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Abstract

Several algorithms for finding the best arm in the
dueling bandits setting assume the existence of a
Condorcet winner (CW), that is, an arm that uni-
formly dominates all other arms. Yet, by simply
relying on this assumption but not verifying it, such
algorithms may produce doubtful results in cases
where it actually fails to hold. Even worse, the prob-
lem may not be noticed, and an alleged CW still
be produced. In this paper, we therefore address
the problem as a “testification” task, by which we
mean a combination of testing and identification:
The online identification of the CW is combined
with the statistical testing of the CW assumption.
Thus, instead of returning a supposed CW at some
point, the learner has the possibility to stop sam-
pling and refuse an answer in case it feels confident
that the CW assumption is violated. Analyzing
the testification problem formally, we derive lower
bounds on the expected sample complexity of any
online algorithm solving it. Moreover, a concrete
algorithm is proposed, which achieves the optimal
sample complexity up to logarithmic terms.

1 INTRODUCTION

The standard multi-armed bandit (MAB) problem is a se-
quential decision problem with a finite set of choice alterna-
tives (arms), in which arms are selected and corresponding
(noisy) numerical rewards observed in a sequential manner.
A practically motivated modification of the MAB problem
is the dueling bandits [Sui et al., 2018] or preference-based
multi-armed bandit problem [Bengs et al., 2021]. Here, in-
stead of repeatedly pulling a single arm at a time and ob-
serving a numerical reward, the learner pulls two arms and
observes the winner of the corresponding comparison (duel).

Thus, although both settings proceed from the assumption

of stochastic feedback, the latter differs from the former
with respect to the possible actions (pulling pairs vs. pulling
single arms) as well as the provided feedback (qualitative
vs. quantitative). Regardless of these differences, the goal
of a learner is typically to find the “best” arm as quickly
as possible. Yet, due to the absence of numerical rewards,
the definition of a best arm is no longer straightforward in
the dueling bandits setting. A natural and quite appealing
definition of a best arm refers to the established notion
of a Condorcet Winner (CW): An arm is a best arm if it
outperforms all other arms in a pairwise comparison, in the
sense of being more likely to win than to lose.

Compared to other assumptions made in the realm of duel-
ing bandits, the existence of a Condorcet winner is a rather
mild condition. Still, it guarantees the learning task to be
well-defined, and allows for deriving performance guaran-
tees of a learner [Bengs et al., 2021]. For all these reasons,
the existence of a CW is a very desirable property. Never-
theless, in many practical applications, even the assumption
of a CW cannot be assured. Learning algorithms relying on
this assumption may then perform poorly, e.g., can reveal
linear growth of regret rates. In the recent past, other no-
tions of “best arm” (or winner) and corresponding learning
algorithms have been studied, all coming with their own
limitations, but still offering a reasonable alternative in the
absence of a CW [Urvoy et al., 2013, Zoghi et al., 2015,
Jamieson et al., 2015, Komiyama et al., 2016, Wu and Liu,
2016].

As a consequence, it would be desirable if a learner seeking
to identify the (alleged) CW would be able to verify the
validity of the CW assumption. By conducting a sanity
check of its underlying assumptions, such a learner could
make sure that its overall target is actually well defined, and
if not, either terminate a presumably meaningless learning
process or switch to an alternative criterion for identifying a
best arm.

Inspired by these considerations, we introduce the “testifica-
tion” (testing + identification) problem for the Condorcet
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 winner, that is, the learning task that combines the identifi-
cation of the CW with the simultaneous statistical testing of
the validity of the CW assumption. To be more precise, the
learner’s goal is to either identify the CW if it exists, or to
stop the learning process in case it does not, both as quickly
as possible while maintaining predefined error probabilities.
Note that any testification algorithm can be used for finding
the CW in a dueling bandits problem, but in contrast to ex-
isting algorithmic solutions for that problem, our algorithm
is able to detect a violation of the CW assumption.

In this paper, we consider the dueling bandits framework
under the low noise assumption (reviewed in Section 3).
For this framework, we introduce the testification problem
and prove an instance-wise lower bound on the expected
sample complexity for any algorithm capable of solving this
problem (Section 4). We show that the testification problem
can be solved in a straightforward way by two separated
identification and testing phases connected in series, each
phase instantiated by an appropriate identification or testing
procedure (Section 5.1). Although it can be proved that this
straightforward approach already achieves almost asymp-
totically optimal worst-case expected sample complexity,
provided that appropriate algorithms are used in each of
the two phases (Section C), it is arguably more reasonable
to interleave both testing and identification in the learning
process. Indeed, the strict separation of testing and identifi-
cation might result in a seemingly superfluous verification
at the end of the learning process in cases where a CW does
not exist. Guided by this consideration we suggest a more
sophisticated testification algorithm, called Noisy Tourna-
ment Sampling (NTS), where testing and identifying goes
hand in hand (Section 5.3). For its design we exploit a con-
nection between tournaments in graph theory and the CW
of a (binary) preference relation (Section 5.2), in order to
emulate the mechanism of a deterministic CW tester, result-
ing in a learner that is nearly optimal for the testification
problem with regard to its expected sample complexity if in-
stantiated with a suitable CW tester (Section 5.5). As a side
result, we show how NTS can be used in combination with
any learning algorithm based on a CW assumption to pas-
sively monitor the statistical validity of the CW assumption
(Section 5.4). Finally, we discuss the impact of our findings
on other problems related to testification (Section 6), and
demonstrate the superiority of NTS over the straightforward
approach with separated identification and testing phases in
an experimental study (Sections 7 and I).

All proofs of theoretical results are deferred to the supple-
mentary material, which also contains a list of symbols used
throughout the paper.

2 RELATED WORK

The existence of a CW in the dueling bandits problem is
required in a variety of papers, either explicitly [Urvoy et al.,

2013, Zoghi et al., 2014, Komiyama et al., 2015, Karnin,
2016, Chen and Frazier, 2017, Li et al., 2020] or implicitly
as a consequence of stronger assumptions on the underlying
preference relation, such as a total order of arms or some
kind of stochastic transitivity [Yue and Joachims, 2011,
Yue et al., 2012, Falahatgar et al., 2017b,a, 2018, Mohajer
et al., 2017], by assuming latent utilities [Yue and Joachims,
2009, Ailon et al., 2014, Kumagai, 2017, Maystre and Gross-
glauser, 2017] or an underlying statistical ranking model
[Busa-Fekete et al., 2014, Szörényi et al., 2015].

Yet, in real-life scenarios, the existence of a CW can not
always be guaranteed, as specifically noted by Zoghi et al.
[2015]. This observation initiated research on alternative
best arm concepts that always exist, such as the Copeland
winner [Zoghi et al., 2015, Komiyama et al., 2016, Wu
and Liu, 2016], the Borda winner [Jamieson et al., 2015],
or more general tournament solutions [Ramamohan et al.,
2016]. However, it is important to note that the arguments
put forward by Zoghi et al. [2015] are purely empirical, and
the conclusion that a CW does not exists in the considered
applications are only derived in hindsight, after having seen
all the data. The authors do not provide a statistical frame-
work to verify or reject the CW assumption, neither in an
offline nor in an online manner.

Degenne and Koolen [2019] consider the pure exploration
bandit problem with multiple correct answers in a quite gen-
eral setting, which also covers the CW testification problem.
From their results one can obtain instance-wise optimal
lower and upper bounds on the asymptotics of CW testi-
fication algorithms, which we elaborate on in Section 3.
Unfortunately, these bounds do not provide any information
of the sample complexity of solving the CW testification
task with a predefined level of confidence, which is probably
the most common use case in reality.

Apart from this, the CW testification problem has merely
been addressed in the deterministic scenario, in which the
outcome of a duel between two arms, if queried repeatedly,
is always the same. The question of the minimal number
of queries necessary to decide the (non-)existence of a CW
within a tournament, which has a natural connection to a
CW in a strict binary preference relation, is investigated
by Bollobás and Eldridge [1978], Balasubramanian et al.
[1997] and Procaccia [2008].

3 THE DUELING BANDITS PROBLEM

Consider a finite set of m arms identified by the index set
[m] ..= {1, . . . ,m}. In the setting of the dueling bandits
(preference-based multi-armed bandit) problem, two distinct
arms i, j ∈ [m] can be compared with each other at each
time step t ∈ N. Querying a pairwise preference, the learner
is provided with binary feedback about the winner of the
duel, which is assumed to be generated by a time-stationary



 i.i.d. probabilistic process. The probability P(i � j) that
arm i wins against arm j is given by some underlying (un-
known) ground truth parameter qi,j ∈ [0, 1]. Excluding ties
and setting (w.l.o.g.) qi,i = 1

2 for every i ∈ [m], we can
infer that Q = (qi,j)1≤i,j≤m is a reciprocal relation on [m],
i.e., Q is an element of the set of all preference relations
formally defined by

Qm ..=
{
Q = (qi,j)1≤i,j≤m ∈ [0, 1]m×m |

qj,i = 1− qi,j for every i, j ∈ [m]
}
.

To assimilate the information available at time t ∈ N, let
us write (nt)i,j for the number of comparisons between
i and j until time t, and (wt)i,j for the number of times
i has won against j until time t. This obviously implies
(wt)i,j + (wt)j,i = (nt)i,j = (nt)j,i. Let us write [m]2
for the set containing all subsets of size 2 of [m]. Further-
more, if w ∈ Nm×m0 and n ∈ Nm×m, we denote the matrix
(
wi,j

ni,j
)1≤i,j≤m ∈ Rm×m by w

n . For convenience, we intro-
duce the notations (m)2

..= {(i, j) ∈ [m]× [m] : i < j} as
well as 〈m〉2 ..= {(i, j) ∈ [m] × [m] : i 6= j}. A specific
learning algorithm in the realm of dueling bandits can be
identified by a sampling strategy as defined in the following.

Definition 3.1. A sampling strategy π is a family of ran-
dom variables, which, depending on the time t and the ob-
servations n0,w0, . . . ,nt−1,wt−1 available before time t,
determines a pair (i(t), j(t)) ∈ 〈m〉2 to be compared at
time t ∈ N.

Definition 3.2. An arm i ∈ [m] is a Condorcet winner
(CW) of Q ∈ Qm (denoted by CW(Q)) if qi,j > 1

2 for
every j ∈ [m] \ {i}. The CW preference relations and Non-
CW preference relations are

Qm(CW) ..= {Q ∈ Qm | ∃i ∈ [m] : i is a CW of Q},
Qm(¬CW) ..= Qm \ Qm(CW).

In this paper, we consider relations Q in

Qhm ..=
{
Q = (qi,j)1≤i,j≤m ∈ Qm |
|qi,j − 1/2| > h for every distinct i, j ∈ [m]

}
,

for h ∈ (0, 1/2). Preference relations in Qhm are said to
satisfy the low noise assumption [Braverman et al., 2016,
Korba et al., 2017]. To some extent, the parameter h de-
termines the difficulty of the underlying dueling bandits
problem, in the sense that an h near 1/2 implies rather
clear outcomes in the pairwise comparisons and conse-
quently a rather easy problem scenario, while a small h
implies that winning probabilities may be close to 1/2, and
hence difficult to distinguish. For the sake of convenience,
we write Qm(i) for the set of all Q ∈ Qm(CW) with
CW(Q) = i and define Qhm(X) := Qhm ∩ Qm(X) for any
X ∈ {CW,¬CW, 1, . . . ,m}.

4 THE CW TESTIFICATION PROBLEM

A first informal statement of the testification problem for
the CW of an underlying (unknown) preference relation Q
can be given as follows:

Is Q in Qm(CW)? If so, determine the CW and return
it, otherwise return ¬CW.

In the course of the paper, we focus on algorithms A for
the testification problem, which might be probabilistic and
interact with the underlying dueling bandits environment,
as stipulated by the definition of a sampling strategy π (Def-
inition 3.1). In case an algorithm A terminates, it returns a
decision denoted by D(A), which can be either

• an element i∗ ∈ [m], i.e., D(A) = i∗, which indicates
that A predicts i∗ to be the CW,

• or ¬CW, i.e., D(A) = ¬CW, which indicates that A
predicts that no CW exists.

Moreover, we denote by TA the sample complexity of an
algorithm A, i.e., the number of pairwise comparisons A
has made before termination.

For given error probabilities α, β ∈ (0, 1), we say that an
algorithm A solves the testification problem for the CW on
Qhm for α and β (short: A solves Pm,h,α,β) if TA is almost
surely finite and the following holds:

infi∗∈[m] infQ∈Qh
m(i∗) PQ

(
D(A) = i∗

)
≥ 1− α,

infQ∈Qh
m(¬CW) PQ

(
D(A) = ¬CW

)
≥ 1− β.

(1)

The primary interest lies in constructing algorithms A ca-
pable of solving the testification problem for the CW on
Qhm with an expected sample complexity TA as small as
possible. Obviously, the latter will strongly depend on the
predefined error bounds α, β, the number of available arms
m, as well as on the parameter h of the class of preference
relations Qhm satisfying the low noise assumption.

In Section J in the supplement, we reduce the CW testifica-
tion problem to the pure exploration bandit problem with
multiple correct answers as defined in [Degenne and Koolen,
2019]. This approach leads to the following results: If A(γ)
solves Pm,h,γ,γ , then

lim inf
γ→ 0

EQ[TA(γ)]

ln(γ−1)
≥ 1

Dh
m(Q)

(2)

for some known constant Dh
m(Q) > 0, and there exists a

solution A(γ) to Pm,h,γ,γ with

lim
γ→ 0

EQ[TA(γ)]

ln(γ−1)
≤ 1

Dh
m(Q)

. (3)

In case Q ∈ Qm(X) (for X ∈ {¬CW, 1, . . . ,m}), the
complexity term Dh

m(Q) is given as

sup
v∈∆(m)2

inf
Q′∈Qh

m(¬X)

∑
(i,j)∈(m)2

vi,jdKL(qi,j , q
′
i,j),



 where ∆(m)2 is the set of all v = (vi,j)1≤i<j≤m with
mini<j vi,j ≥ 0 and

∑
i<j vi,j = 1 and dKL(p, q) =

p ln(p/q)+(1−p) ln((1−p)/(1−q)) is the KL-divergence
between two independent random variables X ∼ Ber(p)
and Y ∼ Ber(q). We prove in the supplement (cf. Lemmata
J.5 and J.6) that

(m− 1)(1/4− h2)

4h2
≤ supQ∈Qh

m

1

Dh
m(Q)

≤ m

8h2
(4)

holds, hence any optimal solution A(γ) to Pm,h,γ,γ fulfills

supQ∈Qh
m

lim
γ→ 0

EQ[TA(γ)]

ln(γ−1)
∈ Θ(mh−2) (5)

as max{m,h−1} → ∞. Unfortunately, these results do not
yield any information for cases where γ is fixed. Moreover,
the algorithmic solution A(γ) presented by Degenne and
Koolen [2019] is very inefficient if not infeasible in practice,
which is due to a hard min-max problem that has to be
solved at each time step. In the following, we will discuss
further lower and upper bounds on the worst-case sample
complexity of solutions to Pm,h,α,β . Our results are to some
extent stronger than (2) and (3) as they are also applicable
if γ is fixed.

The following theorem provides an instance-wise lower
bound on the sample complexity of any algorithm solving
the testification problem for the CW on Qhm.

Theorem 4.1. For h0, γ0 ∈ (0, 1/2) there exists a constant
c = c(h0, γ0) > 0 with the following property: Let h ∈
(0, h0), α, β ∈ (0, γ0) and A be any solution to Pm,h,α,β .
Then, for any Q ∈ Qhm(CW), we have

EQ

[
TA
]
≥ c

∑
j 6=CW(Q)

h−2
CW(Q),j ln

(
γ−1

)
,

where γ := max{α, β} and hi,j := |qi,j − 1/2| for every
distinct i, j in [m]. In particular, A fulfills

supQ∈Qh
m
EQ[TA] ≥ c(m− 1) ln

(
γ−1

)
h−2. (6)

Theorem 4.1 (as well as (5)) reveals that the impact of the
key quantities (i.e., α, β,m, h) on the order of the worst-
case sample complexity for the testification problem is sim-
ilar as for the worst-case sample complexity for the sole
CW identification task under the stricter assumption of ex-
istence of a total order [Braverman et al., 2016]. Moreover,
the dependency on the number of arms in (6) coincides with
(4).

5 NEARLY OPTIMAL TESTIFICATION

In this section, we systematically provide practically feasi-
ble algorithmic solutions to the testification problem, start-
ing with the straightforward approach that performs identifi-
cation and testing separately one after the other. Next, we

give a first naïve attempt to interleave identification and test-
ing in an algorithmic solution whose obvious flaws together
with some graph-theoretical considerations will help us to
design a more sophisticated algorithmic solution.

5.1 NAÏVE APPROACHES

For the sake of convenience, let us consider first the symmet-
ric case α = β =: γ. To construct the first solution, suppose
A to be an algorithm with parameters m,h, γ, which is able
to find the Condorcet winner whenever1 Q ∈ Qhm(CW)
with an error probability at most γ. Then, the algorithm
A-THEN-VERIFY, which executes A(m,h, γ/2), observes
its output i (the alleged CW) and afterwards verifies with
error probability at most γ/2 whether i is indeed the CW
by querying each of the pairs {i, j}, j 6= i, sufficiently of-
ten, solves Pm,h,γ,γ . Instantiating A with the SELECT
algorithm [Mohajer et al., 2017], a state-of-the-art solu-
tion to the CW identification problem, results in a solu-
tion SELECT-THEN-VERIFY to Pm,h,γ,γ . This approach
achieves almost asymptotically optimal worst-case expected
sample complexity (cf. Section C).

Despite the (almost) satisfactory theoretical guarantee of the
latter approach it seems unfavorable to separate identifica-
tion and testing in the learning process, as an unnecessary
verification might be conducted at the end of the learning
process. Quite naturally, the question arises how testing and
identification could be interleaved in a suitable way, which
formally boils down to construct an appropriate decision
criterion.

As a gentle start for the development of our decision cri-
terion, consider the following naïve criterion: For each
pair (i, j) ∈ (m)2, sample repeatedly noisy pairwise
comparisons of the corresponding pairwise probability
qi,j until being confident enough whether qi,j is above
or below 1/2 with confidence ≥ 1 − γ′ for some
γ′ ∈ (0, 1), based on the pairwise probability estimates
(q̂t)i,j ..= (wt)i,j

(nt)i,j
. Then, decide for ¬CW in case q̂t ..=

((q̂t)i,j)1≤i,j≤m is inQm(¬CW), and otherwise decide for
i∗ = argmaxi∈[m]

∑
j 6=i 1{(q̂t)i,j>1/2}, which necessarily

exists in this case. Let us denote the resulting algorithm
by Anaive and let γ′ = γ/

(
m
2

)
. Then, by virtue of indepen-

dence of the individual stopping decisions in the pairwise
samplings, and Bernoulli’s inequality,

PQ(D(Anaive) = ¬CW) = PQ(q̂t ∈ Qm(¬CW))

≥ (1− γ′)(
m
2 ) ≥ 1− γ

holds for any Q ∈ Qhm(¬CW). Similarly, the first inequal-
ity in (1) holds, i.e., Anaive is a solution for the testification
problem for CW on Qhm for α and β. Evidently, however,

1In particular, A is not required to have any guarantees for
Q ∈ Qh

m(¬CW) here.



 this algorithm has an expected sample complexity that de-
pends quadratically on the number of arms m. In addition,
it is not clearly specified what it means that Anaive is “con-
fident enough” about the sign of qi,j − 1/2.

In order to overcome the obvious flaws of Anaive, we for-
mulate the following questions, the answers of which will
lead us to a more sophisticated algorithm for the testification
problem:

(i) How can we decide, as early as possible and with con-
fidence ≥ 1− γ′, based on (q̂t)i,j , whether qi,j > 1/2
or qi,j < 1/2 holds?

(ii) Do we need to be sure about the sign of qi,j − 1/2 for
all pairs (i, j) ∈ (m)2?

(iii) Is the choice γ′ = γ/
(
m
2

)
necessary, or is γ′ = γ/m′

with some m′ <
(
m
2

)
sufficient?

We answer the first question by using suitable anytime con-
fidence bounds on the pairwise winning probabilities qi,j ,
depending on the desired confidence level γ′ and low noise
parameter h, and quit the repeated sampling of noisy pair-
wise comparisons as soon as 1/2 is not an element of the
confidence bounds around the empirical estimate (q̂t)i,j
anymore. To be more precise, we choose

Ch,γ′(n) :=
1

2n

⌈
ln((1− γ′)/γ′)

ln((1/2+h)/(1/2−h))

⌉
, (7)

sample until

(q̂t)i,j 6∈
[
1/2− Ch,γ′((nt)i,j), 1/2 + Ch,γ′((nt)i,j)

]
,

and decide for “qi,j > 1/2” if (q̂t)i,j − Ch,γ′((nt)i,j) >
1/2 holds at this time t, and for “qi,j < 1/2” otherwise.
Provided |qi,j − 1/2| > h holds, our estimation of the sign
of qi,j−1/2 is correct with probability≥ 1−γ′ and requires,
in expectation, in the worst case at most O(h−2 ln(γ−1))
observations (i.e., i.i.d. samples) of a duel between the pair
of arms (i, j). The choice ofCh,γ′ is based on the sequential
probability ratio test, which is known to be optimal in some
sense in case |qi,j − 1/2| ≈ h (cf. Lemma B.1).

For questions (ii) and (iii), it will turn out to be fruitful to
exploit a connection of the testification problem to graph-
theoretical concepts of tournaments. In particular, we will
see that question (ii) can be answered negatively, while the
answer to question (iii) is γ′ = γ/m in the symmetric case
and γ′ = min{ αm ,

β
m−1} in the asymmetric case.

5.2 GRAPH-THEORETICAL CONCEPTS

We write Gm for the set of all simple digraphs on [m] with-
out loops and with at most one edge between each two
nodes. In other words, Gm contains all directed graphs
G = ([m], EG) with EG ⊆ 〈m〉2 such that (i, j) 6∈ EG
or (j, i) 6∈ EG holds for every distinct i, j ∈ [m]. Let Gm
be the set of tournaments on [m], i.e., Gm ⊆ Gm contains

all digraphs G = ([m], EG), where for every (i, j) ∈ 〈m〉2
either (i, j) ∈ EG (we write i → j in G, or i G−→ j) or
(j, i) ∈ EG. With this, it is possible to establish a connection
between tournaments and binary preference relations.

Fact 5.1. There is a one-to-one connection given by a map-
ping Φ : QBin

m → Gm between binary preference relations
Q ∈ QBin

m
..= {Q′ ∈ Qm : q′i,j ∈ {0, 1} ∀(i, j) ∈ 〈m〉2}

and tournaments G ∈ Gm such that qi,j = 1 iff i → j in
G = Φ(Q).

Due to Fact 5.1, we may say that G ∈ Gm has a CW if
Φ−1(G) ∈ Qm(CW), i.e., G has a CW iff there exists
some i ∈ [m] with i → j in G for every j ∈ [m] \ {i}.
We define Gm(CW) as the set of all G ∈ Gm which have
a CW and Gm(¬CW) ..= Gm \ Gm(CW). For any G ∈
Gm(CW), we denote by CW(G) the Condorcet winner
of G, i.e., CW(G) → j holds in G for all j ∈ [m] \
{CW(G)}. For every i∗ ∈ [m], we write Gm(i∗) ..= {G ∈
Gm(CW) |CW(G) = i∗}.

We call a tournament G′ ∈ Gm an extension of G ∈ Gm if
EG ⊆ EG′ holds. Further, define for X ∈ {CW,¬CW, i∗}
the set Gm(X) as the set of all G ∈ Gm, for which G′ ∈
Gm(X) for every extension G′ of G. As Q ∈ Qhm has i∗

as CW iff the graph GQ ∈ Gm defined via “i → j in
GQ iff qi,j > 1/2” fulfills CW(GQ) = i∗, we obtain: If
we know ∀j ∈ [m] \ {i∗} : i∗ → j in GQ — which is
equivalent to GQ having a subgraph G̃ ∈ Gm(i∗) (Lemma
A.4) — with confidence ≥ 1−α, then deciding for i∗ in the
testification problem is correct with probability ≥ 1 − α.
Similarly, if GQ contains a subgraph G̃ ∈ Gm(¬CW) with
confidence ≥ 1− β, then the decision ¬CW is correct with
probability≥ 1−β. Note thatG ∈ Gm(¬CW) is equivalent
to ∀ i ∈ [m]∃ j ∈ [m] \ {i} : j

G−→ i (Proposition A.3).

The notion of Gm(CW) is not required for the testification
problem, but it will play a major role for testing whether
a CW exists (Section 6). Note that due to Gm(CW) )⋃
i∗∈[m] Gm(i∗), the notion is not redundant, and we also

obtain an appropriate characterization of it (Proposition
A.1).

5.3 NOISY TOURNAMENT SAMPLING

We incorporate the above graph-theoretical observations
into a more sophisticated testification algorithm, which we
call the Noisy Tournament Sampling (NTS) and denote by
ANTS. The name stems from the resemblance of its under-
lying sampling idea to noisy sorting algorithms [Braverman
and Mossel, 2008], which will be described more thoroughly
in the following.

The algorithm ANTS maintains a graph Ĝt ..= ([m], Êt)
and successively adds edges (corresponding to pairs (i, j) ∈
〈m〉2) to Ĝt, for which at time t the algorithm ANTS is



 Algorithm 1 ANTS : Noisy tournament sampling
Input: α, β, h, π
Initialization: n0 ← w0 ← (0)1≤i,j≤m, Ê0 ← ∅,
γ′ ← min{ αm ,

β
m−1}, Ch,γ′ as in (7)

1: for t ∈ N do
2: (i, j) ∼ π(t, (nt′ ,wt′)0≤t′≤t−1)

3: Observe X [t]
i,j ∼ Ber(qi,j)

4: Define wt via (wt)k,l ← (wt−1)k,l +
1{{k,l}={i,j} andX[t]

k,l=1} ∀1 ≤ k, l ≤ m
5: Define nt via (nt)k,l ← (nt−1)k,l+1{{k,l}={i,j}}
∀1 ≤ k, l ≤ m

6: Êt ← Êt−1

7: if (q̂t)i,j >
1
2 + Ch,γ′((nt)i,j) then

8: Êt ← Êt ∪ {(i, j)}
9: if (q̂t)i,j <

1
2 − Ch,γ′((nt)i,j) then

10: Êt ← Êt ∪ {(j, i)}
11: Ĝt ← ([m], Êt)
12: if ∃i∗ ∈ [m] : Ĝt ∈ Gm(i∗) then
13: return i∗
14: if Ĝt ∈ Gm(¬CW) then return ¬CW

confident with level 1− γ′ that qi,j > 1
2 holds (lines 7–10).

ANTS stops only in two cases: One in which the graph Ĝt
is in Gm(¬CW), i.e., none of its tournament extensions can
bring forth a CW (line 14), the other in which the graph Ĝt is
in Gm(i∗) for some i∗ ∈ [m], i.e., all tournament extensions
are preference relations with i∗ as CW. According to which
event caused the termination, either the supposed CW (i.e.,
i∗) or ¬CW is returned (lines 12–14). Formally, we have
D(ANTS) = i∗ if Ĝt ∈ Gm(i∗) and D(ANTS) = ¬CW if
Ĝt ∈ Gm(¬CW). Regarding the definition of Gm(i∗) and
Gm(¬CW) (as well as Lemma E.1 below), termination is
only reasonable if Ĝt is in

⋃
i∗∈[m] Gm(i∗) ∪ Gm(¬CW).

Proposition A.3 and Lemma A.4 indicate that the used cor-
rection term in the choice of γ′ is optimal.

5.4 THE PASSIVE SCENARIO

In this section we analyze the passive testification scenario,
where the sampling strategy π might not be specifically
designed in order to ensure a quick termination of the testing
algorithm. In other words, π might be any sampling strategy
that interacts with the underlying dueling bandit problem as
stipulated by Definition 3.1.

In light of this, we let Π be the set of all sampling strategies
(Definition 3.1) and denote by Π∞ the family of sampling
strategies π that sample every pair {i, j} almost surely (a.s.)
infinitely often, which means that (nt)i,j → ∞ a.s. as
t → ∞.

Note that if π ∈ Π \ Π∞, a sampling strategy
π̂ ∈ Π that chooses π̂(t, (nt′ ,wt′)0≤t′≤t−1) =

π(t, (nt′ ,wt′)0≤t′≤t−1) with probability 1 − 1
t , and oth-

erwise π̂(t, (nt′ ,wt′)0≤t′≤t−1) picks a pair (i, j) uni-
formly at random from 〈m〉2 with probability 1

t , ful-
fills π̂ ∈ Π∞ and P(π(t, (nt′ ,wt′)0≤t′≤t−1) 6=
π̂(t, (nt′ ,wt′)0≤t′≤t−1))) ≤ 1

t → 0 as t → ∞. Hence,
π̂ and π behave similarly in the limit. This shows that the as-
sumption π ∈ Π∞, which is required for theoretical results
in our framework, is rather mild.

Theorem 5.2. Let π ∈ Π∞, h ∈ (0, 1/2) and α, β ∈ (0, 1)
be fixed. Let A be Algorithm 1, called with the parameters
h, α, β and π as sampling strategy. Then, A solves the
testification problem for the CW on Qhm for α and β.

By (passively) monitoring the statistical validity of the CW
assumption, the algorithmic framework presented in The-
orem 5.2 can be utilized in order to justify the usage of
dueling bandits algorithms focusing on alternative best arm
concepts for the goal of regret minimization, if the test com-
ponent detects a violation of the CW assumption. Finally,
it is worth noting that A-THEN-VERIFY cannot be used in
a sensible way for this passive scenario due to the strictly
separated identification and testing phases.

5.5 THE ACTIVE SCENARIO

The key question is how to construct a sampling strategy
π such that ANTS terminates as soon as possible. Appar-
ently, one needs to construct the internal tournament Ĝt
in Algorithm 1 such that it quickly becomes clear whether
each extension admits a CW or not (cf. lines 12 and 14).
Thus, a natural approach would be to build this tournament
according to a deterministic sequential testing algorithm
(DSTA) for testification of the CW in a tournament, as those
are commonly designed specifically for that purpose. How-
ever, as the outcome of a duel in the underlying problem is
in general not deterministic, one has to conduct the duels
several times until having enough confidence on the actual
pairwise probability.

Based on these considerations, we define an epoch-based
sampling strategy (implicitly defined by lines 1, 10 and 14
in Algorithm 6 in the supplement) using ABin to determine
which pair shall be sampled repeatedly during an epoch.
To be more precise, at the beginning of each epoch, the
noisy tournament sampling strategy queries the black-box
DSTA ABin to provide a pair, say (i, j), for a duel. This
duel is repeated until the sign of qi,j − 1/2 is determined
with a specific confidence (based on α, β and h) leading
to both, the end of the current epoch, and no consideration
of the pair in any upcoming epoch (lines 3–15). If the sign
is assumed to be positive resp. negative, ABin is provided
with the feedback i → j resp. j → i, as if no randomness
was involved, leading ABin either to suggest the next pair
to be queried (lines 10 and 14) or to terminate. If ABin

terminates before ANTS came to a decision, we suppose



 ANTS to continue until its termination by choosing the duels
uniformly at random from 〈m〉2 (lines 19–21). As a result,
we obtain Algorithm 6, which is essentially a modification
of Algorithm 1, where line 2 is replaced by the just described
sampling mechanism based on interaction with ABin.

In order to state our main findings, we introduce some fur-
ther terminology. We say that a DSTA ABin is correct for
the testification of the CW (or simply testification-correct) if
it outputs the correct decision for any tournament G ∈ Gm,
i.e., whether a CW exists, and if so, it returns the CW.
Further, denote by A∗m the set of all testification-correct
DSTAs, and for any DSTA ABin, let TABin be its worst-
case sample complexity over all tournaments Gm, that is,
TABin = maxG∈Gm

TABin

G , where TABin

G is the sample
complexity of ABin for G.

Lemma E.1 ensures that, as soon as any testification-correct
black-box DSTA ABin used in the noisy tournament sam-
pling strategy described above terminates,ANTS terminates,
too (i.e., returns ¬CW or a candidate for the CW).

Theorem 5.3. Let ABin be a DSTA and γ0 ∈ (0, 1/2) be
fixed. Then, for any α, β ∈ (0, γ0) and h ∈ (0, 1/2), the
noisy sorting algorithm ANTS (Algorithm 6) called with the
parameters h, α, β and ABin as its black-box DSTA, solves
the testification problem for the CW on Qhm for α and β. If
ABin ∈ A∗m and γ′ = min{ αm ,

β
m−1}, then

EQ[TA
NTS

] ∈ O(TABinh−2 ln(γ′−1))

as max{h−1, γ′
−1} → ∞ for any Q ∈ Qhm.

With slightly more effort we obtain an instance-wise version
of Theorem 5.3, in which the runtime on any instance Q
depends – similarly as in our lower bound stated in Theorem
4.1 – on some of the terms |qi,j−1/2|, (i, j) ∈ (m)2. As the
worst-case bound from Theorem 5.3 is easier and sufficient
for our further discussion, we provide the details of the
instance-wise version in the supplement (Theorem H.1).

It is well known that the optimal worst-case sample com-
plexity for a testification-correct DSTA is 2m−blog2mc−2
[Procaccia, 2008, Balasubramanian et al., 1997, Bollobás
and Eldridge, 1978]. For the sake of completeness, we state
this algorithm and the result in the supplement (Algorithm
3, Proposition E.2). As a direct consequence of Theorem
5.3, we thus obtain the following result.

Corollary 5.4. Let γ0 ∈ (0, 1/2) be fixed. The noisy tour-
nament sampling algorithmANTS used with the parameters
h ∈ (0, 1/2), α = β = γ ∈ (0, γ0) and ABin as defined in
Algorithm 3 as its black-box DSTA, solves the testification
problem for the CW on Qhm for α = β = γ such that

supQ∈Qh
m
EQ[TA

NTS

] ∈ O
(
m ln(m)h−2 ln(γ−1)

)
as max{m,h−1, γ−1} → ∞.

According to Theorem 4.1, the algorithmANTS from Corol-
lary 5.4 is optimal w.r.t. the worst-case expected sample
complexity up to a factor of lnm for the CW testification
problem on instances Q ∈ Qhm.

In contrast to (5), Theorem 4.1 and Corollary 5.4 specifically
yield asymptotic lower and upper sample complexity bounds
for solving Pm,h,γ,γ if γ is fixed. Moreover, we are able
to show that the algorithmic solution in Corollary 5.4 is
in expectation superior over the straightforward SELECT-
THEN-VERIFY approach (see Lemma C.2).

6 OTHER CW-RELATED PROBLEMS

Any solution to the CW testification problem can easily be
modified to solve the following binary classification prob-
lem with classes CW and ¬CW:

Check_CW: Is Q in Qm(CW)? If so, return CW, oth-
erwise return ¬CW.

Here, a type I/II error of the testing algorithm corresponds
to a false positive/negative classification.

Another practically relevant problem related to the testifi-
cation problem is the scenario in which one has a guess for
the CW beforehand and would like to check its validity:

Verify_i_as_CW (with input i ∈ [m]): Is CW(Q) = i?
If so, return i, otherwise return ¬i.

Note that any algorithmic solution for Verify_i_as_CW is a
candidate for the testing procedure of the A-THEN-VERIFY
approach in Section 5.1.

Another important use case of the Verify_i_as_CW prob-
lem is in verifying the validity of a ranking over the arms,
say �, which shall be consistent with Q in the sense that
qi,j > 1/2 iff i � j. Such a ranking could be the output
of some ranking learning algorithm in the realm of the du-
eling bandits setting, for instance. By iteratively verifying
the arm with rank i ∈ [m] to be the CW among the arms
with lower ranks, one needs at most m − 1 executions of
Verify_i_as_CW to decide, up to some adjustable confi-
dence, whether � is correct.

It is worth noting that the Verify_i_as_CW problem can,
in contrast to Check_CW, be considered in two variants:
One variant with already assuming Q ∈ Qm(CW) (which
will be denoted by ∃CW for convenience) and in the other
without any assumption. The former variant has also been
considered by Urvoy et al. [2013] and Karnin [2016] for
constructing an algorithmic solution to identify the CW.

Moreover, the testification problem for the CW under the
assumption of its existence corresponds to the well-known
best-arm-identification problem in the realm of dueling ban-
dits, for which lower and (matching) upper bounds have
already been established by Braverman et al. [2016] for



 
Table 1: Sample complexity bounds for Check_CW, Verify_i_as_CW and testification for the CW († : [Braverman et al.,
2016]; ‡ : [Procaccia, 2008, Balasubramanian et al., 1997, Bollobás and Eldridge, 1978])

probabilistic setting deterministic setting

Problem no assumption ∃CW no assumption ∃CW

Check_CW Θ̃(mh−2 ln γ−1) - 2m− blog2mc − 2 (‡) -
Verify_i_as_CW Θ̃(mh−2 ln γ−1) Θ̃(mh−2 ln γ−1) m− 1 m− 1

Testification for the CW Θ̃(mh−2 ln γ−1) Θ̃(mh−2 ln γ−1) (†) 2m− blog2mc − 2 (‡) m− 1

preference relations in Qhm.

Table 1 summarizes upper and lower bounds for the worst-
case (expected) sample complexities on Qhm-instances for
the different problems in the deterministic setting, i.e.,
Q ∈ QBin

m and DSTAs, as well as for the probabilistic
setting (with a tolerated error probability ≤ γ). Therein, we
conveniently write Θ̃ for Θ, which hides lnm-factors in
the probabilistic setting. Note that Table 1 contains sharp
bounds for the runtime of the deterministic variants of the
problems. The corresponding proofs can be found in Sec-
tions E, F and G.

For all of these problems, a reduction to the pure exploration
bandit problem with multiple correct answers from Degenne
and Koolen [2019] yields a solution with asymptotic opti-
mality in some sense (cf. Section J). Just like for testification
of the CW, we also provide instance-wise lower bounds for
Check_CW and Verify_i_as_CW in the supplement.

7 EXPERIMENTAL STUDY

7.1 THE ACTIVE SCENARIO

In this section, we present a small experimental study to
illustrate the performance of our algorithm ANTS for CW
testification, while further experiments can be found in the
supplement.2 To this end, we start with a comparison be-
tween ANTS and SELECT-THEN-VERIFY. To guarantee
stability of the results, we average over 25000 runs, each
time sampling the ground truth relation Q at random from
Q0.05

5 . Since Q is usually unknown in practice, we try out
and compare different values of h as parameters for ANTS

and SELECT-THEN-VERIFY, as well as different values for
the guaranteed error probability γ. These free parameters
cause a variation in the used confidence bounds and thus in
the number of iterations before the algorithms terminate.

The curves in Figure 1, which have been produced through
variation of the parameter γ, illustrate the compromise be-
tween the success rate and the number of iterations of the
algorithms (decreasing γ increases the success rate but
also the sample complexity). As can be seen, the curves

2Our implementation is provided at https://github.
com/bjoernhad/CondorcetWinnerTestification.

Figure 1: Success rate and total number of comparisons until
termination for the proposed ANTS and SELECT-THEN-
VERIFY for different values of the gap h to 1/2.

of ANTS dominate the curves of SELECT-THEN-VERIFY
for h = 0.2 and h = 0.3. Indeed, with the same number
of comparisons, ANTS achieves a higher success rate than
SELECT-THEN-VERIFY, regardless of the parameter h.
In fact, ANTS seems to be quite robust towards incorrect
choices of this parameter.

In the supplementary material, we repeat this experiment
for a larger number of arms as well as for the case
where Q is sampled uniformly at random from Q0.05

5 (CW)
resp. Q0.05

5 (¬CW), with the result that ANTS outperforms
SELECT-THEN-VERIFY in any considered case as well (see
Section I). There, we also compare ANTS and SELECT-
THEN-VERIFY in case h is smaller than 0.2.

7.2 THE PASSIVE SCENARIO

Finally, we demonstrate how the passive setting described
in Section 5.4 can be utilized in order to justify the usage
of dueling bandits algorithms focusing on alternative best
arm concepts for the goal of regret minimization, if the test
component detects a violation of the CW assumption. For
this purpose, we consider two sampling strategies:

• Relative Upper Confidence Bound (RUCB) from [Zoghi
et al., 2014], which is a dueling bandit algorithm based
on the Condorcet Winner assumption.

• Double Thompson Sampling (DTS) from [Wu and Liu,
2016], which is a dueling bandit algorithm not relying on
the Condorcet Winner assumption, but instead focusing
on the set of Copeland winners.

Further, we consider the regret based on the difference in the

https://github.com/bjoernhad/CondorcetWinnerTestification
https://github.com/bjoernhad/CondorcetWinnerTestification


 normalized Copeland scores of the Copeland winner and the
two chosen arms (cf. [Zoghi et al., 2015]). It is well known
that RUCB can achieve linear regret in case no Condorcet
winner exists, while DTS provably only suffers sub-linear
regret (with respect to the Copeland scores) in such cases.

In light of this, we consider a two-staged algorithm (de-
noted by RUCB→DTS), which executes in its first stage
Algorithm 1 (with parameters γ = 0.1 and h = 0.1) instan-
tiated with RUCB as its sampling strategy, and in its second
stage simply DTS in case that no Condorcet winner exists
in the ground truth relation and otherwise RUCB. That is,
RUCB→DTS switches from the CW-based sampling strat-
egy RUCB to the Copeland winner based DTS algorithm if
the CW assumption is likely violated.

For evaluating the algorithms we choose as the underly-
ing ground-truth preference relation the Hudry-tournament
QHudry ∈ Q13, which does not have a CW and has a
Copeland set of size 1 (cf. [Ramamohan et al., 2016]); for
the sake of convenience, it is deferred to the appendix (see
Section I.3). Figure 2 illustrates the benefit of changing
from RUCB to DTS with regard to the regret. In particular,
RUCB→DTS does not suffer the linear regret of RUCB but
instead its cumulative regret appears only by a constant term
larger than that of DTS.

Figure 2: Copeland regret of DTS, RUCB and RUCB→DTS
on QHudry

8 CONCLUSION

We introduced the testification problem for the Condorcet
winner in dueling bandits. This problem extends the best
arm identification problem and asks for simultaneously test-
ing the CW assumption and identifying the CW in case it
exists. Thus, instead of taking this assumption for granted,
the learner is supposed to detect a possible violation (as
quickly as possible). We provided an instance-wise lower
bound on the expected number of samples needed by any
learning algorithm solving the CW testification problem for
preference relations satisfying the low noise assumption.
Further, by exploiting a connection between tournaments
and the CW of a (binary) preference relation, we proposed
the noisy tournament sampling algorithm for the testification

problem, which is shown to decide correctly with arbitrarily
high confidence under mild assumptions on the underlying
sampling strategy. By mimicing the query behavior of an
optimal deterministic CW testification algorithm, noisy tour-
nament sampling is shown to achieve an expected sample
complexity that is optimal up to logarithmic terms.

Our novel problem setting opens up several lines for future
work. In the first place, it would be tempting to extend the
testification problem to stochastic types of transitivities of
the preference relation, which are explicitly or implicitly as-
sumed by several dueling bandits learning algorithms. Next,
theoretical properties of the suggested testing component
should be analyzed for structural properties of the prefer-
ence relation other than the low noise assumption. Finally,
the very idea of testification, i.e., to equip a learner with the
ability to provide a sanity check of its own assumptions, is
of course not restricted to the dueling bandits setting and
could also be applied to other machine learning problems.

Acknowledgements

The authors gratefully acknowledge financial support by the
German Research Foundation (DFG).

References

Nir Ailon, Zohar Karnin, and Thorsten Joachims. Reducing
dueling bandits to cardinal bandits. In Proceedings of
International Conference on Machine Learning (ICML),
pages 856–864, 2014.

Ramachandran Balasubramanian, Venkatesh Raman, and
G. Srinivasaragavan. Finding scores in tournaments. Jour-
nal of Algorithms, 24(2):380–394, 1997.

Viktor Bengs, Róbert Busa-Fekete, Adil El Mesaoudi-Paul,
and Eyke Hüllermeier. Preference-based online learn-
ing with dueling bandits: A survey. Journal of Machine
Learning Research, 22(7):1–108, 2021.

Béla Bollobás and Stephen E. Eldridge. Packings of graphs
and applications to computational complexity. Journal of
Combinatorial Theory, Series B, 25(2):105–124, 1978.

Mark Braverman and Elchanan Mossel. Noisy sorting with-
out resampling. In Proceedings of Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 268–
276, 2008.

Mark Braverman, Jieming Mao, and S. Matthew Weinberg.
Parallel algorithms for select and partition with noisy
comparisons. In Proceedings of the ACM symposium on
Theory of Computing, pages 851–862, 2016.

Róbert Busa-Fekete, Eyke Hüllermeier, and Balázs Szörényi.
Preference-based rank elicitation using statistical models:



 The case of Mallows. In Proceedings of International
Conference on Machine Learning (ICML), pages 1071–
1079, 2014.

Bangrui Chen and Peter I. Frazier. Dueling bandits with
weak regret. In Proceedings of International Conference
on Machine Learning (ICML), pages 731–739, 2017.

Rémy Degenne and Wouter M. Koolen. Pure explo-
ration with multiple correct answers. In Proceedings
of Advances in Neural Information Processing Systems
(NeurIPS), 2019.

Moein Falahatgar, Yi Hao, Alon Orlitsky, Venkatadheeraj
Pichapati, and Vaishakh Ravindrakumar. Maxing and
ranking with few assumptions. In Proceedings of Ad-
vances in Neural Information Processing Systems (NIPS),
pages 7060–7070, 2017a.

Moein Falahatgar, Alon Orlitsky, Venkatadheeraj Pichapati,
and Ananda Theertha Suresh. Maximum selection and
ranking under noisy comparisons. In Proceedings of
International Conference on Machine Learning (ICML),
pages 1088–1096, 2017b.

Moein Falahatgar, Ayush Jain, Alon Orlitsky, Venkatad-
heeraj Pichapati, and Vaishakh Ravindrakumar. The lim-
its of maxing, ranking, and preference learning. In Pro-
ceedings of International Conference on Machine Learn-
ing (ICML), pages 1426–1435, 2018.

Kevin Jamieson, Sumeet Katariya, Atul Deshpande, and
Robert Nowak. Sparse dueling bandits. In Proceedings
of International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 416–424, 2015.

Zohar Karnin. Verification based solution for structured
MAB problems. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pages 145–153,
2016.

Junpei Komiyama, Junya Honda, Hisashi Kashima, and
Hiroshi Nakagawa. Regret lower bound and optimal
algorithm in dueling bandit problem. In Proceedings of
Annual Conference on Learning Theory (COLT), pages
1141–1154, 2015.

Junpei Komiyama, Junya Honda, and Hiroshi Nakagawa.
Copeland dueling bandit problem: Regret lower bound,
optimal algorithm, and computationally efficient algo-
rithm. In Proceedings of International Conference on
Machine Learning (ICML), pages 1235–1244, 2016.

Anna Korba, Stephan Clémençon, and Eric Sibony. A learn-
ing theory of ranking aggregation. In Proceedings of
International Conference on Artificial Intelligence and
Statistics (AISTATS), pages 1001–1010, 2017.

Wataru Kumagai. Regret analysis for continuous dueling
bandit. In Proceedings of Advances in Neural Information
Processing Systems (NIPS), pages 1488–1497, 2017.

Chang Li, Ilya Markov, Maarten De Rijke, and Masrour
Zoghi. MergeDTS: A method for effective large-scale on-
line ranker evaluation. ACM Transactions on Information
Systems (TOIS), 38(4):1–28, 2020.

Lucas Maystre and Matthias Grossglauser. Just sort it! A
simple and effective approach to active preference learn-
ing. In Proceedings of International Conference on Ma-
chine Learning (ICML), pages 2344–2353, 2017.

Soheil Mohajer, Changho Suh, and Adel Elmahdy. Active
learning for top-k rank aggregation from noisy compar-
isons. In Proceedings of International Conference on
Machine Learning (ICML), pages 2488–2497, 2017.

Ariel D. Procaccia. A note on the query complexity of
the Condorcet winner problem. Information Processing
Letters, 108(6):390–393, 2008.

Siddartha Ramamohan, Arun Rajkumar, and Shivani Agar-
wal. Dueling bandits: Beyond Condorcet winners to gen-
eral tournament solutions. In Proceedings of Advances
in Neural Information Processing Systems (NIPS), pages
1253–1261, 2016.

Yanan Sui, Masrour Zoghi, Katja Hofmann, and Yisong
Yue. Advancements in dueling bandits. In Proceedings of
International Joint Conference on Artificial Intelligence
(IJCAI), pages 5502–5510, 2018.

Balázs Szörényi, Róbert Busa-Fekete, Adil El Mesaoudi-
Paul, and Eyke Hüllermeier. Online rank elicitation for
Plackett-Luce: A dueling bandits approach. In Proceed-
ings of Advances in Neural Information Processing Sys-
tems (NIPS), pages 604–612, 2015.

Tanguy Urvoy, Fabrice Clerot, Raphael Féraud, and Sami
Naamane. Generic exploration and k-armed voting ban-
dits. In Proceedings of International Conference on Ma-
chine Learning (ICML), pages 91–99, 2013.

Huasen Wu and Xin Liu. Double Thompson sampling for
dueling bandits. In Proceedings of Advances in Neural
Information Processing Systems (NIPS), pages 649–657,
2016.

Yisong Yue and Thorsten Joachims. Interactively optimiz-
ing information retrieval systems as a dueling bandits
problem. In Proceedings of International Conference on
Machine Learning (ICML), pages 1201–1208, 2009.

Yisong Yue and Thorsten Joachims. Beat the mean bandit.
In Proceedings of International Conference on Machine
Learning (ICML), pages 241–248, 2011.



 Yisong Yue, Josef Broder, Robert Kleinberg, and Thorsten
Joachims. The k-armed dueling bandits problem. Jour-
nal of Computer and System Sciences, 78(5):1538–1556,
2012.

Masrour Zoghi, Shimon Whiteson, Remi Munos, and
Maarten de Rijke. Relative upper confidence bound for
the k-armed dueling bandit problem. In Proceedings of
International Conference on Machine Learning (ICML),
pages 10–18, 2014.

Masrour Zoghi, Zohar Karnin, Shimon Whiteson, and
Maarten de Rijke. Copeland dueling bandits. In Pro-
ceedings of Advances in Neural Information Processing
Systems (NIPS), pages 307–315, 2015.


	Introduction
	Related Work
	The Dueling Bandits Problem
	The CW Testification Problem
	Nearly Optimal Testification
	Naïve Approaches
	Graph-theoretical Concepts
	Noisy Tournament Sampling
	The Passive Scenario
	The Active Scenario

	Other CW-related Problems
	Experimental Study
	The Active Scenario
	The Passive Scenario

	Conclusion

