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Abstract

Neural Processes (NPs) are a family of conditional
generative models that are able to model a distri-
bution over functions, in a way that allows them
to perform predictions at test time conditioned
on a number of context points. A recent addition
to this family, Convolutional Conditional Neural
Processes (CONVCNP), have shown remarkable
improvement in performance over prior art, but
we find that they sometimes struggle to general-
ize when applied to time series data. In particular,
they are not robust to distribution shifts and fail to
extrapolate observed patterns into the future. By
incorporating a Gaussian Process into the model,
we are able to remedy this and at the same time
improve performance within distribution. As an
added benefit, the Gaussian Process reintroduces
the possibility to sample from the model, a key
feature of other members in the NP family.

1 INTRODUCTION

Neural Processes [Garnelo et al., 2018a,b] have been pro-
posed as a way to leverage the expressiveness of neural net-
works to learn a distribution over functions (often referred
to as a stochastic process), so that they can condition their
predictions on observations given at test time, a so-called
context. But what does it mean to successfully learn such
a distribution? We believe that it should be characterized
by the following: 1) accurate predictions, meaning predic-
tions should be as close as possible to the true underlying
function, 2) good reconstruction of the given observations,
3) generalization, because we assume that there will be
some underlying generative process from which the distri-
bution originates and which is valid beyond the finite data
we observe. The latter is especially important when only
few context observations are given that could be explained

by several different functions. Follow-up work to Neural
Processes has mostly emphasized the first two aspects, the
most prominent of which are Attentive Neural Processes
(ANP) [Kim et al., 2019] and Convolutional Conditional
Neural Process (CONVCNP) [Gordon et al., 2020], each
improving upon its predecessor in terms of both prediction
accuracy and reconstruction ability.

We propose a model that addresses all of the above, with a
particular focus on the ability to generalize. By combining
CONVCNP with a Gaussian Process, we achieve a signifi-
cant improvement in generalization: the model, which we
call GP-CONVCNP, can better extrapolate far from the pro-
vided context observations—meaning into future given past
and present observations—and is more robust to a distri-
bution shift at test time. It further reintroduces the ability
to sample from the model, something that CONVCNP is
incapable of, showing a better sample distribution than both
NP and ANP. Finally, we find that our proposed model often
yields a significant improvement in predictive performance
on in-distribution data as well. We focus our evaluation on
time series data, where we see the greatest potential for ap-
plications of our model. In this context, we consider several
synthetic datasets as well as real time series, specifically
weather data and predator-prey population dynamics. We
provide a complete implementation1, including data for con-
venience, to reproduce all experiments in this work.

2 PROBLEM STATEMENT & METHODS

In the framework of Neural Processes [Garnelo et al.,
2018a,b] we assume that we are given a set of N obser-
vations C = {(xc, yc)}Nc=1 =: (xc,yc), often called the
context, where xc ∈ X are samples from the input space
X and yc ∈ Y are samples from the output space Y (com-
monly X = RdX and Y = RdY , in this work we restrict
ourselves to X = R, because time is scalar). It is assumed
that these observations were generated by some function

1https://github.com/MIC-DKFZ/gpconvcnp
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Figure 1: Our work proposes GP-CONVCNP, an extension of CONVCNP that reintroduces sampling and improves
generalization on time series data. Shown here are examples for the different synthetic time series and methods evaluated
in this work (mean prediction in blue, samples in red). While the mean predictions from CONVCNP and GP-CONVCNP
look similar—and significantly better than those from Neural Processes (NP) and Attentive Neural Processes (ANP)—only
GP-CONVCNP combines high quality predictions (a feature of CONVCNP) with the ability to sample (a feature of NP and
ANP). While synthetic data measures in-distribution performance, we evaluate generalization capabilities on real data.

f : X → Y , i.e. yc = f(xc), and our goal is to infer f from
C so that we may evaluate it at arbitrary new input locations
xt. In reality, this will most likely mean we have collected
a number of measurements over time and are interested in
an f that lets us interpolate and extrapolate those measure-
ments. Note that when we speak of predictive performance,
we refer to both of those cases and not in a temporal sense.
The problem is ill-posed without placing further assump-
tions on f , which is why we typically restrict it to some
family F : polynomials of some order, a combination of os-
cillating functions with different frequencies, etc.. However,
in many cases it is undesired or even impossible to manu-
ally specify F , so Neural Processes propose to use neural
networks to learn an approximate representation of F by
observing many examples f ∈ F . The latter are typically
represented as a context set C (the measurements we have)
and a target set T = {(xt, yt)}Mt=1 =: (xt,yt) (the mea-
surements we’re interested in). By learning to reconstruct
the examples f from a limited number of context points a
model should implicitly form a representation of F , which

leads to the following learning objective:

max
θ

∑
f∈F

log pθ(yt|xt,xc,yc) (1)

=max
θ

∑
f∈F

∑
t

logN (yt; g
µ
θ (Z, xt), g

σ
θ (Z, xt)) (2)

This objective is common to all approaches we evaluate in
our work, and the second line formalizes the fact that we
choose to always model the output as a diagonal Gaussian,
parametrized by mean and variance functions gµθ , g

σ
θ that

seek to maximize the log-likelihood of the targets yt. The
output variance can also be fixed, but Le et al. [2018] show
that a learned output variance is preferable. Z is a repre-
sentation of the context (xc,yc), i.e. there is a mapping
E : X,Y → Z. The implementation of E is where the
members of the Neural Process family differ most, and we
visualize them in Fig. A.1.



 2.1 (ATTENTIVE) NEURAL PROCESSES

The original Neural Processes [Garnelo et al., 2018b] imple-
ment E as a neural network that encodes individual context
observations (xc,yc) into a finite-dimensional space. These
representations are then averaged to form the global repre-
sentation Z. Similar to Eq. (2), Z parametrizes a Gaussian
distribution, which enables NP to sample from this latent
space and produce diverse predictions; we do not consider
the deterministic NP variant [Garnelo et al., 2018a] in this
work. NP are trained by maximizing a lower bound on
Eq. (2), similar to variational autoencoders. In our NP im-
plementation E and (gµθ , g

σ
θ ) are symmetric 6-layer MLP,

with a representation size of 128. Attentive Neural Processes
[Kim et al., 2019] are motivated by the observation that NP
poorly reconstruct the provided context, i.e. the predictions
seem to miss the context points, as seen for example in
Fig. 1. To mitigate this effect, ANP augment NP with an
additional deterministic encoder-decoder path. Instead of
averaging the individual representations, a learned attention
mechanism combines them, conditioned on a target point xt.
So while NP need to compress representations to a single
point in Z, ANP don’t have this bottleneck, which likely
contributes to their improved performance. In our ANP im-
plementation, the deterministic path mirrors the variational
path, with both the representation dimension and the em-
bedding dimension of the attention mechanism being 128.
Le et al. [2018] evaluated several hyperparameter configu-
rations for NP and ANP and our implementation matches
their best performing one.

2.2 FROM CONVCNP TO GP-CONVCNP

With the goal of enabling translation equivariance (i.e. in-
dependence of the value range of xc and xt) in Neural
Processes, the authors of Convolutional Conditional Neu-
ral Processes (CONVCNP) [Gordon et al., 2020] approach
their work from the perspective of learning on sets [Zaheer
et al., 2017]. While NP and ANP map the context set into a
finite-dimensional representation, CONVCNP map it into
an infinite-dimensional function space. The authors show
that in this scenario translation equivariance (as well as per-
mutation invariance) can only be achieved if the mapping E
can be represented in the form

E(xc,yc) = ρ(E′(xc,yc)) (3)

E′(xc,yc) =
∑
c

φ(yc)ψ(· − xc) (4)

where φ : Y → R2 and ψ : X → R, so that E′ defines
a function and ρ operates in function space and must be
translation equivariant. The similar naming of E,E′ is de-
liberate, because herein lies a key difference to NP (and

also ANP): NP learn a powerful mapping (i.e. neural net-
work) from the context to a representation and then another
one from this representation to the output space, whereas
CONVCNP employs a very simple mapping to another rep-
resentation (to function space, because φ and ψ are defined
with kernels, see below). A powerful approximator is then
learned that operates within this representation space, as ρ
is a CNN operating on a discretization of E′. The mapping
back to output space is again a simple one, usually also
ψ combined with a linear map. In this sense, both E and
E′ can be thought of as representations when we make the
connection to NP. See also Fig. A.1 for a visualization of
these differences. In Gordon et al. [2020], ψ is chosen to be
a simple Gaussian kernel, and φ such that the resulting E′

has two components:

E′(xc,yc) =

(∑
c

k(·, xc) ,
∑
c

yck(·, xc)∑
c′ k(·, xc′)

)
(5)

which is the combination of a kernel density estimator and a
Nadaraya-Watson estimator. This estimate is discretized on
a suitable grid and a CNN ρ is applied, the result of which is
again turned into a continuous function by convolving with
the (Gaussian) kernel ψ. We use the official implementation2

in our experiments. Note that k in Eq. (5) is the same as ψ
in the implementation.

In this work, we propose GP-CONVCNP, a model that re-
places the deterministic kernel density estimate E′ in CON-
VCNP with a Gaussian Process posterior [Rasmussen and
Williams, 2006]. Gaussian Processes (GP) are a popular
choice for time series analysis [Roberts et al., 2013], but
typically require a lot of prior knowledge about a problem
to choose an appropriate kernel. We will find that this is not
the case for GP-CONVCNP, which is even able to learn
periodicity when the chosen kernel is not periodic.

The posterior in a GP is a normal distribution with a mean
function m(xt) conditioned on the context and a covariance
function K(xt) specified by some kernel k:

m(xt) = kTtc
(
kcc + σ2I

)−1
yc (6)

K(xt) = ktt + σ2 − kTtc
(
kcc + σ2I

)−1
ktc (7)

where ktc = k(xt,xc) etc. and σ2 is a noise parameter that
essentially determines how close the prediction will be to
the context points. We make this parameter learnable. Note
that Eq. (6) is very similar to Eq. (5): it corresponds to the
second component of the Nadaraya-Watson estimator with
only a changed denominator.

The first obvious benefit of this model is that we can sam-
ple from the GP posterior distribution and thus also from

2https://github.com/cambridge-mlg/convcnp

https://github.com/cambridge-mlg/convcnp


 our model, recovering one very compelling property of NP
that CONVCNP lacks. Another advantage we see is that
by working with a distribution instead of a deterministic
estimate as input to the CNN, the data distribution is im-
plicitly smoothed. It has been established that such smooth-
ing reduces overfitting and improves generalization, e.g. by
adding noise to inputs [Bishop, 1995, p.347] or more gener-
ally doing data augmentation [Volpi et al., 2018]. Working
with a distribution instead of a deterministic estimate, we
need to perform Monte-Carlo integration to get a predic-
tion from our model. During training, however, we only use
a single sample, as is commonly done e.g. in variational
autoencoders when training with mini-batch stochastic gra-
dient descent. To facilitate comparison, the kernel we use in
our GP is the same as in CONVCNP, i.e. a Gaussian kernel
with a learnable length scale.

Note that our model retains all desirable characteristics of
the competing approaches, in particular permutation invari-
ance with respect to the inputs (present in all prior art) and
translation equivariance (present in CONVCNP)3. For de-

3As in CONVCNP, this obviously requires a stationary kernel.

tails on the various optimization parameters etc. we refer to
the provided implementation.

3 EXPERIMENTS

We design our experiments with the purpose of evaluating
how well members of the Neural Process family, including
the one we propose, are suited for the task of learning distri-
butions over functions, i.e. stochastic processes, specifically
for time series data. Like the works we compare ourselves
with, we evaluate both predictive performance (How good
is our prediction between context points?) via the predictive
log-likelihood and the reconstruction performance (How
good is our prediction at the context points?) via the root-
mean-square error (RSME), because predictions directly at
the context points are usually extremely narrow Gaussians,
leading to unstable likelihoods.

As outlined in the introduction, one defining aspect of suc-
cessfully learning a distribution over functions is a model’s
ability to generalize. This can mean several things, for ex-
ample independence with respect to the input value range,

Table 1: Results for synthetically created data. Test data was generated with the same parameters as the training data, so
we’re looking at in-distribution performance. ↑/↓ indicate that higher/lower is better. Errors represent 1 standard deviation
over 5 runs with different seeds (standard error of the mean for GPs, because seed influence is negligible), where each
run was evaluated with 102 400 (30 720 for W2) samples. Bold indicates that the method(s) are significantly better than
all non-bold methods, i.e. when the difference is larger than the root sum of squares of the standard deviations. Overall,
GP-CONVCNP outperforms the competing approaches, especially in terms of predictive log-likelihood and sample diversity
(compared to an oracle) where applicable. In terms of reconstruction error, our method outperforms prior art on three
datasets, but is on par with CONVCNP on two of those. Interestingly, the EQ-GP, which is what our model uses as an initial
estimate, performs rather poorly in all but the first example. In the first example, where the EQ-GP is already a decent
estimate, our approach leverages that information and matches the oracle GP in predictive performance! The reconstruction
error and W2 of the oracle are zero, so we don’t show them here. The dependence of model performance on the number of
context points is visualized in Fig. A.2 for the two GP examples.

Matern-5/2 GP Weakly Per. GP Fourier Series Step Functions

Predictive LL↑

GP (EQ) 1.031± 0.075 −8.034± 2.260 −0.241± 0.752 −2× 1017

GP (Oracle) 1.933± 0.095 1.876± 0.026

NP −0.496± 0.027 −1.161± 0.007 −1.743± 0.020 −3.287± 0.491
ANP 0.723± 0.046 −1.047± 0.008 −0.976± 0.028 −65.141± 60.979
CONVCNP 1.710± 0.038 −0.153± 0.033 0.372± 0.065 −0.522 ± 0.163
GP-CONVCNP 1.930 ± 0.031 −0.090 ± 0.021 1.632 ± 0.079 −0.532 ± 0.044

Recon. Error↓

GP (EQ) 0.001± 0.001 0.028± 0.001 0.004± 0.001 0.097± 0.001

NP 0.027± 0.001 0.500± 0.003 0.845± 0.074 0.292± 0.010
ANP 0.008 ± 0.002 0.491± 0.004 0.181± 0.018 0.284± 0.013
CONVCNP 0.025± 0.020 0.109± 0.077 0.042 ± 0.027 0.121 ± 0.017
GP-CONVCNP 0.013± 0.002 0.061 ± 0.007 0.040 ± 0.023 0.116 ± 0.017

W2 ↓

GP (EQ) 4.294± 0.007 4.521± 0.003

NP 1.836± 0.021 2.745± 0.004
ANP 1.369± 0.048 2.708± 0.002
CONVCNP
GP-CONVCNP 0.987 ± 0.086 1.800 ± 0.045
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Figure 2: Examples from the temperature time series test set. For the interpolation task (top) we provide context points from
the full sequence, for the extrapolation task (bottom) we provide context points in the first half of the sequence and evaluate
the second. Both CONVCNP and GP-CONVCNP capture the periodicity of day/night changes in temperature well and are
able to extrapolate it. We find that GP-CONVCNP often better matches the amplitude of the true signal, especially for the
extrapolation task, which could explain its superior performance in Table 2. Because the temperature signal is periodic,
we also show a periodic GP with a commonly used Exponential Sine-Squared kernel. NP and ANP are only shown in the
appendix in Fig. A.3, as they were unable to fit the data (similar to the weakly periodic GP data in Fig. 1).

called translation equivariance. This is a key feature of CON-
VCNP (as long as a stationary kernel is used for interpola-
tion), and we retain this property in GP-CONVCNP. We
evaluate two further attributes of generalization, both on
real world data: one is the ability to extrapolate the context
information, i.e. to produce good predictions well into the
future by inferring an underlying pattern; the other is the
ability to deal with a distribution shift at test time, in our
case a shift from simulated to real world data.

On top of the above, we are also interested in how well
the distribution of samples from a model matches the ideal
distribution. In general, the latter is not accessible, but for
some synthetic examples we describe below, specifically
those from a Gaussian Process, we do have access, sim-
ply by using the generating GP as an oracle. We can then
compare this reference—a Gaussian distribution—with the
distribution of samples from our model. Note that one sam-
ple is a prediction at all target points at once, as seen for
example in Fig. 1. The majority of approaches that estimate
differences between distributions fall into the categories of
either f -divergences or Integral Probability Measures (for
an overview see for example Sriperumbudur et al. [2009]).
The former require evaluations of likelihoods for both dis-
tributions, while we only have individual samples from our
model. We opt for a parameter-free representative of the

IPM category, the Wasserstein distance W2. We elaborate
further on the definition and motivation in Appendix C.4.

We initially test our method on diverse synthetic time series.
The first two have also been used in Gordon et al. [2020],
and they allow us to evaluate the sample diversity, as out-
lined above: (1) Samples from a Gaussian Process with a
Matern-5/2 kernel. (2) Samples from a Gaussian Process
with a weakly periodic kernel. (3) Fourier series with a
variable number of components, each of which has random
bias, amplitude and phase. (4) Step functions, which were
specifically chosen to challenge our model, as the kernel
we employ introduces smoothness assumptions that are ill-
suited for this problem. All of these are described in greater
detail in Appendix C as well as the provided implementa-
tion. The size N of the context set is drawn uniformly from
[3, 100) and the size M of the target set from [N, 100) fol-
lowing Le et al. [2018]. We further join the context set into
the target set as done in Garnelo et al. [2018a,b]. Examples
can be seen in Fig. 1.

The first real world dataset we look at are weather record-
ings for several different US, Canadian and Israeli cities. In
particular we focus on temperature measurements in hourly
intervals that have been collected over the course of 5 years
(see Appendix C.2). Temperatures in each city are normal-
ized by their respective means and standard deviations. We



 
Table 2: Results on the real world datasets. Again, ↑/↓ indicate that higher/lower is better and errors represent 1 standard
deviation over 5 runs with different seeds (standard error of the mean for GP, because seed influence is negligible). (left)
For the temperature interpolation task, context points are randomly sampled from the test interval, for the temperature
extrapolation task we provide context points in the first half of the interval and measure performance on the second half
(as seen in Fig. 2). For comparison, we also show a periodic GP with an Exponential Sine-Squared kernel. (right) For
the population dynamics, models are trained on simulated data, so the real world data (also shown in Fig. 3) is likely
out-of-distribution, as evidenced by the stark drop in performance. There is no obvious choice of kernel if one wanted to
apply a GP to this problem.

Temperature Time Series Population Dynamics

interpolation extrapolation simulated real

Predictive LL↑

GP (per.) −2.075± 0.237 −46.611± 2.557

NP −0.855± 0.003 −1.267± 0.011 0.527± 0.051 −33.070± 7.636
ANP −0.733± 0.008 −1.938± 0.381 1.027± 0.033 −29.714± 9.210
CONVCNP −0.522 ± 0.008 −1.261± 0.062 1.374 ± 0.017 −23.540± 12.441
GP-CONVCNP −0.515 ± 0.019 −1.190 ± 0.016 1.337± 0.029 −5.382 ± 2.625

Recon. Error↓

GP (per.) 0.274± 0.001

NP 0.238± 0.002 0.018± 0.001 1.053± 0.015
ANP 0.198± 0.007 0.008± 0.004 0.772± 0.020
CONVCNP 0.106 ± 0.002 0.002 ± 0.001 0.374 ± 0.019
GP-CONVCNP 0.123 ± 0.018 0.004± 0.001 0.411 ± 0.026

randomly sample sequences of ∼1 month as instances and
evaluate two tasks, taking US and Canadian cities as the
training set and Israeli cities as the test set:

1. Interpolation, where we draw context points and target
points randomly from the entire sequence (i.e. the same
as in the synthetic examples).

2. Extrapolation, where context points are drawn from the
first half of the sequence and performance is evaluated
on the second half (as shown in Fig. 2). We can rea-
sonably be sure that temperature changes between day
and night occur in the future with the same frequency,
so extrapolating this pattern is a good test of a model’s
ability to generalize.

The second real world dataset are measurements of a
predator-prey population of lynx and hare. Such popula-
tion dynamics are often approximated by Lotka-Volterra
equations [Leigh, 1968], so we train models on simulated
population dynamics and test on both the simulated and real
world data. Gordon et al. [2020] used this dataset as well,
but only to qualitatively show that CONVCNP can be ap-
plied to it. The analysis will allow us to quantify how robust
the models are to a shift in distribution at test time, as the
simulation parameters are almost certainly not an ideal fit
for the real world data. For details on the simulation process
we refer to Appendix C.3.

Finally, even though the focus of our work is on time series
data, we include some image experiments, mainly for the
purpose of a more nuanced direct comparison with CON-
VCNP. In particular, we compare the models on MNIST

[Lecun et al.], CIFAR10 [Krizhevsky, 2009] and CelebA
[Liu et al., 2015]. For the latter two, we work on resam-
pled versions at 322 resolution. More details are given in
Appendix E.

4 RESULTS

Table 1 shows results for the various synthetic time series. In
this experiment the models are trained and tested on random
samples generated in the same way, so these results measure
in-distribution performance. We find that GP-CONVCNP
is the overall best performing method, significantly so in
terms of predictive performance for 3 out of the 4 time se-
ries and performing on par with CONVCNP on the other.
Reconstruction performance is on par with CONVCNP in 3
out of 4 instances and significantly better in one. For refer-
ence, we also show results for a Gaussian Process with EQ
kernel (what our model uses) and the oracle where available.
Evidently, the initial GP estimate in our model doesn’t have
to be very good, but when it is, like in the Matern-5/2 case,
our approach leverages this and even matches the oracle
in performance. For examples originating from a Gaussian
Process, we can evaluate the sample diversity with respect
to the oracle GP, finding that GP-CONVCNP significantly
outperforms the other methods in this regard. It is important
to note, however, that this measure does not fully isolate the
sample diversity. A low reconstruction error, for example,
will also improve the W2, which is likely the reason that
ANP still performs better than NP, even though the former
hardly displays any variation in its samples, as seen in Fig. 1.



 

0 10 20 30 40 50 60

0

50

100

150

200

P
o
p

u
la

ti
on

[t
h

o
u

sa
n

d
s]

ConvCNP

0 10 20 30 40 50 60

GP-ConvCNP

Context Predator

Context Prey

Target Predator

Target Prey

1850 1860 1870 1880 1890 1900 1910 1920 1930

Time [years]

0

20

40

60

80

100

120

140

P
op

u
la

ti
o
n

[t
h

o
u

sa
n

d
s]

1850 1860 1870 1880 1890 1900 1910 1920 1930

Time [years]

Figure 3: Example of CONVCNP and GP-CONVCNP applied to the simulated Lotka-Volterra population dynamics (top)
and to the real Hudson Bay Company lynx-hare dataset (bottom). Both perform well on the simulated (i.e. in-distribution)
data and seem to struggle fitting the test interval on the real world data. Not however how the predicted uncertainty is larger
for GP-CONVCNP. We display the best out of 5 models in each case, and for CONVCNP the performance is much more
volatile, as seen in Table 2. NP and ANP perform poorly on the real world data, the corresponding figure is Fig. A.4.

The figure also shows how NP and ANP struggle to fit high
frequency signals, while CONVCNP and GP-CONVCNP
are able to. The sample diversity in GP-CONVCNP is larger
than in ANP, but samples are only significantly different
from the mean prediction when further away from the con-
text points in areas of high predictive uncertainty (shaded
areas correspond to 1σ). In contrast, samples from the NP
are more diverse throughout, at the expense of accurately
matching the context points.

Table 3: Results for the image experiments, in terms of
predictive log-likelihood (i.e. higher is better) on the respec-
tive test sets. Errors represent 1 standard deviation over 10
runs with different seeds. Bold indicates a significant dif-
ference, i.e. when the difference is larger than the root sum
of squares of the standard deviations. GP-CONVCNP out-
performs CONVCNP overall, with a slight (non-significant)
advantage for CONVCNP on MNIST. Visual examples and
more details on the image experiments are given in Ap-
pendix E.

CONVCNP GP-CONVCNP

MNIST 4.133± 0.057 4.077± 0.026
CIFAR10 2.462± 0.006 2.744 ± 0.008
CelebA 2.212± 0.006 2.468 ± 0.008

Examples from the temperature time series dataset can be

seen in Fig. 2. The key characteristic of the signal is the
temperature change between day and night, making it a high
frequency signal not unlike the weakly periodic GP samples
in the synthetic dataset. NP and ANP were not able to fit
these signals, as can be seen in Fig. A.3. The top row of
Fig. 2 shows an example of the regular interpolation task,
the bottom row an example of the extrapolation task, which
we deem an important aspect of generalization. CONVCNP
and GP-CONVCNP are both able to interpolate as well as
extrapolate the correct temperature pattern, but occasionally
CONVCNP underestimates the amplitude when extrapo-
lating. We also show an example of a periodic GP using
an Exponential Sine-Squared kernel, which is a common
choice for periodic signals. It fails to capture finer variations
in the signal and often struggles to infer the right frequency,
which results in its poor extrapolation performance in Ta-
ble 2. We find that while CONVCNP and GP-CONVCNP
perform on par for the interpolation task, GP-CONVCNP
performs significantly better than the other methods on the
extrapolation task.

To measure how robust the different members of the Neural
Process family are to a distribution shift at test time, we train
models on population dynamics simulated as Lotka-Volterra
processes, and evaluate performance both on simulated (in-
distribution) and real world (out-of-distribution) data. The
real world dataset, along with a simulated example, can be
seen in Fig. 3. While both CONVCNP and GP-CONVCNP



 fit the simulated data well, they struggle with the test in-
terval on the real data. This is reflected in Table 2 as well,
where we find that CONVCNP performs better than GP-
CONVCNP (even significantly so, albeit not with a huge
difference) on the simulated data. Applied to the real world
dataset, all methods experience a large drop in performance,
indicating that this is indeed a significant distribution shift.
GP-CONVCNP is by far the best performing method here,
which is likely because of a better estimate of the preditive
uncertainty. Note how the uncertainty predicted by CON-
VCNP is smaller than that of GP-CONVCNP in Fig. 3 (the
figure shows 1σ). The predictions we show here are from the
best performing seed in each case, other CONVCNP models
predicted an even narrower distribution. We selected this
particular interval for testing because it’s the same interval
Gordon et al. [2020] show in the CONVCNP paper. We also
evaluated with context points drawn randomly from the en-
tire interval (i.e. the same way we evaluate on the simulated
data), and GP-CONVCNP still performs significantly better
than the competing approaches (see Table A.1).

CONVCNP also showed performance improvements com-
pared to NP and ANP when applied to image data. While
the focus of our work is on time series, we were also inter-
ested to see if our model yields any benefits in this domain.
It does indeed, as seen in Table 3, where GP-CONVCNP
outperforms CONVCNP on both CIFAR10 and CelebA
(CONVCNP has a non-significant advantage on MNIST).
Examples are given in Appendix E, where we don’t see
any meaningful difference in visual quality. The latter only
“measures” the quality of the mean prediction, so we suspect
that the performance improvement is due to a more accurate
predictive uncertainty.

5 RELATED WORK

Neural Processes have inspired a number of works outside
of the ones we discuss. Louizos et al. [2019] propose to
not merge observations into a global latent space, but in-
stead learn conditional relationships between them. This is
especially suitable for semantically meaningful clustering
and classification. Singh et al. [2019] and Willi et al. [2019]
address the problem of overlapping and changing dynam-
ics in the generating process of the data, a special case we
do not include here. With a simple Gaussian kernel, we
wouldn’t expect our model to perform well in that scenario,
but one could of course introduce inductive bias in the form
of e.g. non-stationary kernels, when translation equivariance
is no longer desired. NPs have also been scaled to extremely
complex output spaces like in Generative Query Networks
[Eslami et al., 2018, Rosenbaum et al., 2018], where a sin-
gle observation is a full image. GQN directly relates to the
problem of (3D) scene understanding [Sitzmann et al., 2019,
Engelcke et al., 2020].

Gordon et al. [2020] build their work (CONVCNP) upon
recent contributions in the area of learning on sets, i.e. neu-
ral networks with set-valued inputs [Zaheer et al., 2017,
Wagstaff et al., 2019], which has mostly been explored in
the context of point clouds [Qi et al., 2017b,a, Wu et al.,
2019]. Especially the work of Wu et al. [2019] is closely
related to Gordon et al. [2020], also employing a CNN on
a kernel density estimate, but their application is not con-
cerned with time series. Bayesian Neural Networks [Neal,
1996, Graves, 2011, Hernández-Lobato and Adams, 2015]
also address the problem of learning distributions over func-
tions, but often implicitly, in the sense that the distributions
over the weights are used to estimate uncertainty [Blundell
et al., 2015, Gal and Ghahramani, 2016]. We are interested
in this too, but in our scenario we want to be able to condi-
tion on observations at test time.

The main limitation of Gaussian Processes is their com-
putational complexity and many works are dedicated to
improving this aspect, often via approximations based on
inducing points [Snelson and Ghahramani, 2006, Titsias,
2009, Gardner et al., 2018, Wilson and Nickisch, 2015] but
also other approaches [Deisenroth and Ng, 2015, Rahimi
and Recht, 2007, Le et al., 2013, Cheng and Boots, 2017,
Hensman et al., 2013, 2015, Salimbeni et al., 2018], even
for exact GPs [Wang et al., 2019]. Rather than competing
with these approaches, our model will be able to leverage
developments in this area. Some of the above try to find
more efficient kernel representations and are thus closely
related to the idea of kernel learning, i.e. the idea to com-
bine the expressiveness of (deep) learning approaches with
the flexibility of kernel methods, for example Yang et al.
[2015], Wilson et al. [2016b,a], Tossou et al. [2019], Ca-
landra et al. [2016]. The key difference to our work is that
these approaches attempt to learn kernels as an input to a
kernel method, while we learn to make the output of a kernel
method more expressive.

6 DISCUSSION

We have presented a new model in the Neural Process family
that extends CONVCNP by incorporating a Gaussian Pro-
cess into it. We show on both synthetic and real time series
that this improves performance overall, but most markedly
when generalization is required: our model, GP-CONVCNP,
can better extrapolate to regions far from the provided con-
text points and is more robust when moving to real world
data after training on simulated data. We further retain trans-
lation equivariance, a key feature of CONVCNP, as long as
a stationary kernel is used for the GP. The introduction of
the latter also allows us to draw multiple samples from the
model, where the distribution of samples from our model
better matches the samples from an oracle than those from
a regular Neural Process or an Attentive Neural Process do.
Our model uses the prediction from a GP with an EQ-kernel



 as an initial estimate. Interestingly, this estimate needn’t
be very good—our model can learn periodicity even with
a non-periodic input kernel—but when it is, our model can
fully leverage it and even match the performance of an or-
acle, as seen in Table 1. An advantage all Neural Process
flavors enjoy compared to many conventional time series
prediction methods such as ARIMA models (see e.g. Hynd-
man and Athanasopoulos [2018]) is that they naturally work
on non-uniform time series, with observations acquired at
arbitrary times.

Of course, with the benefits of GPs we also inherit their lim-
itations. GPs are typically slow, naively requiring O(N3)
operations in the number of context observations, and our
model inherits this complexity. While this was a non-issue
on the time series data used in our work, GP-CONCNP
was noticably slower than CONVCNP (roughly 1.5x) in the
image experiments, which we included for a more complete
comparison with CONVCNP. Our model still outperformed
CONVCNP, but for larger images the improved performance
will likely not be worth the additional cost. Making GPs
faster is a very active research area, as outlined above. For
our model specifically it seems reasonable to leverage work
on deep kernels [Wilson et al., 2016b] or to learn mappings
before the GP prediction like in Calandra et al. [2016] in
order to learn more meaningful GP posteriors that capture
information about the training distribution. We do expect
that our model is well suited to also work with these approx-
imate methods, as we modify the prediction from the GP
with a powerful neural network that should be able to correct
minor approximation errors. For example, KISS-GP Wilson
and Nickisch [2015] only has linear complexity, so incor-
porating it or one of the many other efficient approximate
methods into our model should allow it to scale to much
larger datasets. We leave a verification of this for future
work.
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