ∈ A if there is a D1 but no D2.
The relations between these classes are illustrated in Fig. 1.

Any partially directed graph G = (V,E,A) represents a
possibly empty subset of a Markov equivalence class con-
sisting of DAGs with the same arcs, the same skeleton, and
the same v-structures as G. These DAGs are called consis-
tent (DAG) extensions4 and are defined as orientations ~E
of E such that (V, ∅, ~E∪A) is acyclic and contains the same
v-structures as G. Let CE(G) denote the set of all consistent
DAG extensions of G. We call G extendable if CE(G) 6= ∅.

Problem 2.1. EXT

Instance: A partially directed graph G = (V,E,A).
Result: A consistent DAG extension of G if G is extend-

able; otherwise ⊥.

Restricting the instances to graphs of one of the previ-
ously introduced graph classes, we derive the problems
PDAG-EXT, MPDAG-EXT, CPDAG-EXT, and CG-EXT.

The class of extendable graphs can be seen as an intermedi-
ate class between chordal and acyclic graphs. The relation
between these three classes can be stated as follows:

Observation 2.2 (Dor and Tarsi [1992]). Let V be a vertex
set, E be a set of undirected edges, and A ⊆ V × V be a
set of directed arcs. Then:

(i) (V,E, ∅) is extendable ⇔ (V,E) is chordal;

(ii) (V, ∅, A) is extendable ⇔ (V,A) is acyclic.

Another fundamental problem is to recognize classes of par-
tially directed graphs. We define PDAG-REC, CPDAG-REC
and CG-REC analogously to:

Problem 2.3. MPDAG-REC

Instance: A partially directed graph G = (V,E,A).
Question: Is G an MPDAG?

Finally, we consider the problem of computing the closure
of a PDAG under the orientation rules of Meek:

Problem 2.4. MAXIMALLY-ORIENT

Instance: A PDAG G = (V,E,A).
Result: The graph obtained by exhaustively applying

R1-R4 to G.

If G is extendable, the resulting graph is unique and will, in
general, be an MPDAG. In case all directed edges in G are
implied by v-structure information (as for example in the
PC algorithm [Spirtes et al., 2000]), the resulting graph will
also be a CPDAG [Meek, 1995]. On the other hand, if G is
not extendable, different orders of applying the rules may
lead to different graphs.

4For readability, we simply use the term extensions.



 3 LOWER BOUNDS UNDER THE
STRONG TRIANGLE CONJECTURE

In this section, we derive lower bounds for MPDAG-REC,
MAXIMALLY-ORIENT and the decision variants of
PDAG-EXT and EXT. In particular, the question of whether
PDAGs can be extended in linear time has been debated
in the past [Dor and Tarsi, 1992], as it is well-known that
the related problem of testing chordality can be solved in
time O(n +m), i. e., linear in the number of vertices and
edges [Rose et al., 1976]. We show that in order to extend
PDAGs for arbitrary E and A in linear time, however, a
great algorithmic breakthrough would be necessary.

We prove these results through reductions from the problem
TRIANGLE (does an undirected graph contain three pair-
wise connected vertices?). It is conjectured that, for any
ε > 0, there is no algorithm that solves TRIANGLE in time
O(nω−ε) (were ω < 2.373 is the matrix multiplication ex-
ponent) and no combinatorial algorithm running in time
O(n3−ε). Here, combinatorial means “not using algebraic
techniques” and the distinction is made as algebraic algo-
rithms are often not well-suited for practical applications5.

Conjecture 1 (Strong Triangle Conjecture (STC)). In the
Word RAM model with words of O(log n) bits, any algo-
rithm requires O(nω−o(1)) time in expectation to detect
whether an n vertex graph contains a triangle. Moreover,
any combinatorial algorithm requires time O(n3−o(1)).

Williams and Williams [2018] connected TRIANGLE to a
whole class of problems, which thus all suffer from a cu-
bic time barrier. A sub-cubic combinatorial algorithm for
any of these problems would imply a sub-cubic algorithm
for all of them. An important example in this class is the
BOOLEAN-MATRIX-MULTIPLICATION problem (BMM).

We present an O(n2) time reductions from TRIANGLE to
MPDAG-REC, MAXIMALLY-ORIENT, PDAG-EXT, and EXT.
Hence, a linear-time algorithm for one of these problems
(which runs in O(n2) as m < n2), would imply an O(n2)
algorithm for TRIANGLE. This would violate the STC no
matter if such an algorithm is combinatorial or not. More
generally, any sub-cubic combinatorial algorithm would
give a sub-cubic combinatorial algorithm for TRIANGLE
and in turn for problems such as BMM.

The reductions are based on the following idea: We par-
tition the graph into three parts such that we have con-
trol over the structure of possible triangles; then we direct
only a few edges such that detecting induced subgraphs

5In the algorithmic literature, the term combinatorial algorithm
is mainly used for distinguishing those approaches which are dif-
ferent from the algebraic approach originated with the work of
Strassen. In particular, one can simply think of a combinatorial
algorithm as such that does not call an oracle for ring matrix multi-
plication. For more details, see [Williams and Williams, 2018].

G:

V1 V2 V3

G′:

V1 V2 V3

Figure 3: The basic step of the reductions: The edges be-
tween V1 and V2 are oriented towards V2 and the edges
between V1 and V3 are complemented. A triangle in G im-
plies the subgraph a b− c in G′ and vice versa.

a b − c corresponds to finding triangles. Our first task
is, thus, to prove that TRIANGLE is at least as hard as
3PART-TRIANGLE (does a 3-partite undirected graph con-
tain a triangle?). An undirected graph is k-partite if there
is a partition V = V1 ∪̇ V2 ∪̇ · · · ∪̇ Vk such that there is no
edge {u, v} ∈ E with u, v ∈ Vi for some i.

Lemma 3.1 (H). There is an O(n2) time reduction from
TRIANGLE to 3PART-TRIANGLE that increases the number
of vertices only by a constant factor.

Building on this, we show a reduction from TRIANGLE to
MPDAG-REC which proves the promised lower bound.

Theorem 3.2. There is an O(n2) time reduction from
TRIANGLE to the MPDAG-REC problem that increases the
number of vertices only by a constant factor.

Proof. First apply Lemma 3.1 to reduce TRIANGLE to
3PART-TRIANGLE and let G = (V,E, ∅) be the resulting
instance with partitions V1 ∪ V2 ∪ V3 = V . Next, transform
this instance as follows.

The basic idea is illustrated in Fig. 3: From a 3-partite graph
G = (V1∪V2∪V3, E, ∅) construct a partially directed graph
G′ = (V1 ∪ V2 ∪ V3, E

′, A′) with

E′ = { {u, v} | {u, v} ∈ E with u ∈ V2 and v ∈ V3 }
∪ { {u, v} | {u, v} 6∈ E with u ∈ V1 and v ∈ V3 };

A′ = { (u, v) | {u, v} ∈ E with u ∈ V1 and v ∈ V2 }.

Next, construct a partially directed graph Grec = (V,E′ ∪
{ {u, v} | u 6= v ∈ V1 }, A′), i. e., modify the construction
shown in Fig. 3 by additionally pairwise connecting V1 with
undirected edges. We show that G contains a triangle if, and
only if, Grec is not an MPDAG:

For the first direction, let a, b, c be a triangle in G and,
w.l.o.g., assume a ∈ V1, b ∈ V2, c ∈ V3. Then Grec contains
the induced subgraph a b−c and is hence not an MPDAG,
as R1 would apply.



 For the second direction, assume Grec is not an MPDAG.
Then at least one of the following statements is true: (1) R1
can be applied. (2) R2 can be applied. (3) R3 can be applied.
(4) R4 can be applied. (5) Grec contains a directed cycle.

Statement (5) does not hold as by construction there is no
directed cycle. (4) does not hold as R4 needs a vertex c
with δ+(c) > 0 and δ−(c) > 0, which does not exist in the
construction. The same is true for vertex b in R2, hence (2)
does not hold either. For R3, we need non-adjacent vertices
b and d with δ+(c) > 0, hence, b and d have to be in
V1. But then, we have b − d. Hence, (3) does not hold. It
follows that (1) has to apply and thus there is an induced
subgraph a b − c in Grec (with a ∈ V1, b ∈ V2, c ∈ V3

by construction) which corresponds to a triangle in G.

From Theorem 3.2 we can deduce immediately that un-
der STC any combinatorial algorithm solving MPDAG-REC
problem requires Ω(n3−o(1)) time. The same lower bound
holds for MAXIMALLY-ORIENT. Otherwise, one could
solve MPDAG-REC in sub-cubic time by applying the algo-
rithm for MAXIMALLY-ORIENT to the given graph G and
testing if the resulting graph coincides with G.

Theorem 3.3 (H). There is an O(n2) time reduction from
TRIANGLE to the decision variant of PDAG-EXT that in-
creases the number of vertices only by a constant factor.

Sketch of Proof. Modify the graph G′ constructed in the
proof of Theorem 3.2 and illustrated in Figure 3 to Gext as
folllows. Complete the vertices in V3 to an undirected clique
and add a new vertex z with directed edges z v ∈ V3. A
triangle in G becomes a b− c z in Gext. As the edge
b− c cannot be oriented without creating a new v-structure,
Gext is not extendable. If graph G does not contain a triangle,
one can construct a consistent extension by orienting the
undirected edges as follows: V3 3 u v ∈ V1; V3 3
u v ∈ V2; and the edges in V3 according to some arbitrary
linear ordering.

Corollary 3.4. For any ε > 0, every algorithm that solves
MPDAG-REC, MAXIMALLY-ORIENT, PDAG-EXT, or EXT
in time O(nω−ε) violates STC. Any combinatorial algo-
rithm that solves one of these problems in time O(n3−ε)
also violates the conjecture.

4 EXTENDING PARTIALLY
DIRECTED GRAPHS

We introduce an algorithm for EXT that matches the lower-
bound from the previous section. Furthermore, we show that
the algorithm performs provably better on many important
graph classes, e. g., we can compute extensions of graphs
with bounded treewidth and of planar graph in linear time.

A graph property Π is a family of graphs that is closed
under isomorphism, e. g., being chordal is a graph property.

We say Π is hereditary if it is also closed under taking
induced subgraphs. For instance, all three properties (being
extendable, chordal, or acyclic) are hereditary.

Definition 4.1. Let p be a property of a vertex. A p-
elimination-order of a (directed) graph G = (V,E) is an
order π such that every vertex v has property p in the in-
duced subgraph G[V \ {w | π(w) < π(v) }].

Elimination orders characterize hereditary graph classes.
For instance, a vertex v in an undirected graph is called
simplicial if its neighbors N(v) form a clique; a vertex w
in a directed graph is a sink if it has no outgoing arc. It is
well-known that a (directed) graph is chordal iff it has a
simplicial-elimination-order; and is acyclic iff it has a sink-
elimination-order [Fulkerson and Gross, 1965]. Dor and
Tarsi [1992] observed that these properties can be combined
to obtain a characterization of extendable graphs:

Definition 4.2. A potential-sink in a partially directed graph
G = (V,E,A) is a vertex v s. t. X = {w | {v, w} ∈ E }
is a clique, {w | (v, w) ∈ A } is empty, and x ∼G y for all
x ∈ X and y ∈ Y = {w | (w, v) ∈ A }.

Fact 4.3 (Dor and Tarsi, 1992). Every partially directed
graph that is extendable contains a potential-sink.

Corollary 4.4. A partially directed graph is extendable iff
it has a potential-sink-elimination-order.

Proof. The first direction follows from Fact 4.3 as extend-
able graphs are hereditary. On the other hand, successively
removing an potential-sink and orienting all its incident
edges towards it yields an extension of the graph.

Based on this characterization, Dor and Tarsi provided an
O(∆2m) algorithm for recognizing extendable graphs. We
improve this result by presenting an algorithm that checks
whether a partially directed graph is extendable in time
O(dm), where d is the degeneracy of the skeleton.

Definition 4.5. A graph G = (V,E) is d-degenerate if there
is a vertex-ordering ≺ (called degeneracy ordering) such
that we have |{w | w ≺ v and w ∼G v }| ≤ d for every
v ∈ V . The smallest value d for which G is d-degenerate is
the degeneracy of G.

Observe that in any d-degenerate graph with n vertices,
m edges, and maximum degree ∆ we have d ≤ ∆ ≤ n and
m ≤ dn. We dedicate this section to prove the following:

Theorem 4.6. There is an algorithm that decides whether a
PDAG G is extendable in time O(dm). If G is extendable, a
consistent extension can be computed within the same time
bound. Here, d is the degeneracy of the skeleton of G.

The proof of the theorem is based on the following slightly
weaker version, which only achieves O(∆m).
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Figure 4: The data structure to represent PDAGs G = (V,E,A) is based on a hybrid graph representation by Abu-Khzam
et al. [2010]. We maintain two directed graphs G1 = (V,E) and G2 = (V,A), where G1 is symmetric. Each Gi is
represented by an n× n adjacency matrix Mi (not displayed here), and two adjacency lists Ii and Ni, storing the incoming
and outgoing arcs of each vertex. We also store for each vertex its in- and out-degree δi(v)

− and δi(v)
+. The clue is that

in M1[x, y] = ` we store the position ` of an edge {x, y} in the adjacency list I1[x], respectively, M2[x, y] = (`1, `2)
stores the position `1 of an edge (x, y) in the adjacency list N2[x] and `2 the position of (x, y) in I2[y]. Hence, we have
O(1) adjacency checks, edge insertion, and edge deletion. Note that, in practice, one may also use hash tables to store the
adjacencies of the vertices in G1 and G2, with expected time O(1) for the stated operations. To manage potential-sinks, we
use arrays α, β that track the edges in the neighborhood of a vertex: α[v] = |{ {x, y} | {v, x} ∈ E∧{v, y} ∈ E∧x ∼G y }|
and β[v] = |{ {x, y} | {x, v} ∈ E ∧ (y, v) ∈ A ∧ x ∼G y }|. We initialize these values to zero and update them in time
O
(
δ+1 [u] + δ+2 [u] + δ−2 [u]

)
for edge insertions and deletions. A vertex s ∈ V is a potential-sink iff (i) α[s] =

(
δ+1 [v]

2

)
;

(ii) β[s] = δ+1 [s] · δ
−
2 [s]; and (iii) δ+2 [s] = 0. Therefore, the data structure can support the claimed operations. The figure

shows this data structure for the partially directed graph at the top left (without the dotted edge). The adjacency lists are
arrays to be read from top to bottom. Neither 1 nor 5 are potential-sinks (in both cases the edge 2 ∼ 4 is missing). If we
insert the dotted edge we get β[1] = β[5] = 2, δ+2 [1] = δ+2 [5] = 0, α[1] =

(
2
2

)
= 1 and α[5] =

(
1
2

)
= 0 – hence, both

become potential-sinks by the sketched criterion.

Lemma 4.7 (H). There is an algorithm that decides whether
a PDAG G is extendable in time O(∆m).

Sketch of Proof. The backbone of the algorithm is a data
structure that maintains PDAGs and potential-sinks therein.
It supports insertion and deletion of edges {u, v} or arcs
(u, v) in O(δ(u)); can test whether a vertex is a potential-
sink in O(1); and provides the operation pop-ps(s) that ori-
ents all incident edges towards a potential-sink s, removes s,
and returns all neighbors of s that did become a potential-
sink by this operation – all in time O(δ(s)2 + δ(s) · δ−(s)).
A full implementation is provided in the supplementary
material; Fig. 4 contains a brief illustration of it.

Given this tool, the algorithm becomes rather simple: Ini-
tialize the data structure by inserting all edges (in time
O(∆m)); then initialize a stack of all potential-sinks by
testing for every vertex whether it is a potential-sink (over-
all O(n)); finally, as long as there is potential-sink s on
the stack, apply pop-ps(s), remove s from the stack, and
push the newly generated potential-sinks to the stack. The
overall run time is obtained as follows: pop-ps(s) runs in
time O(δ(s)2 + δ(s) · δ−(s)) and removes δ−(s) + δ(s)
edges from the graph. By rewriting δ(s)2 + δ(s) · δ−(s) as
δ(s) ·

(
δ(s) + δ−(s)

)
we see that we pay O(δ(s)) ≤ O(∆)

per edge. Since the algorithm terminates after the removal
of all edges, an overall run time of O(∆m) follows.

In order to improve the run time of the algorithm from
O(∆m) to O(dm), we need two things: First, a faster way
of initializing the data structure (i. e., we cannot simply
insert all m edges and pay O(∆) per item), and we require a
finer analysis of the pop-ps method. The main idea is to use
the following facts about d-degenerate graphs: they always
contain at least one vertex of degree at most d, and they do
not contain cliques of size more than d+ 1.

Proof of Theorem 4.6. Before we initialize the data struc-
ture, we compute a degeneracy ordering of the skeleton
of the graph. This is possible in time O(n + m) with
the algorithm of Matula and Beck [1983]. Let the order-
ing be v1, v2, . . . , vn, i. e., vi has at most d neighbors in
v1, . . . , vi−1. We iterate through the vertices and insert their
incident edges to preceding neighbors. That is, if we handle
a vertex vi, we insert all edges {vi, vx} and arcs (vi, vy),
(vz, vi) with x, y, z < i. In this way, vi has degree at most
d if we insert an edge for it and, thus, inserting the edge
requires time O(d), yielding an initial time of O(dm).

We proceed as in the proof of Lemma 4.7 and maintain a
stack of potential-sinks. While the stack is not empty, we
use pop-ps(s) to orient edges towards s and remove s from
the graph. Recall that this costs O(δ(s)2 + δ(s) · δ−(s)).

Claim 4.8 (H). A potential-sink s in a d-degenerate graph
has at most d+ 1 undirected neighbors.



 
Table 3: Running time of the algorithm from Theorem 4.6
on graphs whose skeleton is in the mentioned graph class.

Graph Class Time Note

d-degenerate O(dm) Theorem 4.6
general graphs O(nm) d ≤ n

forests O(m) constant degeneracy
series-parallel O(m)

planar O(m)

treewidth-t O(tm) d ≤ t

Removing a potential-sink s, thus, produces costs of at most
O(d2 + d · δ−(s)). Since this removes δ(s) + δ−(s) edges
from the graph, we pay O(dm) to remove all potential-
sinks.

To obtain the corresponding extension, we remember the
order in which we remove the potential-sinks. The reverse
of that order is a topological ordering of an extension and,
hence, can be used to extend G in linear time.

Let us close this section by pointing out the advantage of
an O(dm) algorithm compared to an O(∆m) algorithm.
Many natural graph classes have bounded degeneracy, but
unbounded maximum degree – for instance, planar graphs
and graphs of bounded treewidth. Our algorithm runs in
linear time on such graphs. Table 3 summarizes the findings
of this section on some well-known graph classes.

5 A GRAPHICAL CHARACTERIZATION
OF EXTENDABLE MPDAGS

As discussed in the previous section, sink-based reduction
algorithms can extend graphs in time O(dm). The lower
bounds of Sec. 3 suggests that no significantly faster algo-
rithm is possible. However, the lower bounds do not rule
out faster algorithms for more structured graphs. It is well-
known that extensions of CPDAGs can be constructed in
linear time by algorithms such as the Lexicographic BFS or
Maximum Cardinality Search [Rose et al., 1976, Tarjan and
Yannakakis, 1984]. These algorithms were originally devel-
oped for chordality testing. The connection to CPDAGs is
due to the fact that the undirected components of CPDAGs
are chordal [Andersson et al., 1997a]. Orienting these undi-
rected parts is precisely the task of extending a CPDAG.

A related graph class is the one of MPDAGs, which encode
additional background knowledge compared to CPDAGs
and are, in contrast to PDAGs, completed by the four Meek
rules R1-R4. Unlike CPDAGs, MPDAGs are not extendable
by definition – see Fig. 5. For practical use, however, only
extendable MPDAGs are meaningful. Hence, it is our goal to
provide a graphical characterization for such graphs. In addi-

a

b c

d(1) a

b c

d(2) a

b c

d(3)

Figure 5: Graph (1) is not extendable: Orienting the cycle of
length 4 will either create a v-structure or a directed cycle.
(Intuitively, this explains why an undirected graph is extend-
able iff it is chordal.) However, the graph is an MPDAG
by definition. Graph (2) on the other hand is extendable, a
consistent DAG extension is shown in (3).

tion, this characterization allows us to compute an extension
in linear-time. Consider the graph (2) from Fig. 5 and ob-
serve that in order to extend an MPDAG, it is not sufficient
to orient the undirected components (they are not necessarily
chordal). In particular, when we study MPDAGs, we have
to consider the directed edges, too. Therefore, we make use
of a graphical object introduced by Perković [2020]:

Definition 5.1. Let G be an MPDAG and C = (VC , EC , ∅)
an undirected component of G. We call B = G[VC ] a
bucket.

A bucket is the induced subgraph on the vertices of an
undirected component and, hence, may contain directed
edges such as a c in (2) of Fig. 5. Using the information
available through the directed edges in each bucket, we want
to find a criterion for MPDAG extendability. We start by
observing the following property:

Lemma 5.2 (H). Let G be an MPDAG. A bucket B of G
does not contain a v-structure.

Orienting buckets acyclically without any v-structure is an
important step towards computing an extension. For such
orientations, we use the shorthand AMO (acyclic moral
orientation).6 Indeed, any AMO of the buckets will suffice
to find a consistent extension of an MPDAG.

Lemma 5.3 (H). Let G be an MPDAG. Computing an AMO
for each bucket yields a consistent extension of G.

The question remains whether every bucket has an AMO.
The lemma below provides a graphical criterion to decide
whether this is the case. Moreover, we present a linear-time
algorithm that computes such an AMO of a bucket.

We note that preliminary results in this direction were ob-
tained by Meek [1995] (Lemma 8). However, these are
non-constructive and assume extendability.

Lemma 5.4 (H). Let G be an MPDAG. A bucket B of G
has an AMO if, and only if, its skeleton is chordal. Such an
AMO can be computed in linear time.

6We use the term to emphasize the absence of a v-structure; an
AMO of a bucket can also be seen as a consistent extension.



 Sketch of Proof. We adapt the Lexicographic BFS (LBFS)
algorithm [Rose et al., 1976] to find an AMO of B consistent
with the directed edges that are already present. It is well-
known that the orientation induced by an LBFS traversal
order (a b if a is visited before b) is an AMO if, and only
if, the skeleton is chordal [Hauser and Bühlmann, 2012].

At each step of the LBFS, the algorithm has a candidate
set of vertices to explore next. In order to reproduce the
directed edges in B, we demand that a vertex is chosen that
has no incoming edges from unvisited vertices in B. This
way one obtains an AMO, which reproduces the already
directed edges. Through the properties of MPDAGs and the
LBFS, it can be shown that such a vertex always exists.

Hence, we obtain the following graphical characterization
of extendable MPDAGs – and a linear-time algorithm for
computing extensions.

Theorem 5.5. An MPDAG is extendable if, and only if, the
skeleton of every bucket is chordal.

Proof. Combine Lemma 5.3 and Lemma 5.4.

Theorem 5.6. MPDAG-EXT can be solved in linear time
O(n+m).

Proof. Perform the modified LBFS from the proof of
Lemma 5.4 on each bucket. Afterward, test in linear time
whether the orientation is an AMO [Rose et al., 1976].

6 RECOGNITION OF CAUSAL
GRAPH CLASSES

As shown in the previous section, it is possible to find a con-
sistent extension of an MPDAG in linear-time. The remain-
ing question is how to check whether a partially directed
graph is an MPDAG. Checking acyclicity can be done in
linear time, but testing the closedness under the Meek rules
R1-R4 is harder as the lower bound in Sec. 3 suggests.

In this section, we develop an algorithm that outperforms
a naive detection of the Meek rules – which alone for the
rules R3 and R4 requires time O(∆3n) or O(∆2m). Our
approach runs in time O(∆m) and, thus, matches the O(n3)
lower bound that is prescribed by the STC.

Theorem 6.1. MPDAG-REC can be solved in time O(∆m).

Proof. The algorithm checks step-by-step whether the
MPDAG criteria are satisfied:

1. If G contains a directed cycle, return “No”.

2. R1: If ∃ b− c and vertex a s.t. a b− c, return “No”.

3. R2: If ∃ a − c and vertex b s.t. a b c , return
“No”.

4. R3: If ∃ d c and vertex a s.t. a d c as well
as vertex b s.t. b c d, return “No”.

5. R4: If ∃ c b and vertex d s.t. d c b as well as
vertex a s.t. a b c , return “No”.

6. Return “Yes”.

The rules R1 and R2 are detected naively. Hence, it is clear
that the subgraphs corresponding to R1 or R2 cannot be
present in the graph, when the algorithm reaches R3 and
R4. For the detection of these rules, the existence of vertices
a and b in R3 and d and a in R4 is checked separately.
Therefore, it remains to show that, indeed, it is not necessary
to explicitly check whether there is an undirected edge a− b
in R3 or d− a in R4.

Consider R3. If (i) a and b were nonadjacent, R1 would
apply to b c − a; if (ii) a b, R2 would apply to
a b c ; if (iii) a b, R1 would apply to b a − d.
Hence, we need to have a− b.

For R4, if (i) d and a were nonadjacent, R1 would apply to
d c− a; if (ii) a d, R2 would apply to a d c ; if
(iii) a d, R1 would apply to d a− b. Hence, we need
to have d− a.

It follows that the algorithm outputs “Yes” if, and only if, no
cycle is present and no rule from R1-R4 applies, i. .e., when
the graph is an MPDAG. The run time follows immediately,
as each edge is examined a constant number of times and
only neighboring vertices are considered.

We conclude that it is possible to speed up the detection of
R3 and R4 by not searching for 4-tuples (a, b, c, d), but, e. g.
in the case of R3 for 3-tuples (a, c, d) and (b, c, d).

We summarize the complexity of the recognition problem
for the remaining graph classes. The result for PDAGs is
straightforward and we list it here for the sake of complete-
ness. To the best of our knowledge, the results for CPDAGs
and Chain Graphs have not been published previously.

Observation 6.2 (H). The problems PDAG-REC,
CPDAG-REC, and CG-REC can be solved in time O(n+m).

7 APPLICATION TO MAXIMAL
ORIENTATIONS OF PDAGS

In this section, we study the problem MAXIMALLY-ORIENT,
i. e., the task of computing the closure of a PDAG under the
orientation rules R1-R4. As we noted in Sec. 5, for applica-
tions in causality, only extendable models are meaningful.
In particular, a non-extendable PDAG has no causal expla-
nation and closing such a graph under the orientation rules
R1-R4 is purposeless. This justifies that our algorithm for
MAXIMALLY-ORIENT assumes that the given PDAG is ex-
tendable. We will see that the ideas of the previous sections
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Figure 6: Using the techniques from Sec. 6, it follows
that (extendable) PDAGs can be maximally oriented into
CPDAGs/MPDAGs in O(m2∆) by direct application of
the Meek rules. Using the new PDAG extension algorithm
from Sec. 4, PDAG-to-CPDAG can be performed in time
O(dm) as DAG-to-CPDAG is possible in O(m) (§: [Chick-
ering, 1995]). In Sec. 7, we give an O(dm) algorithm for
PDAG-to-MPDAG, which uses a consistent DAG and the
corresponding CPDAG as auxiliary graphs.

can be combined to obtain more efficient algorithms for this
problem. An overview of the results is given in Fig. 6.

In general, MAXIMALLY-ORIENT produces an MPDAG
when the input is an extendable PDAG. If the directed edges
follow from v-structure information, the resulting graph is
even a CPDAG. In this setting, Chickering [2002] noticed
that, in order to maximally orient a PDAG into a CPDAG, it
is not necessary to apply the Meek rules directly. A more ef-
ficient computation is possible by first extending the PDAG
into a DAG and afterward transforming the DAG into the
corresponding CPDAG. The latter task can be performed
in linear time [Chickering, 1995]. In combination with the
PDAG extension algorithm presented in this work, we can
conclude that PDAG-to-CPDAG can be performed in time
O(dm) via the route PDAG-DAG-CPDAG. Notably, this is
significantly faster than directly applying the Meek rules,
which takes time O(m2 · ∆) (with the improvements for
detecting the Meek rules that we discussed in the previous
section).

Building on this, we want to solve the general problem
MAXIMALLY-ORIENT for extendable graphs. Here, the is-
sue is that a DAG-to-MPDAG routine is not possible, as
a DAG does not correspond to a unique MPDAG. Hence,
we have to include the edge information from the PDAG
to perform such a step. The idea is to utilize a topological
ordering induced by a consistent extension D, in order to
traverse the PDAG only once while detecting the Meek rules.
This is based on the observation that an orientation u − v
into u v through R1-R4 only relies on parents of v in
any consistent extension. In this way, it is possible to ob-
tain a run time O(∆m). By additionally making use of the
CPDAG corresponding to D, we can improve even further:

Theorem 7.1 (H). For extendable PDAGs, problem
MAXIMALLY-ORIENT can be solved in time O(dm).

Sketch of Proof. For an extendable PDAG G, compute a
consistent extension D and its CPDAG C. It is sufficient to
apply the Meek rules to the vertices in undirected compo-
nents of C. Consider such an undirected component U and
orient edges, which correspond to arcs in G. Afterward, de-
tect and apply the Meek rules by traversing VU according to
a topological ordering of D[VU ]. Each vertex in D[VU ] has
at most d parents, as these have to form a clique (there can
be no v-structures in U ) and d-degenerate graphs contain
cliques of size at most d+ 1. Through this observation, it is
possible to bound the run time by O(dm).

8 CONCLUSIONS

We proposed a method of time complexity O(n3) to find a
consistent DAG extension in a given PDAG that improves
upon the commonly used algorithm by Dor and Tarsi. It is
based on a new data structure for partially directed graphs
and potential-sinks therein, which makes it easily imple-
mentable and practically useful. By applying a fine-grained
complexity analysis, we showed that our algorithm is op-
timal under the Strong Triangle Conjecture. This answers
the open question on the existence of a linear-time method
for the extension problem in PDAGs negatively. Through a
refined analysis, we showed that our algorithm runs in linear
time on practically important graphical causal models, such
as graphs with bounded treewidth. Based on these results,
we provided a precise complexity-theoretic classification of
the extension problem. As part of this, we gave a graphical
characterization of extendable MPDAGs: a result, which
moreover yields a linear-time extension algorithm for this
graph class. Finally, we applied the new methods to the
corresponding recognition problems and extended the tech-
niques to design an effective algorithm for closing a PDAG
under the orientation rules of Meek.
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