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Abstract

Bayesian neural networks (BNNs) are making sig-
nificant progress in many research areas where
decision-making needs to be accompanied by un-
certainty estimation. Being able to quantify uncer-
tainty while making decisions is essential for under-
standing when the model is over-/under-confident,
and hence BNNs are attracting interest in safety-
critical applications, such as autonomous driving,
healthcare, and robotics. Nevertheless, BNNs have
not been as widely used in industrial practice,
mainly because of their increased memory and
compute costs. In this work, we investigate quan-
tisation of BNNs by compressing 32-bit floating-
point weights and activations to their integer coun-
terparts, that has already been successful in reduc-
ing the compute demand in standard pointwise
neural networks. We study three types of quan-
tised BNNs, we evaluate them under a wide range
of different settings, and we empirically demon-
strate that a uniform quantisation scheme applied
to BNNs does not substantially decrease their qual-
ity of uncertainty estimation.

1 INTRODUCTION

Bayesian neural networks (BNNs) can describe complex
stochastic patterns by treating their weights as learnable
random variables that provide well-calibrated uncertainty
estimates (Neal, 1993; Ghahramani, 2015; Blundell et al.,
2015; Gal and Ghahramani, 2015; Chen et al., 2014). In
addition to modelling uncertainty, by treating a neural net-
work (NN) through Bayesian inference, it gains robustness
to over-fitting thereby offering the means to leverage small
data pools (Ghahramani, 2015).

BNNs have become relevant in practical applications where
the quantification of uncertainty is essential such as in

medicine (Liang et al., 2018), autonomous driving (McAl-
lister et al., 2017) or risk assessment (MacKay, 1995). Nev-
ertheless, Bayesian models come with a prohibitive compu-
tational cost during evaluation (Gal and Ghahramani, 2015;
Blundell et al., 2015). While evaluating, it is analytically
intractable to compute the posterior prediction. Hence, most
methods approximate the posterior through Monte Carlo
(MC) sampling (Gal and Ghahramani, 2015; Blundell et al.,
2015; Chen et al., 2014), which depends on multiple feed-
forward runs through the BNNs and optionally random num-
ber generation.

In contrast to pointwise NNs, that are increasingly used
for applications on the edge, the computational cost asso-
ciated with BNNs currently prevents their use on resource-
constrained platforms. These platforms exhibit smaller mem-
ory and lower compute capabilities involving 8-bit integer
arithmetic. Quantisation has been widely used in pointwise
NNs (Jacob et al., 2018; Choukroun et al., 2019; Krish-
namoorthi, 2018) to lower their compute demand and make
them more compatible with edge devices. In quantisation,
floating-point representation is reduced to an integer rep-
resentation, which enables substantial resource savings in
practical applications. By quantising weights and activations
of pointwise NNs to 8-bit integers, it is possible to achieve
up to 4× improvements in latency with a quarter of the
original memory footprint of the baseline 32-bit floating-
point implementation (Guo et al., 2017b; Jacob et al., 2018).
Nevertheless, there has not been a comprehensive study
into whether BNNs could attain the same hardware benefits
under quantisation and whether it impacts their predictive
accuracy or uncertainty.

In this work, we study quantisation of BNNs based on
three widely adapted Bayesian inference schemes: Monte
Carlo Dropout (Gal and Ghahramani, 2015), Bayes-By-
Backprop (Blundell et al., 2015) and Stochastic Gradient
Langevin Dynamics with Hamiltonian Monte Carlo (Chen
et al., 2014). Furthermore, we investigate the effect of quan-
tisation of both weights and activations of BNNs using
different integer representations through quantisation aware
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 training. Our main contributions are two-fold 1) Method-
ology for uniform quantisation of three different types of
Bayesian inference; 2) An empirical demonstration that low-
ering arithmetic precision of weights and activations from
32-bit floating-point to ≤8-bit integers does not substan-
tially detriment accuracy and uncertainty estimation qual-
ity of Bayesian neural networks across different datasets,
network architectures and tasks. To the best of our knowl-
edge, we are the first ones to attempt an empirical in-
vestigation in this direction with respect to widely com-
pared and accessible benchmarks. The code is available at
https://git.io/JtSJG.

2 PRELIMINARIES AND RELATED
WORK

In this Section we review Bayesian learning, quantisation
of neural networks and related work.

2.1 BAYESIAN NEURAL NETWORKS

The aim of Bayesian inference is to learn the distribu-
tion over the weights of the BNN w with respect to some
training dataset of tuples D = {(xn,yn)Nn=1}, where xn
are the inputs and yn are the associated targets. Given
the belief about the noise in the data in the shape of
the likelihood p(y|x,w) and the prior distribution over
weights p(w), they come together under the Bayes rule
p(w|x,y) = p(y|x,w)p(w)

p(y|x) . Nevertheless, due to the high
dimensionality of BNN it is intractable to compute the pos-
terior p(w|x,y) and it needs to be approximated with re-
spect to q(w|θ,x,y) and some learnable parameters θ. The
resultant distribution q(.) can then be used to make predic-
tions for previously unseen data x∗,y∗ through an integral
p(y∗|x∗) =

∫
p(y∗|x∗,w)q(w|θ,x,y)dw. This integral

is again intractable due to the posterior and it needs to be ap-
proximated through through MC sampling with L samples
as: p(y∗|x∗) = 1

L

∑L
l=1 p(y

∗|x∗,wl);wl ∼ q(w|θ,x,y).
The sampling procedure requires efficient processing to re-
duce the compute cost of the forward pass through the BNN
L times. In this work, we approach this challenge through
investigating quantisation applied to BNNs’ weights and
activations in order to enable their efficient processing.

2.2 QUANTISATION

Reduction in bit-width precision (Jacob et al., 2018; Kr-
ishnamoorthi, 2018; Choukroun et al., 2019) has demon-
strated significant benefits in lowering the resource con-
sumption of pointwise NNs in hardware. In quantisation,
32-bit floating-point representations of weights, and op-
tionally, activations are reduced to an integer, usually 8-bit
representation, which enables substantial savings in mem-
ory and compute resources in real-world applications. This

helps to reduce energy consumption and improve inference
speed. If the quantisation happens after training, it is called
post-training quantisation. If it happens with an additional
training with fewer iterations and much smaller learning
rate after the main portion of the inference, it is called quan-
tisation aware training (QAT) (Jacob et al., 2018). By using
QAT, practitioners have observed smaller accuracy drop in
the quantised model (Jacob et al., 2018), compared to post-
training quantisation. The support of only integer arithmetic
in hardware has two main outcomes: (1) decrease in size of
the required memory and the complexity of the hardware to
perform the computation; (2) decrease in latency due to the
simplicity of integer computation, in comparison to floating-
point (Cai et al., 2018). These benefits present a strong case
for investigating quantisation of BNNs.

2.3 RELATED WORK

Only recently, there appeared works outside of the realm of
pointwise NNs that interconnected Bayesian thinking with
quantisation (Su et al., 2019; Achterhold et al., 2018; Cai
et al., 2018; van Baalen et al., 2020).

Achterhold et al. (2018) developed a sophisticated method
for quantisation and pruning for pointwise NNs, albeit by
using Bayesian inference. They initially train a BNN with
improper priors, constructed to be quantisation and pruning-
friendly, and after training, convert it to a quantised point-
wise NN. Although, the pointwise NNs can achieve signifi-
cant reduction in memory consumption, the resultant non-
quantised BNNs are actually unable to estimate uncertainty,
due to improper priors (Hron et al., 2017). Similarly, van
Baalen et al. (2020) used Bayesian inference to obtain sparse
quantised pointwise NNs. In VIBNN, Cai et al. (2018) de-
veloped an efficient hardware accelerator for feed-forward
BNNs trained through Bayes-by-backprop (Blundell et al.,
2015) algorithm. The authors demonstrated impressive com-
pute resource savings, but they did not detail their quanti-
sation scheme or its impact on the uncertainty estimation
capabilities of the BNN. Su et al. (2019) proposed a method
for learning quantised BNNs directly, where the range of
the found activations and weights is limited to two integer
values. They demonstrated that the uncertainty estimation
can be preserved in the learned model. However, the work
of Su et al. (2019) does not allow quantisation of modern net-
works involving batch normalisation and skip-connections
(e.g. ResNet). Additionally, in their scheme binary weights
(-1, 1) need to be stored as real-valued parameters. Further-
more, their scheme in practice would require development
of a custom hardware accelerator. Custom hardware acceler-
ators are rarely used in real-world settings. Most emerging
NPUs are optimised for fixed 8-bit integer arithmetic only.
For existing low-resource scenarios in embedded and IoT
applications CPUs are optimised for 8-bit arithmetic.

In this paper we propose to learn quantised BNNs directly –
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 as in (Su et al., 2019). In contrast to their work, we consider
a range of widely used Bayesian inference methods, without
the need for changes in the method or architectures. In
detail, we focus on uniform quantisation, that is commonly
supported in hardware (NPU, TPU, GPU) (Krishnamoorthi,
2018).

3 METHODOLOGY

In this Section we describe quantised BNNs, by first dis-
cussing the theory behind quantisation followed by its ap-
plicability to the respective Bayesian inference methods.

3.1 UNIFORM AFFINE QUANTISATION

The most light-weight quantisation method is an uniform
affine mapping of 32-bit floating-point values f to integers
q (Jacob et al., 2018) as shown in (1):

f = S(q − Z) (1)

where S and Z are the scale and the zero-point respec-
tively, which are learnable parameters. The S remains in
floating-point representation and it effectively represents a
quantisation bin-width, whereas the Z is an integer of the
same bit-width n as q and it represents the mapping of the
value 0. The values of S and Z are affected by the target n,
which restricts their range.

Assuming initially a standard pointwise linear layer with
floating-point weights fw ∈ RM×F , input fi ∈ RI×M
and output fo ∈ RI×F , where M and F correspond to the
input and output feature size for a batch consisting of I
samples, the computation for their quantised counterparts
qw, qi, qo is obtained with respect to (1) as follows: Linear
output without quantisation is computed as fo = fifw.
Substituting each term with (1), we have So(qo − Zo) =
Sw(qw − Zw)Si(qi − Zi) which can be rewritten as in (2):

qo = Zo +
SwSi
So

(MZwZi − Zi
∑

qw − Zw
∑

qi+

qwqi) (2)

The respective sums are performed first for each column for
qw and each row qi and broadcast to the resultant matrix
dimension, similarly to scalars S and Z. Note that, the terms
not involved with any qi are independent of the input, which
means they can be computed offline. Similarly, if the layer
has a bias term, or it is followed by a batch normalisation
(BN) (Ioffe and Szegedy, 2015), the BN affine parameters
or bias can be fused into the weights after the individual
S and Z have been inferred (Krishnamoorthi, 2018). The
same pattern can then be used to compute the output of more
complicated operations, such as convolutions (Jacob et al.,
2018). Note that, the bit-width n does not need to be the
same for weights and activations.
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Figure 1: Fine-tuning of a standard pointwise Convolu-
tion/Linear layer with simulated quantisation (SQ). All com-
putation is carried out using 32-bit floating-point arithmetic.
SQ nodes are injected into the computation to simulate the
effects of quantisation. After fine-tuning, the SQ modules
are removed and the weights, with folded in bias, and com-
putation are quantised. In a quantised regime, floating-point
data f are replaced by q.

The scale (S) and the zero-point (Z) parameters are learned
by simulating quantisation through fine-tuning resulting in
quantisation aware training (QAT). In this work we focus on
QAT, which has been preferred to post-training quantisation
since it is shown that it achieves higher accuracy, especially
in smaller models (Jacob et al., 2018). In the next Section we
introduce QAT-based methods applied to NNs with respect
to Bayesian inference.

3.1.1 Quantisation Aware Training (QAT)

QAT is achieved by simulating quantisation effects in the for-
ward pass of training, while backpropagation and all weights
are represented in floating-point (Jacob et al., 2018). The
simulation is achieved by implementing rounding behaviour,
that can be hardware platform specific, while performing
floating-point arithmetic and then using a straight through
gradient estimator (Bengio et al., 2013) in the backward
pass.

• Weights’ quantisation is simulated prior to being com-
bined with the input, to avoid dynamic quantisation
during runtime.

• Activation or operation output quantisation is simu-
lated at points where they would be during inference
- after the activation function is applied or after addi-
tion or concatenation of outputs of several layers as in
ResNets (Jacob et al., 2018; He et al., 2016).

Concretely in this work, we adopt the element-wise quan-
tisation function as shown by Jacob et al. (2018) for all
tensors individually, and we assume hardware fusion of the
common ReLU activation, BN and bias into the operation
as done in practice (Krishnamoorthi, 2018). The quantisa-
tion and its simulation are parametrised by n, which is user
specified, and a clamping range consisting of a minimum
a; a = minf and a maximum b; b = maxf for the given
tensor. Individual a and b are being observed on the train-



 ing and validation datasets, for each activation output and
weight. To observe the most efficient clamping range bounds
a, b, it is necessary to record the minimum and maximum
values of the respective tensors during training and then in-
dividually aggregate them via exponential moving average,
because of perturbations in outputs and weights due to QAT
fine-tuning. The a, b, n continually map to S;S = b−a

n−1 and
Z;Z = round(min f

S ) that are being used for the simulation
and the end values are then used for the actual quantisation,
following equation (1). The computational graph with re-
spect to QAT is visually represented in Figure 1 and in
pseudo code in Algorithm 1. In the next Section we describe
how this scheme can be used to obtain quantised BNNs.

Algorithm 1 Quantisation Aware Training

1: Inference of a floating-point model until convergence.
2: Fusion of biases and batch normalisation statistics with

weights
3: Insertion of simulated quantisation (SQ) modules after

weights and operations’ outputs.
4: Fine-tuning, simulating quantisation and recording in-

dividual a, b per tensor in the computational graph.
5: Computation of individual S and Z, quantisation of

weights and computation of offline constants to prepare
the model for integer arithmetic evaluation.

3.2 QUANTISED BAYESIAN NEURAL
NETWORKS

In this work we develop schemes for performing quantisa-
tion aware training (QAT) for Bayesian inference methods
for both their weights and activation outputs. Note that,
we propose to use QAT exclusively after Bayesian infer-
ence, and with minimal fine-tuning, such that the parame-
ters learned through the Bayesian inference are not compro-
mised. We illustrate the quantisation process with the help
of a linear layer and notation from Section 3.1. In general, it
is necessary to only discuss the placement of SQ nodes with
respect to the compute graphs and step 2. from Algorithm 1
for the respective Bayesian inference methods, following
the rules introduced in the bullet-points in the previous Sec-
tion. Other steps are exactly the same as for the pointwise
counterpart.

3.2.1 Monte Carlo Dropout (MCD)

The quantisation of MCD in shown in Figure 2. We propose
methodology for quantisation of the standard MCD imple-
mentation (Gal and Ghahramani, 2015), that corresponds
to applying Bernoulli mask of zeros and onesK ∈ RI×M
with respect to an input with M features and I samples for
each weight-bearing layer, except the input. Additionally
the masked input is scaled by the proportion of zeros in the
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Figure 2: Quantisation for Monte Carlo Dropout.
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Figure 3: Quantisation for Bayes-by-Backprop.

mask, such that fx = K � fi 1
1−p and qx = K � qi 1

1−p ,
where p is the probability of sampling zero and � is an
element-wise multiplication. Thus fx, qx values replace
fi, qi values with respect to equation (2). We add separate
SQ node to the multiplication of theK with the input, since
due to the factor 1

1−p and zeroing-out some inputs, the re-
spective S and Z will change. When generating the K,
we absorb the 1

1−p into the mask for efficient computation.
Thus,K does not include optimisable parameters and SQ
is not directly needed afterK. Note that during performing
QAT it is necessary to generate the mask in floating-point,
while in a quantised mode the K needs to take into ac-
count the Z of qi. Weights are simply quantised according
to equation (1) and by adding an SQ node as discussed in
the Section 3.1.1.

3.2.2 Bayes-By-Backprop (BBB)

We propose QAT methodology for BBB as shown in
Figure 3. In BBB (Blundell et al., 2015), the distribu-
tion over the weights is modelled explicitly such that
fw, qw∼N (µ,σ2), with mean µ ∈ RM×F and variance
σ2 ∈ RM×F for each weight with respect toM input and F
output features and N represents a Gaussian. Nevertheless,
to enable backpropagation and efficient computation of the
weights, the weights are sampled with respect to a Gaussian
ε∼N (0, 1), such that fw = µ + φ(σ) � ε (Kingma and
Welling, 2013). φ(.) constrains the output to be positive
e.g.: softplus. It is necessary to add SQ nodes and observe
the statistics after each operation: application of positive
element-wise φ(.), addition and multiplication to obtain fw
and subsequently qw. We simulate quantisation to compute
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Figure 4: Changing activation precision, fixing weight precision. Regression results with respect to root-mean-squared error
(RMSE) (a) and negative log-likelihood (NLL) (b) on UCI datasets. Q stands for quantised activations (A) and weights (W).
Subscript denotes bit-width. Pointwise and SGHMC collapse when the bit-width ≤ 3 for A.
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Figure 5: Fixing activation precision, changing weight precision. Regression results with respect to root-mean-squared error
(RMSE) (a) and negative log-likelihood (NLL) (b) on UCI datasets. Q stands for quantised activations (A) and weights (W).
Subscript denotes bit-width. SGHMC collapses when the bit-width ≤ 4 for W.

the quantisation statistics for the means µ as well as the
positive standard deviation φ(σ). We do this to avoid dy-
namic quantisation during run-time. The quantisation for
the standard deviation is performed after φ(.), which eventu-
ally bypasses the non-linearity, when quantised, and reduces
the numerical errors induced by the reduced representation.
Practically, this means that we do not have to perform φ(.)
and there is no floating-point computation at runtime. Note
that, depending on the regime, it is necessary generate ε
in floating-point or quantised. We found quantised ε with
respect to Sε = 0.0236 and Zε = 0 to be performing well
across different n and experiments. Due to the proposed
scheme, there are no changes necessary to be made with
respect to equation (2). We avoid the computation of the
gradients with respect to the ELBO’s regulariser (Blundell
et al., 2015) during QAT. We found it practically difficult
to perform the quantisation with respect to the non-linear
computation of KL divergence (taking log, square, division).

3.2.3 Stochastic Gradient Langevin Dynamics with
Hamiltonian Monte Carlo (SGHMC)

In comparison to the previous two methods, in
SGHMC (Chen et al., 2014), there is no sampling
of random variables during evaluation. Chen et al. (2014),
following (Welling and Teh, 2011), demonstrated that by

adding the right amount of Gaussian noise to a standard
stochastic gradient optimisation algorithm, it is possible
to collect weights wl from l = 1, . . . , L several distinct
optimisation steps, that can then be used to approximate
the samples from the true posterior distribution over the
BNN weights. Therefore, we propose to quantise each of
the weight samples separately through QAT, similarly to a
pointwise approach, as shown in Figure 1. The SQ nodes
are applied to each set of weight samples l as well as the
corresponding outputs. Thus, we propose to fine-tune each
pre-trained network sample l separately.

In all instances, QAT was used with a very small learning
rate for 10 epochs. However, it is crucial that Bayesian
inference was adhered to in the main phase with a bigger
learning rate and substantially more epochs.

4 EXPERIMENTS

In this Section we present the tasks, datasets and their corre-
sponding NN architectures, metrics and the implementation,
followed by the observations.

We consider two classes of problems: 1) regression and 2)
classification. We evaluate the networks on sample datasets
of tuples D. For regression the target yn is assumed to be a
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Figure 6: Changing activation precision, fixing weight precision. MNIST results with respect to classification error on test
data (a) and average predictive entropy (aPE) on FashionMNIST (b). Q stands for quantised activations (A) and weights
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Figure 7: Fixing activation precision, changing weight precision. MNIST results with respect to classification error on test
data (a) and average predictive entropy (aPE) on FashionMNIST (b). Q stands for quantised activations (A) and weights
(W). Subscript denotes bit-width.

real-valued yn ∈ R1, while for classification the target yn is
a one-hot encoding of k = 1, . . . ,K classes such that yn ∈
RK . Given the input features xn, we use a BNN to model
the probabilistic predictive distribution pw(yn|xn) over the
targets with respect to some model defined by weights w,
where the mean and the variance are approximated with
respect to L samples as µw(xn) = E[ 1L

∑L
l=1 pwl

(yn|xn)]
and σ2

w(xn) = E[ 1L
∑L
l=1(pwl

(yn|xn)− µw(xn))2].

For the regression we consider UCI datasets (housing, con-
crete, energy, power, wine, yacht) whereas for classification
we consider classifying MNIST digits and CIFAR-10 image
datasets. We used a mixture of real data to control the com-
plexity of the experiments and observe whether it affects
the uncertainty estimation quality in a quantised regime. For
the regression problem we consider an architecture with
an input layer followed by 3 hidden layers with 100 nodes,
each followed by a ReLU activation. For MNIST we im-
plement the common LeNet-5 (LeCun et al., 1998), while
for CIFAR-10 we implement ResNet-18 (He et al., 2016)
with BN and skip-connections enabled. Similarly to the
datasets, we chose NN architectures of increasing complex-
ity to explore how the uncertainty estimation is impacted by
trailing quantisation errors coming from a reduced precision
and deeper architectures. We considered image augmenta-
tions: rotation, brightness and horizontal shift and confusion
datasets: FashionMNIST for MNIST and SVHN for CIFAR-
10 experiments to measure the level of uncertainty on distant

or shifted datasets. The hyperparameters for all experiments
were hand-tuned with reference to validation error.

From the quantisation point of view, we focus on quantisa-
tion of both weights and activations to improve on-device
storage as well as computational efficiency. We considered
3 ≤ n ≤ 8 for weights (W) and 3 ≤ n ≤ 7 for activations
(A) for all the proposed methods (MCD, BBB, SGHMC)
and a standard pointwise implementation. We considered
1 bit lower precision for activations than for weights to
avoid instruction overflow on our system. All experiments
were repeated 3 times and we set L = 20 for all methods.
The code is available at https://git.io/JtSJG. Ad-
ditional experiments and observations are in the appendix.

4.1 REGRESSION

The results for regression for the respective methods under
quantisation are presented in Figures 4 (a,b) and 5 (a,b).
We were measuring the root-mean-squared error (RMSE)
and negative log-likelihood (NLL). Every box-plot is with
respect to the UCI datasets and means of 10-fold cross
validation that has been done with respect to independent
models. First, examining the results for changing activation
precision in Figure 4 (a), it can be seen from the RMSE
that the Bayesian methods are more robust towards quanti-
sation and they are able to maintain their accuracy, while a
pointwise NN tends to lose its generalisability the quickest,
even though it was initially marginally the most accurate.

https://git.io/JtSJG
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Figure 8: Changing activation precision, fixing weight precision. CIFAR-10 results with respect to classification error on
test data (a) and average predictive entropy (aPE) on SVHN (b). Q stands for quantised activations (A) and weights (W).
Subscript denotes bit-width. All methods collapse when the bit-width ≤ 4 for A.
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Figure 9: Fixing activation precision, changing weight precision. CIFAR-10 results with respect to classification error on
test data (a) and average predictive entropy (aPE) on SVHN (b). Q stands for quantised activations (A) and weights (W).
Subscript denotes bit-width. All methods collapse when the bit-width ≤ 3 for W.

At the same time, the Bayesian inference methods are able
to maintain their uncertainty estimation capabilities which
can be seen in the NLL plots in Figures 4, 5 (b). Second,
results plotted in Figure 5 for changing weight precision and
keeping the activation precision fixed, further solidify the
previous observations. Nevertheless, the rate of change of
the error with respect to quantisation of weights is slower in
comparison to changing the activation precision. However,
in both plots we notice that SGHMC is more affected by
quantisation, especially weight quantisation. The weights’
distributions for SGHMC for the different layers are more
spread than the other 2 methods and uniform quantisation
with respect to such a low precision for either weights or
activations is unable to capture them.

4.2 CLASSIFICATION

In this Section we present the main results with respect to
evaluation on MNIST and CIFAR-10 datasets. We focused
on measuring classification error, expected calibration error
(ECE) (Guo et al., 2017a) with respect to 10 bins and aver-
age predictive entropy (aPE). Further results with respect
to other metrics can be seen in the appendix.

4.2.1 MNIST

The results for MNIST evaluation with respect to quantised
BNNs are presented in Figures 6 (a,b) and Figures 7 (a,b). In

general, the results follow the same trends as demonstrated
in the regression results. Nevertheless, as seen in the classifi-
cation error for changing activation precision in Figure 6 (a)
the respective methods are more sensitive towards changing
activation precision than weight precision in comparison to
results in Figure 7 (a), in particular for MCD. The scaling
factor that is applied during the MCD ( 1

1−p ) distorts the
activation distribution and results in a collapse of MCD if
the bit-width for the activation is too small. However, the
error of the BNNs increases marginally slower than for the
pointwise NN. Nevertheless, as the error increases, the pre-
dictive entropy increases as well, which can be seen in both
Figures 6 (b) and 7 (b) as a result their ECE also decreases.
This means that quantisation has actually a regularising ef-
fect as with reduced precision for weights or activations
the representation capabilities of NNs is limited and their
confidence decreases. Interestingly for the collapsed MCD,
this results in a complete and rightful uncertainty on the con-
fusion dataset or the test set as seen in Figure 6 (b). These
results translate also to measuring aPE and ECE on the test
data, except for the pointwise control.

In Figures 10 (a,b) we detail results with respect to augmen-
tations and 7-bit quantisation of the activations and 8-bit
quantisation of the weights. It can be seen that the Bayesian
inference methods remain to be robust towards domain shift
even under quantisation and they record marginally smaller
ECE and error than the pointwise control.
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Figure 10: Expected calibration error (ECE) and classification error with respect to 7-bit activations and 8-bit weights and
three augmentations applied to the LeNet-5 on MNIST test set (a) and (b) and ResNet-18 on CIFAR-10 test set (c) and (d).
Augmentations were: Brightness [1.5-3.5], Rotation [15°-75°] and Horizontal shift [0.1-0.5 of image size].

4.2.2 CIFAR-10

The results for CIFAR-10 with respect to quantised BNNs
are presented in Figures 8 (a,b) and Figures 9 (a,b). In this ex-
periment the differences between the Bayesian methods and
the pointwise control are widened. Similarly to the previous
experiments, the quantised BNNs are more susceptible to ac-
tivation quantisation in comparison to weight quantisation,
while comparing the results in Figures 8 (a) and Figures 9
(a). Moreover, the qunatised nets collapse earlier, n ≤ 4
for activations, given a more complex ResNet architecture.
Nevertheless, as seen from Figures 8 (b) and Figures 9 (b)
in no instance for any BNN method the uncertainty-related
capability is damaged by quantisation, as the trends are
clearly upwards in terms of the predictive entropy on the
confusion dataset. However, as seen in Figure 9 (b) it is the
pointwise model in particular which completely overfits the
training dataset and quantisation has a negative effect on its
predictive entropy. Similarly to previous experiments, as the
error increases, the predictive entropy increases for BNNs
which can be seen in both Figures 8 (b) and Figures 9 (b) as
a result their ECE also decreases.

Next, if considering the domain shift as demonstrated in
Figures 10 (c,d) it can be observed that while the error in
Figure 10 (d) increases, the error of the Bayesian meth-
ods increases at the same rate as in a pointwise approach.
However, when further examining Figure 10 (c), it can be
seen that the ECE increases by far less in comparison to
the pointwise approach, which makes BNNs, even under
quantisation, to be more robust towards domain shift.

5 KEY TAKEAWAYS

In this work we proposed and evaluated a practical quan-
tisation methodology for a variety of Bayesian inference
methods applied to neural networks and in this Section we
discuss the key takeaways of our empirical observations.

• An uniform quantisation scheme is viable for quantisa-
tion of Bayesian neural networks unless pushed to the
extrema (≤ 4-bits for activations or weights). For the
most commonly utilised 8-bit weights and activation
quantisation scheme used in hardware, we did not ob-
serve any significant degradation in accuracy or quality
of uncertainty estimation in Bayesian nets in compar-
ison to their floating-point representation. Therefore
from the hardware perspective, we expect the BNNs
to follow trends of pointwise methods - latency po-
tentially decreased by 2× to 4× depending on the un-
derlying hardware platform and memory consumption
decreased by 4× if considering 8-bits. Quantisation be-
low 8-bits would require a custom accelerator to see its
benefits where the latency and memory consumption
could be decreased (Guo et al., 2017b).

• The quality of predictive uncertainty of Bayesian net-
works stays unaffected or increases as a result of quan-
tisation. The networks stay certain on the in-domain
test data and become more uncertain on confusion or
domain-shifted data.

• The prediction error increases at a slower rate in
Bayesian neural networks, as their representation is re-
duced in the number of bits through quantisation, than



 in pointwise networks unless considering extrema.

• Activation quantisation seemed to affect all the net
types more than weight quantisation on the accuracy,
predictive entropy or calibration. SGHMC was more
sensitive to weight quantisation, MCD was the most
sensitive to activation quantisation.

• In MCD random binary masks (K) could be quantised
to 1-bit whereas in BBB all parameters (µ, σ and ε)
need to be quantised with same number of bits as in
weights to maintain model accuracy.

• Experiments on different datasets and tasks suggest
that Bayesian nets are relatively immune to quanti-
sation. However, complex architectures (e.g. ResNet)
seem to be more affected by quantisation than simpler
architectures (LeNet-5) regarding their performance.

In the future work we are going to investigate more com-
plex non-mean-field approximations for the respective
Bayesian inference methods and more expressive quanti-
sation schemes with respect to lower (≤ 4-bits) precision.
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