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Abstract

Protein sequence alignment is a fundamental prob-
lem in computational structure biology and popu-
lar for protein 3D structural prediction and protein
homology detection. Most of the developed pro-
grams for detecting protein sequence alignments
are based upon the likelihood information of amino
acids and are sensitive to alignment noises. We
present a robust method PALM for modeling pair-
wise protein structure alignments, using the area
distance to reduce the biological measurement
noise. PALM generatively learn the alignment of
two protein sequences with probabilistic area dis-
tance objective, which can denoise the measure-
ment errors and offsets from different biologists.
During learning, we show that the optimization is
computationally efficient by estimating the gradi-
ents via dynamically sampling alignments. Empiri-
cally, we show that PALM can generate sequence
alignments with higher precision and recall, as
well as smaller area distance than the competing
methods especially for long protein sequences and
remote homologies. This study implies for learn-
ing over large-scale protein sequence alignment
problems, one could potentially give PALM a try.

1 INTRODUCTION

Protein sequence alignment is a fundamental topic in com-
putational structure biology and has been widely applied
to protein structure and functional study [Do et al., 2006],
protein 3D structure prediction [Marks et al., 2011] and
protein homology detection [Söding et al., 2005]. In the past
two decades many computer programs have been developed
for automatic pairwise sequence alignment [Altschul et al.,
1990, Kumar et al., 2004, Hou et al., 2016] and multiple
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Figure 1: Illustration of protein sequence alignment and the
area distance. (Bottom) The task is to align two amino acids
sequences S and T , where one amino acid from sequence
S can be aligned to either one amino acid from sequence
T (match), or to a gap (insertion, marked by “−”). (Top)
Such an alignment become a path in the alignment matrix,
where a diagonal transition represents a match, a horizontal
or a vertical transition represents an insertion. The area
between one predicted alignment and ground-truth is viewed
as the area distance between them. Both of the two predicted
alignments correctly predicted one edge on the ground truth
alignment, denoting they have similar point-wise loss. Yet
the green alignment (i.e., “pred1”) is relatively similar to the
ground-truth with smaller area difference than the orange
one (i.e., “pred2”).

sequence alignment [Armougom et al., 2006, Katoh and
Toh, 2008]. Here we only focus on pairwise sequence align-
ment, where we let S and T be two sequences of amino
acids. Our goal is to align the two sequences. As shown in
Figure 1(bottom), each amino acid in one sequence can be
aligned to either an amino acid in the homology sequence
(called a match) or a gap (called an insertion). Our tasks
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 are that: (i) given a dataset of aligned pairs of amino acid
sequences, learn the likelihoods of different alignments of
the two sequences; (ii) given a new amino acid sequence
pair, determine the most likely alignment.

Most of existing probabilistic alignment approaches maxi-
mize likelihood functions, which lead to the minimization
of the pointwise differences of the two alignments. Never-
theless, this pointwise difference loss function is unrealistic
for the biology application. The alignments contain noises
and offsets as the measurements are done by different biolo-
gists [Altschul and Lipman, 1990], resulting in mismatches
using pointwise loss. For example, Figure 1 presents two pre-
dicted alignments against the ground-truth. Both predicted
alignments are different from the ground-truth in four loca-
tions. Therefore, they have identical pointwise differences
against the ground-truth. Nonetheless, the green alignment
is considerably better than the orange alignment, because
the corresponding amino acids of each pair in the ground-
truth are much closer to the green alignment. The missed
predictions of the green alignment can be the result of bi-
ological measurement noises, while the orange alignment
completely misses the ground-truth. Area loss can capture
this since small offsets have small area distance.

In order to introduce the distance between two alignments
into the probabilistic model, we propose Probabilistic Area
Loss Minimization (PALM) for pairwise protein sequence
alignment, which is a two-step approach to model the whole
alignment matrix. The key idea of PALM is (i) using a
generative model Pr(a|S, T ) to model the ground-truth
alignment a where the matching of each pair of amino acids
in the two protein alignment leads to a change in the total
likelihood; (ii) the observed alignment a∗ is a noisy ob-
servation of the ground-truth alignment, the likelihood of
observing which Pr(a∗|a, S, T ) negatively depends on the
area difference of the two alignments. This area difference
is capable of greatly penalizing those alignments a that are
far from the observed alignment a∗. The learning goal of
PALM is to maximize the marginal likelihood of the ob-
served alignment Pr(a∗|S, T ), which sums over all the dif-
ferent ground-truth alignment a. However, the closed-form
of maximal likelihood estimation of PALM is computation-
ally intractable. We, therefore, propose a novel computing
scheme that maximizes a lower bound of logPr(a∗|S, T ).
To optimize the lower bounded objective, we formulate the
gradient computation using contrastive divergence frame-
work [Hinton, 2002], where dynamic sampling is used to
sample alignments to estimate the gradient unbiasedly. We
show theoretically that PALM can converge to the global
optimum of the objective in a linear number of iterations.

In literature, dynamic programming with a deterministic
cost function [Tompa, 2000, Durbin et al., 1998] were
used to obtain the alignment, including Needleman–Wunsch
method for global alignment [Needleman and Wunsch,
1970] and Smith-Waterman algorithm for local align-

ment [Smith and Waterman, 1981]. However, they are heav-
ily dependent upon the proper design of the cost function
between two amino acids. Recently probabilistic learning
have been widely used to model sequences [Ma et al., 2014,
Jeong and Kim, 2016, Daniels et al., 2015, Balakrishnan
et al., 2011]. Söding [2005] employs HMM-HMM compari-
son for learning the alignment probability which models a
protein family using Hidden Markov Model (HMM). MR-
Falign [Ma et al., 2014] further uses an MRF-MRF compar-
ison which is more expressive than HMM model. However,
they cannot model long-range residue interaction patterns
and thus are not sensitive enough to the distant-related ho-
mologies. The idea of using area distance to model the gap
between different sequences is also found in audio recog-
nition [Lajugie et al., 2014, Gupta et al., 2019], which is
under a different setting of ours.

Empirically, we show on the large dataset Protein Data Bank
(PDB) [Wu and Xu, 2021] that our method has higher pre-
cision and recall value, as well as F1-Score value than the
competing methods, especially the lengths of the two se-
quences are far from each other. We find that the exact, 4-off,
10-off recall of PALM is twice more than that of dynamic
programming (DP) when |S| ∈ [1, 100], |T | ∈ [400,+∞)
and the exact, 4-off, 10-off precision is also twice more than
of DP when |S| ∈ [400,+∞), |T | ∈ [1, 100]. In addition,
in terms of time efficiency between learning our method
using dynamic sampling and the automatic differentiation
method, PALM takes only one-fourth time to compute the
gradient than the automatic differentiation over six different
testing sets.

To summarize, our contributions are as follows:

• We propose PALM, a novel two-step approach for
protein sequence alignment, where we first model the
ground-truth alignment using a generative model, and
then leverage a conditional distribution formed by the
area difference of two alignments to denoise the ob-
served alignment from noisy observation.

• We propose a novel computing scheme to maximize
a tight lower bound of the computationally intractable
log-likelihood, and efficiently compute the gradients
by estimating it unbiasedly via dynamically sampling
alignments. We show theoretically that PALM is able
to converge to the global optimum of the objective in
linear number of iterations.

• Experimentally we evaluate our method on a large-
scale PDB dataset, and find that PALM outperforms
the competing methods in either Precision, Recall, or
F1-Score, especially on long protein sequences and
remote homologies1.

1Implementation: github.com/jiangnanhugo/PALM

github.com/jiangnanhugo/PALM


 2 PRELIMINARY

In this section, we briefly introduce the Markov Random
Field (MRF), which is used as our probabilistic model. We
also introduce the problem of pairwise sequence alignment.

2.1 MARKOV RANDOM FIELD

MRF is a generative model for the joint distribution of
multiple correlated random variables [Cross and Jain, 1983].
In an MRF, the probability Pr(x) is defined as:

w(x) =
∏
α∈I

φα({x}α), P r(x) = w(x)/Z.

where {x}α is a subset of variables in x that the function
φ depends on. φα : {x}α → R+ is a potential function, or
commonly referred to as a clique. φα maps every assignment
of variables in {x}α to a non-negative real value. I is an
index set and Z is a normalization constant, which ensures
that the probability adds up to one: Z =

∑
x∈{0,1}m w(x).

A potential function φα({x}α) defines the correlation be-
tween all variables in the subset {x}α. The structure of the
MRF or the set I can be built from domain knowledge and
potential functions can be learned from real-world data.

2.2 PAIRWISE SEQUENCE ALIGNMENT

Given a pair of sequence (S, T ), we can formulate an align-
ment matrix of shape (|S|, |T |) as shown in Figure 1. In the
matrix, each row represents an amino acid in S and each
column represents an amino acid in T . Each alignment for
sequences S and T forms a path from the upper-left node
to the bottom-right node, where each edge in the path is
either horizontal, representing an insertion in T , vertical,
representing an insertion in S, or diagonal, representing a
match. We use symbols M, IS and IT to represent a match,
an insertion in S, and an insertion in S, respectively. Thus an
alignment a is a sequential combination of symbols M, IS
and IT . Let Prθ(a|S, T ) be the probability of alignment
a with parameter θ. Our goal is to align the two given se-
quences. Our task can be divided into the following two
parts.

Learning. Given a training set of {(S(k), T (k), a∗(k))}Nk=1,
where S(k), T (k) is a pair of sequences, and a∗(k) is the
ground-truth alignment between the two sequences. We
want to learn the model via maximizing the likelihood,
which translates to the following problem:

max
θ

N∏
k=1

Prθ(a
∗(k)|S(k), T (k)). (1)

where θ is the parameter of the model.

Inference. After learning Prθ(a|S, T ), we can use the
model to find the best alignment between two new sequences

by solving the following problem:

â = argmax
a∈A

Pr(a|S, T ) (2)

where A = {a | a is a valid path} is the set of all valid
paths. The validness ensures that: (i) alignment a has to start
from the upper-left node and end at bottom-right node in
the matrix; (ii) alignment a forms a consecutive path in the
matrix.

Nevertheless, most existing approaches that maximize like-
lihood functions will lead to the minimization of the point-
wise differences of the two alignments, which is unrealistic
for biology application. For instance, Figure 1 presents two
predicted alignments against the ground-truth. Both align-
ments are different from the ground-truth in four locations.
Therefore, they have equal pointwise differences against the
ground-truth. However, the green alignment is considerably
better than the orange alignment, because the corresponding
amino acids of each pair in the ground-truth are much closer
in this alignment. The missed predictions of the green align-
ment can be the result of biological measurement noises,
while the orange alignment completely misses the ground-
truth. Therefore, the green alignment should have a larger
likelihood compared to the orange one given the ground-
truth alignment.

3 PROBABILISTIC AREA LOSS
MINIMIZATION

In this section, we first introduce our two-step model and
then explain how it can solve the distant-related gap problem.
Followed by illustration on how to efficiently learn this
model via dynamic sampling. Finally, we detail the process
of generating alignments in testing.

3.1 TWO-STEP MODEL

Define function π be the mapping from the index on the
alignment to the indexes on both sequences, i.e., πS(a, k)
is the index on sequence S for the k-th term of alignment
a, and πT (a, k) is the index on sequence T for that term.
(πS(a, k), πT (a, k)) are the coordinates of the k-th term of
a in the alignment matrix. Using the ground-truth in Fig-
ure 1 as an example, πS(a, 1) = 1, πT (a, 2) = 0 meaning
the top-down edge from origin. πS(a, 1) = 1, πT (a, 2) = 1
represents a vertical edge from the protein "S" in the align-
ment matrix.

Prior Prediction. We model the probability of having the
alignment a over sequences S and T as:

Prθ(a|S, T ) =
e
∑|a|
k=1 φθ(πS(a,k),πT (a,k),ak)

Zφ
(3)



 Algorithm 1: Probabilistic Area Loss Minimization for Protein Sequence Alignment.
Input: Model parameter θ, Maximum epochs Epo, Learning rate η, Weight λ, Training data D.
Output: The converged model with parameter θEpo

1 for t← 1 to Epo do
2 Randomly sample data {S, T, a∗} from D.
3 Inference â← argmaxa{

∑|a|
k=1 φ(πS(a, k), πT (a, k), ak)− λLarea(a∗, a)}. . Details in Section 3.2.1

// Backward Compute Z(i, j)
4 for i← |S| to 1, j ← |T | to 1 do
5 Compute Z(i, j). . See Equation (10) in Section 3.2.2
6 end

// Forward Sampling Alignments
7 for m← 1 to M do
8 for i← |S| to 1, j ← |T | to 1 do
9 Sample an edge amk w.r.t Prθ(ak|Si, Tj) and update i, j. . See Equation (11) in Section 3.2.2

10 Compute gradient of the neural network∇φθ(πS(am, k), πT (am, k), amk ).
11 end
12 end
13 Estimate∇ logZφ ← 1

M

∑
am∼Prθ(a|S,T )

[∑|am|
k′=1∇φθ(πS(a, k′), πT (a, k′), ak′)

]
.

14 Estimate∇LLB ←
∑|â|
k=1∇φθ(πS(â, k), πT (â, k), âk)−∇ logZφ.

15 θt+1 ← θt + η∇LLB . . Gradient update
16 end
17 return θEpo

where Zφ =
∑
a∈A e

∑|a|
k=1 φθ(πS(a,k),πT (a,k),ak) is the nor-

malization factor, φθ(πS(a, k), πT (a, k), ak) is the feature
function which takes as input the features extracted from ev-
ery two amino acids of S and T , and θ represent the model
parameters. Notice that function φθ can be either a linear
function, or a neural network of arbitrary architecture.

Denoising via Area Distance. Due to the measurement
error of biological tools, the observed alignments a∗ are
usually noisy [Altschul and Lipman, 1990]. In view of this
observation, we introduce a conditional probability distribu-
tion over a∗ conditioned on the latent variable a to diminish
the effect of noise. We leverage the area distance as a prob-
abilistic measure where the predicted alignment a that is
similar to the observed one a∗ has higher probability value:

Prarea(a
∗|a, S, T ) = e−λLarea(a

∗,a)

Zarea
(4)

where Zarea =
∑
a′∈A e

−λLarea(a∗,a′) is the normalization
term and λ is the weight. We compute the area distance as
the gap of area between the two alignments in the alignment
matrix, which penalizes those predicted alignment that is far
away from the observed alignment. For instance, as shown
in Figure 1, the area distance between the ground-truth
and the first predicted alignment (green line) is 1.5, and is
4.5 between the ground-truth and the second one (orange
line). Then, we maximize the likelihood of the observed

alignment, and the whole model becomes

Pr(a∗|S, T ) =
∑
a

Prarea(a
∗|a, S, T )Prθ(a|S, T ). (5)

which sums over the latent variable a and is the marginal
distribution of a∗.

To conclude, when the ground-truth become noisy, the point-
wise MLE learning objective base on Equation (3) would
oscillate and become harder to converge. The denoised ob-
jective in Equation (5) would make training be more steady.

3.2 MODEL LEARNING

To learn the model Pr(a∗|S, T ), we would like to maximize
the log-likelihood of the observed alignment given sequence
S and T :

max
θ
L = max

θ
logPr(a∗|S, T ) (6)

Combining with our model definition in Equation 3 and 4,
the log likelihood L can be rewritten as:

L = log
∑
a

e−λLarea(a
∗,a)

Zarea

e
∑|a|
k=1 φθ(πS(a,k),πT (a,k),ak)

Zφ

= log
∑
a

e
∑|a|
k=1 φθ(πS(a,k),πT (a,k),ak)−λLarea(a

∗,a)

− logZφZarea



 The evaluation of L needs to sum over all possible align-
ments, which is computationally intractable. Since the sum
is usually dominated by one alignment that has the maxi-
mum likelihood, we optimize the lower bound of L instead
of directly optimize L. Denote the lower bound as LLB ,
which is

LLB=max
a
{
|a|∑
k=1

φθ(πS(a, k), πT (a, k), ak)-λLarea(a∗, a)}

− logZarea − logZφ (7)

It is obvious that LLB ≤ L because of the principle
of log-sum-exp function: maxx φ(x) ≤ log

∑
x e

φ(x) ≤
maxx φ(x) + logN , where N represents the number of all
possible x [Blanchard et al., 2020]. Then, the learning pro-
cedure is separated into two steps, where the first step is to
inference â that has the maximum likelihood:

â = max
a
{
|a|∑
k=1

φθ(πS(a, k), πT (a, k), ak)− λLarea(a∗, a)}

One can identify that â represent those alignments that are
close to the observed alignment a∗. Since the observed align-
ments are generated by biological tools and contains some
noisy observation, our method use a bunch of alignments
that are close to the observed alignments to reduce the im-
pact of noise. The second step is to optimize parameter θ in
order to maximize LLB using both a∗ and â. By optimizing
the parameter θ, we can keep increasing the likelihood of â,
making the lower bound to approach the true likelihood L.

Algorithm 1 shows the training procedure of PALM. In
the following parts, we will show how to inference â via
dynamic programming, how to optimize θ via dynamic sam-
pling, and finally give a convergence analysis of our learning
algorithm.

3.2.1 Inference via Dynamic Programming

Based on the observation that our area loss Larea is
decomposable, we propose a dynamic programming ap-
proach to inference â. Specifically, we decompose the area
loss into the sum of area-unit distance Larea(a∗, â) =∑|â|
k′=1 Lk

′

area(a
∗, â) where k′ is the index of the predicted

alignment â. Given the observed alignment a∗, we compute
Lk′area as follows: we first find it’s corresponding coordi-
nates on sequences S and T is πS(â, k′), πT (â, k′) and then
find a index k in a such that πT (a, k) = πT (â, k

′). Then
Lk′area is defined as:

Lk
′

area(a
∗, â) =



|πS(a∗, k)-πS(â, k′)+ 1
2
| a∗k=M, âk′=IT

|πS(a∗, k)-πS(â, k′)| a∗k =M, âk′=M
|πS(a∗, k)-πS(â, k′)- 12 | a∗k=IT , âk′=M
|πS(a∗, k)-πS(â, k′)| a∗k=IT , âk′=IT
0 otherwise

Since we can decompose Larea, â can be obtained by the
following dynamic programming approach. Let A(i, j) rep-
resent the maximum likelihood of the path from node (i, j)
to the bottom right corner, in the alignment matrix of se-
quence S and sequence T . Then we have:

A(i, j)=max


A(i+1, j+1) + φθ(Si, Tj ,M) + λLk

′
area(a

∗, â)

A(i+ 1, j) + φθ(Si, Tj , IS) + λLk
′
area(a

∗, â)

A(i, j + 1) + φθ(Si, Tj , IT ) + λLk
′
area(a

∗, â)

where j = πT (â, k
′) and we initialize A(|S|, |T |) = 0. The

computation is line by line from the bottom right corner
to the up left corner in the alignment matrix. The corre-
sponding alignment â can be extracted from the matrix A
by following the path that gives the largest likelihood.

3.2.2 Optimization via Dynamic Sampling

Once â is obtained according to the area distance, we opti-
mize the lower boundLLB using stochastic gradient descent.
The gradient of LLB can be written as:

∇LLB=
|â|∑
k=1

∇φθ(πS(â, k), πT (â, k), âk)-∇ logZφ (8)

The term ∇φθ(πS(â, k), πT (â, k), âk) is the gradient of
function φθ, which can be directly computed. Overall, there
are |â| number of gradient terms with respect to this func-
tion. logZarea term does not contain parameter to optimize,
so it does not has the corresponding gradient term in∇LLB .
For computing ∇ logZφ, we follow the idea of contrastive
divergence [Hinton, 2002] that formulate it as an expectation
over probability P (a|S, T ):

∇ logZφ =
1

Zφ

∑
a∈A

∇e
∑|a|
k′=1

φθ(πS(a,k′),πT (a,k′),ak′ )

= Ea∼Prθ(a|S,T )

 |a|∑
k′=1

∇φθ(πS(a, k′), πT (a, k′), ak′)


≈ 1

M

∑
am∼Prθ(a|S,T )

|am|∑
k′=1

∇φθ(πS(am, k′), πT (am, k′), amk′)


Therefore, we can approximate the exact gradient∇ logZφ
unbiasedly by first sampling M paths from distribution
Prθ(a|S, T ) and then sum the gradients ∇φθ of all sam-
pled path {am}Mm=1. Note that the sum-product algorithm
offers a general computing paradigm for the factor graph
and logZφ [Peharz, 2015]. Our computing steps can be a
particular case for the general sum-product algorithm.

Below we propose a backward-forward approach to
sample one alignment under the probability distribution
Prθ(a|S, T ).

Backward Computing Z(i, j). We denote Z(i, j) as the
sum of all the unnormalized energy values of every path



 

ground-truth alignment

sampled alignment
origin

end

Figure 2: Sampling a path from the original step-by-step
until reaching the bottom-right corner in the alignment ma-
trix. At point (i, j), the sampling approach first calculates
the probability of taking the options M, IS , IT , and then
sample one option according to the probability value. See
Equation (11) for detailed computation.

starting from point (i, j) to the end (|S|, |T |).

Zφ(i, j) =
∑

a∈A(i,j)

e
∑|a|
k=1 φθ(πS(a,k),πT (a,k),ak) (9)

where A(i, j) is the set of all possible valid paths starting
from node (i, j) to the end (|S|, |T |). Then, we can back-
ward compute Z(i, j) via dynamic programming:

Zφ(i, j) =Zφ(i+ 1, j + 1)eφθ(i,j,M)

+ Zφ(i+ 1, j)eφθ(i,j,IS)

+ Zφ(i, j + 1)eφθ(i,j,IT )

(10)

Forward Sampling Alignments. To sample a path am start-
ing from the original point in the alignment matrix to the
bottom right corner, we recursively sample the k-th edge of
the alignment from {M, IS , IT } at point (i, j) based on the
probability distribution Prθ(amk |Si, Tj) correspondingly.

Prθ(a
m
k |Si, Tj)=


Z(i+1,j+1)
Z(i,j) eφθ(i,j,M) amk =M

Z(i+1,j)
Z(i,j) eφθ(i,j,IS) amk =IS
Z(i,j+1)
Z(i,j) eφθ(i,j,IT ) amk =IT

(11)

where 1 ≤ i ≤ |S| and 1 ≤ j ≤ |T |. See Figure 2 as an
example. We start form the top-left corner and iteratively
compute and sample with respect to the probability until we
arrives at the bottom-right corner.

After we have obtained all the samples {am}Mm=1, we es-
timate the gradient ∇LLB with Equation (8) and update
parameter θ by: θt+1 ← θt + η∇LLB , where η is the learn-
ing rate.

Remark 1. The time complexity of computing gradient
via dynamic sampling is O(|S||T | + (|S| + |T |)M). The
complexity of computing Z is O(|S||T |). The complexity
of computing the probability distribution for sampling is
O((|S|+ |T |)M). To conclude, the whole optimization pro-
cess of each iteration is O(|S||T |+ (|S|+ |T |)M).

3.2.3 Convergence Analysis

In view of the convexity of LLB , we analyze our algorithm
in terms of convergence rate towards the global optimal. We
show in Theorem 1 that PALM is guaranteed to converge in
linear number of iterations to the global optimum, based on
the linear assumption of function φθ.

Theorem 1. Let LLB be the lower bound of log-
likelihood function in Equation (7). Denote the optimal
parameter θ∗ = argmaxθ LLB and the total variation
V arPrθ(a)(φθ(a)) ≤ L. In iteration t of PALM in Algo-
rithm 1, θt+1 = θt+ηgt where gt is an unbiased estimation
of the exact gradient ∇LLB(θt). V ar(gt) ≤ σ2

M where M
is sample size. Then, for any number of epochs T > 1,
learning rate η ≤ 2

L , and θT = 1
T

∑T
t=1 θt, we have:

E[LLB(θT )]− LLB(θ∗) ≤
‖θ0 − θ∗‖22

2ηT
+
ησ2

M
. (12)

Theorem 1 states that PALM converges to the global opti-
mal of LLB with O(T ) iterations. The objective function
LLB is convex w.r.t parameter θ [Jiang et al., 2018], as the
first term of LLB is always linear and the second term is
convex. In addition, since the total variation is bounded
V arPrθ(a)(φθ(a)) ≤ L, we can prove that LLB is also
L−smooth. Therefore, by unbiasedly estimate the gradient,
we can prove the convergence rate based on classic results
in the literature of stochastic gradient descent. The complete
proof of Theorem 1 is left to supplementary materials. In
practice, we can increase either the number of epochs T or
the sample size M to approach better result.

3.3 INFERENCE IN TESTING

Inference in testing is to predict an alignment that attains
the most likelihood. It is different from Section 3.2.1, which
we use inference to generate alignment to estimate lower
bounded loss function LLB .. Given sequence S, T and the
learned model, the inference case can be computed as find-
ing an alignment that have the highest likelihood without
area distance:

â = argmaxa∈Ae
∑|a|
k=1 φθ(πS(a,k),πT (a,k),ak) (13)

Instead of enumerating all the possible valid paths in the ma-
trix, we can still use dynamic programming to inference an
alignment with O(|S||T |) time complexity. Let A′(i, j) rep-
resent the path from node (i, j) to the right corner with the



 maximum energy value in the alignment matrix of sequence
S and sequence T . Then we have

A′(i, j)=



A′(i+ 1, j) + φθ(Si, Tj , IS), 1 ≤ i ≤ |S|, j=|T |+1;
A′(i, j + 1) + φθ(Si, Tj , IT ), i=|S|+1, 1 ≤ j ≤ |T |;

max


A′(i+ 1, j + 1) + φθ(Si, Tj ,M)

A′(i+ 1, j) + φθ(Si, Tj , IS)

A′(i, j + 1) + φθ(Si, Tj , IT )

otherwise

where the initial condition is A′(|S|, |T |) = 0 and the com-
putation is line by line from the bottom right corner to the up
left corner in the alignment matrix. The corresponding align-
ment â can be extracted from the matrix A′ by following
the edge that gives the largest energy value.

4 EXPERIMENTS

In this section, we first illustrate the experiment setups and
then compare PALM with competing methods in terms of
testing performance and learning efficiency, followed by an
ablation study on the hyper-parameter of the area distance.

Dataset. The full dataset for protein alignment task is from
Ma et al. [2014], which contains 10567 distinct sequences
and 210477 pairwise aligned sequences. The ground-truth
alignments are generated from DeepAlign tool [Wang et al.,
2013]. The feature for every amino acid describes the geo-
metric similarity, evolutionary relationship, and hydrogen-
bonding similarity of proteins. The feature dimension is 41.
We use the full dataset for the training step. For testing, we
first partition the full dataset by the length of two sequences
and then randomly pick 200 pairwise aligned sequences
from each group. The length of sequences are divided into 5
groups: [1, 100], [100, 200], [200, 400], [1, 200], [400,∞).

Baselines. We consider a dynamic programming algorithm
(DP) with a deterministic cost function [Needleman and
Wunsch, 1970] to find the global alignment given two se-
quences. We use the cost for matching (i.e., M ) as the sum-
mation over the feature vectors of two amino acids. The cost
for insertion on sequence S (i.e., IS) as the summation over
the feature vector for the corresponding amino acid on se-
quence S. The cost for insertion on sequence T (i.e., IT ) is
defined similarly. For algorithms that use a deep neural net-
work with a richer set of features for the protein alignment
problem, such as CNF [Ma et al., 2012] and DRNF [Wu
and Xu, 2021], we do not compare with them for the sake of
fairness. Because the parameter size of implemented PALM
model is much smaller and the feature used is also limited.
However, PALM can be easily extended to a deep neural
network by changing the feature function φθ. We leave the
comparison with these deep neural methods as future work.

Evaluation Metrics. We use Precision, Recall and F1-Score
to measure the quality of the predicted alignments. In the
“exact” scenario, only an exactly matched result is used for

computing the true positive rate. The “4-off” scenario is a re-
laxed measure that 4-position off the exact match is allowed.
“10-off” case is defined similarly. These two relaxed metrics
are applied for depicting the model’s performance for longer
sequences. We also include the averaged computing time
for estimating∇ logZθ over 100 epochs to reveal the time
efficiency of our sampling approaches.

Implementation. The feature function φθ is a single layer
of perceptron and the dimension of parameter θ is 82. φθ
is adaptable to deeper neural networks with more parame-
ters. For “match” case, we use the concatenation of feature
vectors. For insertion on sequence S case, we use the con-
catenation of feature vector for Si and a zero vector. For
insertion on sequence T , we use the concatenation of a zero
vector and feature vector for Tj . For the hyper-parameters,
we set the number of sampled paths M to be 100 and the
relative weight of area loss λ = 50. The learning rate η is
initialized as 1 and decay by factor 0.9 for every 50 epochs.
The maximum training epochs is set as 106. It takes a day
to converge on the training set.

4.1 LEARNING EFFECTIVENESS FOR PALM

We compare with DP over 10 different testing sets for the se-
quence alignment task. Results are collected in Table 1.
We observe that PALM has a higher Recall over exact,
4-off, 10-off settings, when sequence T is much longer
than sequence S. PALM has higher Precision over the ex-
act, 4-off, 10-off settings when sequence S is longer. For
|S| ∈ [1, 100], |T | ∈ [400,+∞), where the length differ-
ence of two sequences are large, Recall of PALM is twice as
high as DP. Similarly, for |S| ∈ [400,+∞), |T | ∈ [1, 100],
Precision of PALM is roughly twice as high as DP. When
the difference of lengths of the two sequences becomes
close, e.g., for |S| ∈ [1, 100], |T | ∈ [100, 200], PALM has
a relatively 3− 6% higher Recall value than DP. Similarly,
for |S| ∈ [100, 200], |T | ∈ [1, 100], PALM has a relatively
4− 6% higher Precision than DP. For the F1-Score, PALM
achieves better results over 9 out of 10 testing sets against
the baseline.

4.2 ABLATION STUDY ON WEIGHT λ

Here we analyze how the hyper-parameter λ balances the
area distance and the score function for inference during
training. When λ approaches infinity, area distance becomes
more important in the inference of â during training, which
leads to â more similar to the ground-truth alignment a∗. It
can be seen from Table 2 that when we select a suitable λ
that strikes a balance between the area distance and the score
function, we can learn a better model than pure maximum
likelihood learning (when λ→ +∞).



 |S| ∈ [1, 100], |T | ∈ [100, 200] |S| ∈ [100, 200], |T | ∈ [1, 100]

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)
exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off

DP 7.8 31.3 51.2 20.4 39.0 56.3 11.3 34.7 53.6 20.2 40.4 59.4 6.1 26.3 45.1 9.4 31.9 51.3
PALM 9.9 29.8 48.7 23.5 43.1 62.3 13.9 35.2 54.7 26.8 44.6 63.2 6.4 26.6 43.1 10.3 33.3 51.2

|S| ∈ [1, 100], |T | ∈ [200, 400] |S| ∈ [200, 400], |T | ∈ [1, 100]

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)
exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off

DP 5.2 27.6 46.1 32.0 39.8 46.7 8.9 32.6 46.4 30.0 37.5 44.7 3.8 19.8 34.4 6.7 25.9 38.9
PALM 6.5 26.9 43.3 51.4 62.5 73.3 11.5 37.6 54.4 52.7 63.5 73.8 3.3 18.7 31.0 6.2 28.9 43.7

|S| ∈ [1, 100], |T | ∈ [400,+∞) |S| ∈ [400,∞), |T | ∈ [1, 100]

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)
exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off

DP 4.9 26.4 45.2 31.5 34.0 36.2 8.5 29.7 40.2 32.5 34.5 36.4 2.5 15.6 27.0 4.6 21.5 31.0
PALM 5.1 21.4 35.3 75.3 81.1 86.3 9.6 33.9 50.1 76.0 81.1 86.1 3.1 18.1 29.1 6.0 29.6 43.5

|S| ∈ [100, 200], |T | ∈ [200, 400] |S| ∈ [200, 400], |T | ∈ [100, 200]

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)
exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off

DP 6.5 27.0 45.2 26.1 38.6 50.5 10.4 31.8 47.7 25.4 38.9 51.2 5.9 22.2 37.0 9.6 28.3 43.0
PALM 10.4 30.0 47.0 34.8 49.4 62.9 16.0 37.3 53.8 36.2 50.4 63.4 4.6 18.5 31.0 8.2 27.1 41.6

|S| ∈ [100, 200], |T | ∈ [400,+∞) |S| ∈ [400,+∞), |T | ∈ [100, 200]

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)
exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off

DP 4.9 24.1 41.0 33.4 38.1 42.6 8.5 29.5 41.8 34.9 39.9 44.6 2.8 14.4 24.8 5.2 21.2 31.9
PALM 6.1 23.4 38.3 61.1 69.0 76.5 11.1 34.9 51.0 62.5 71.0 78.8 3.2 14.1 23.6 6.1 23.5 36.3

Table 1: Comparison of Precision, Recall and F1-Score between our method and dynamic programming (DP) over different
lengths of protein sequences on PDB [Wu and Xu, 2021] dataset. 4-off, 10-off are the relaxed measures. PALM gets better
results in terms of Precision, Recall and F1-Score metrics especially on longer sequences and remote homologies than the
competing approach.

|S| ∈ [1, 100], |T | ∈ [400,+∞) |S| ∈ [400,+∞), |T | ∈ [1, 100]

Precision (%) Recall (%) F1-Score (%) Precision (%) Recall (%) F1-Score (%)
λ exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off exact 4-off 10-off
50 5.1 22.6 36.4 75.3 81.1 86.3 9.6 35.3 51.2 75.9 81.1 86.0 2.6 17.0 27.2 5.0 28.1 41.3
100 4.6 21.3 35.2 75.3 81.1 86.3 8.7 33.7 50.0 76.0 81.1 86.1 3.1 18.1 29.1 6.0 29.6 43.5
500 4.5 20.9 34.0 75.4 81.2 86.4 8.5 33.2 48.8 75.9 81.0 85.9 3.1 17.4 28.3 6.0 28.6 42.6
+∞ 4.2 20.8 35.7 75.1 80.9 85.0 8.0 33.1 50.3 75.0 80.7 85.0 3.5 16.8 27.8 6.7 27.8 41.9

Table 2: Ablation study on hyper-parameter λ. When λ approaches infinity, area distance becomes more important in the
inference of â during training, which leads to â more similar to the ground-truth alignment a∗. It can be seen that when we
select a suitable λ that strikes a balance between the area distance and the score function, we can learn a better model than
pure maximum likelihood learning. Note that the objective becomes MLE when λ→ +∞.

4.3 TIME EFFICIENCY FOR GRADIENT
COMPUTATION

We compare the time efficiency of computing the gradient
with Automatic Differentiation (Autograd) [Paszke et al.,
2017], which computes the exact gradient by automatically
back-propagation, and our approach in Table 3. We imple-
ment both of the methods using PyTorch framework and
select 100 sequence pairs in every testing set at random
to measure the average time. Since the computational time

is approximately proportional to the sequence length, the
standard deviation of computation time is included for show-
ing the impact of sequence length. We find that PALM is
much more time efficient than Autograd among all the se-
quence length settings, where PALM only needs one-fourth
of the time than the competing approach to approximate
the gradient. In the extreme case where |S| ∈ [400,+∞)
and |T | ∈ [400,+∞), Autograd method takes roughly 5
minutes to compute the gradient for just one sequence pairs
while PALM only takes 1 minutes. Additionally, the stan-



 Sequence Length Running Time (sec)
|S| |T | PALM Autograd

[1, 100] [1, 100] 0.7± 0.2 2.5± 0.8
[100, 200] [100, 200] 2.7± 0.9 9.4± 3.3
[100, 200] [200, 400] 6.6± 2.3 25.4± 9.4
[200, 400] [100, 200] 6.2± 2.0 23.2± 8.1
[200, 400] [200, 400] 12.5± 2.3 51.7± 11.2
[400,+∞) [400,+∞) 63.4± 32.0 297.6± 282

Averaged 18.6± 29.4 83.3± 182

Table 3: Time efficiency of computing the gradient among
different testing sets. PALM is much time efficient than the
competing method Autograd, which computes the exact gra-
dient by automatically back-propagation, among all length
intervals of two protein sequences.

dard deviation of the computing time for the competing
approach is much higher than PALM, which means PALM
is more stable to the variation of sequence lengths.

5 CONCLUSION

In this paper we present a robust method for generative pair-
wise protein sequence alignment under biological errors and
noises, which is a two-step generative model based on the
area distance between two alignments in the alignment ma-
trix. We propose a novel lower bound of the log-likelihood
as the objective and efficiently estimate the gradient during
optimization by dynamically sampling the alignments. We
showed theoretically that PALM converges to the global
optimum of the lower bound in linear number of iterations.
In experiments, PALM can generate sequence alignments
with higher precision and recall than competing methods
especially when proteins under consideration are remote
homologies. We also show that the optimization of PALM is
much more computationally efficient by dynamically sam-
pling alignments than the automatic gradient differentiable
algorithm. For future work, we plan to model the feature
function with deep neural nets, while feeding more infor-
mative features. We are also active to find more meaningful
distance functions to model the difference of two align-
ments.
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