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Abstract

Gaussian Processes (GPs) are known to provide ac-
curate predictions and uncertainty estimates even
with small amounts of labeled data by capturing
similarity between data points through their kernel
function. However traditional GP kernels are not
very effective at capturing similarity between high
dimensional data points. Neural networks can be
used to learn good representations that encode in-
tricate structures in high dimensional data, and can
be used as inputs to the GP kernel. However the
huge data requirement of neural networks makes
this approach ineffective in small data settings. To
solves the conflicting problems of representation
learning and data efficiency, we propose to learn
deep kernels on probabilistic embeddings by using
a probabilistic neural network. Our approach maps
high-dimensional data to a probability distribution
in a low dimensional subspace and then computes
a kernel between these distributions to capture sim-
ilarity. To enable end-to-end learning, we derive a
functional gradient descent procedure for training
the model. Experiments on a variety of datasets
show that our approach outperforms the state-of-
the-art in GP kernel learning in both supervised and
semi-supervised settings. We also extend our ap-
proach to other small-data paradigms such as few-
shot classification where it outperforms previous
approaches on mini-Imagenet and CUB datasets.

1 INTRODUCTION

The availability of huge labeled datasets [Deng et al., 2009]
has played a key role in the success of deep learning in recent
time. Given a sufficient amount of labeled (training) data,
deep neural networks achieve superhuman prediction perfor-
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mance on unseen (test) data [Krizhevsky et al., 2012, Graves
et al., 2013]. However, machine learning is increasingly be-
ing applied to areas where it is challenging to procure large
amounts of labeled data, e.g., materials science [Zhang et al.,
2020], poverty prediction [Jean et al., 2016], and infrastruc-
ture assessment [Oshri et al., 2018]. The accuracy of most
machine learning models deteriorates when trained on small
datasets. An additional drawback of deep neural networks
is the inability to provide accurate uncertainty estimates
leading to over-confident but incorrect predictions [Bulusu
et al., 2020] especially when trained on small data.

Gaussian Processes (GPs) [Rasmussen, 2003] are non-
parametric models that leverage correlation (similarity)
between data points to give a probabilistic estimate of
the target function values. Exploiting similarity in a non-
parametric fashion contributes to sample efficiency, while
probabilistic estimation helps to quantify model uncertainty
in unlabeled regions of the input space. However, owing to
the curse of dimensionality, the number of points required
to model the covariance using traditional GP kernels grows
exponentially with data dimension [Tripathy et al., 2016]
which reduces their efficacy in the small-data regime for
high-dimensional data. The success of deep neural networks
in learning low dimensional representations of high dimen-
sional data has led to works [Wilson et al., 2016] that use
a neural network to map data to a low dimensional latent
space and then build a GP for prediction on the latent space.
However, owing to the huge data requirement of neural net-
works, these approaches are also not as effective in learning
latent representations in the small-data regime.

To enable powerful, data efficient representation learning,
we propose a new approach for learning highly expressive
GP kernels with small amounts of labeled data by map-
ping data points to probability distributions in a latent space
with a probabilistic neural network [Neal, 2012]. We then
leverage the theory of kernel embeddings of distributions
[Muandet et al., 2017] to build expressive kernels, and con-
sequently GPs, on the latent probability distributions.
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(a) Accurate Prediction
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Figure 1: Performance of our models for regression on the UCI CTSlice Dataset (Dimensionality = 384) [Graf et al., 2011]
with n = {50, 100, 200, 300, 400, 500} labeled data points. (a) Our approach DPKL, has significantly lower average RMSE
than conventional GPs and Deep Kernel Learning (DKL). (b) DPKL not only has lower error, but also captures the data
distribution much better (lower negative log likelihood) than DKL. (c) Points with similar target values have similar mean
embeddings in the 2-dimensional latent space learned by DPKL with n = 100 labeled samples.

Probabilistic models are known to outperform deterministic
models when the amount of data is insufficient to capture
the complexity of the task [Wilson and Izmailov, 2020].
Intuitively, we expect the uncertainty due to the model’s
probabilistic nature to improve generalization. This is al-
ready seen in the superiority of soft thresholding over hard
thresholding in clustering, and in the superior prediction
performance of Bayesian Neural Networks (BNNs) over
deterministic neural networks in small data settings [Gal,
2016], and we expect to obtain similar benefits on using
probabilistic neural networks for GP kernel learning.

Note that our aims differ from works like [Graves, 2011]
that train BNNs for prediction. They use the probabilistic
nature of the model to capture uncertainty in prediction at
the output while we use probabilistic neural networks to im-
prove the learned representation which can serve as input to
any predictive model. While we mainly focus on improving
GP regression through this, we also show improvements in
classification using Bayesian logistic regression [Jaakkola
and Jordan, 1997] on the learned probabilistic representa-
tions to illustrate the flexibility of our approach.

The difference in aims also leads to a difference in train-
ing. While BNNs are typically trained by approximating
posterior distribution over model parameters, we learn the
distribution over model parameters via Maximum Likelihood
Estimation (MLE) in the space of probability distributions.
MLE in our model is performed using functional gradient
descent, which is not only a natural approach to perform
optimization in the space of functions (probability distri-
butions), but has also recently been shown [Liu and Wang,
2016] to achieve an effective middle ground between the
high computational cost of MCMC [Andrieu et al., 2003]
and the poor approximation quality of Variational Inference
(VI) [Blei et al., 2017] for training probabilistic models.

Figure 1 shows the results of implementing our model, Deep
Probabilistic Kernel Learning (DPKL), and baseline ap-
proaches - Deep Kernel Learning (DKL) [Wilson and Nick-
isch, 2015], and a GP with a Squared Exponential (SE)
kernel, on a regression task of predicting location of CT
slice images on the axial axis of the human body [Graf et al.,
2011] given a 384−dimensional feature vector extracted
from the image. We use Root Mean Squared Error (RMSE)
(Figure 1a) to measure prediction accuracy, and negative
log-likelihood (Figure 1b) to measure uncertainty quantifica-
tion (lower is better for both). Our model outperforms both
baselines on both counts and also learns embeddings that
clearly capture similarity between data points with respect
to target values (Figure 1c).

We also extend our model to two other paradigms in small
data settings – semi-supervised learning [Zhu and Goldberg,
2009] and few-shot classification [Chen et al., 2019]. The
former involves adding a regularizer to DPKL that provably
incorporates additional structural information from unla-
beled data, while the latter uses the learned probabilistic
embedding to improve the performance of Bayesian Logis-
tic Regression for classification especially for settings like
few-shot learning where we only have a small number of
training examples of each class.

2 BACKGROUND AND RELATED
WORK

Given n training data points, X ∈ X ⊆ Rn×D, and targets,
y ∈ Rn×1, our goal is to accurately predict targets y∗ for
unseen (test) data points x∗, assuming small training set
size (small n) and high dimensionality (large D).

Gaussian Processes. Gaussian Processes (GPs) [Ras-
mussen, 2003] are non-parametric models that, when ap-



 propriately designed, can give high quality predictions
and uncertainty estimates in the small data (small n)
regime. A GP defines a probability distribution over func-
tions H : Rd → R such that individual function values
form a multivariate Gaussian distribution i.e. H(X) =
[H(x1), . . . ,H(xn)] ∼ N (µ,K) with entries of the mean
vector given by µi = µ(xi), and of the covariance matrix
given by Kij = K(xi,xj). A GP is fully specified by the
mean function µ (typically µ ≡ 0) and the covariance ker-
nel K (For eg. SE or Matern) which measures similarity
between data points. Data is also assumed to be corrupted
by noise η ∼ N (0, σ2

η) and the overall covariance is

Cov(H(xi), H(xj)) = K(xi,xj) + σ2
η1{i = j}

Given the training data X and associated targets y, the
predicted target function value H(x∗) at an unlabeled
data point x∗ follows a Gaussian posterior distribution, i.e.
Pr(H(x∗)|X,y,x∗) = N (µ(x∗), σ

2(x∗)) where µ(x∗) =
k∗

T (K+σ2
η)−1y and σ2(x∗) = k∗∗−k∗

T (K+σ2
η)−1k∗

with k∗ = K(X,x∗) and k∗∗ = K(x∗,x∗). We refer read-
ers to [Rasmussen, 2003] for further details.

Deep Kernel Learning. Deep Kernel Learning (DKL) [Wil-
son et al., 2016, Wilson and Nickisch, 2015, Al-Shedivat
et al., 2016] uses a neural network to learn a GP kernel as
Kij = K(gw(xi), gw(xj)) where K is a standard GP ker-
nel and gw(.) represents the neural network with parameters
w which can be learned by minimizing the GP negative log
likelihood, i.e.,

w∗ = arg min
w

(− log Pr(y | X,w)), y ∼ N (µ,K)

(1)

Standard kernels (like SE or Matern) make simplifying as-
sumptions on the structure and smoothness of functions
which do not hold in high dimensions due to the curse of
dimensionality [Garnett et al., 2013, Rana et al., 2017]. DKL
avoids these assumptions by mapping high-dimensional data
to low-dimensional embeddings using a neural network. But,
like all neural network based models, it requires a lot of la-
beled data for accurate prediction.

Probabilistic Neural Networks. Probabilistic models learn
a distribution over model parameters thus incorporating un-
certainty in predictive modeling. The implicit regularization
due to the probabilistic nature can improve generalization
performance particularly when there is insufficient data.
Prior works on Probabilistic or Bayesian Neural Networks
(BNNs) [Neal, 2012, Graves, 2011, Hernández-Lobato and
Adams, 2015] seek to learn the posterior distribution over
model parameters that best explains the data. While these
works use the BNN to directly predict the data, we use
a probabilistic neural network to improve the quality of
low dimensional embeddings of high dimensional data. The
probabilistic embeddings given by our model serve as inputs
to predictive models like GPs. Thus our approach aims to

improve GP kernel learning and not replace BNNs. More-
over BNNs do not capture similarity between data points or
provide closed form uncertainty estimates on test data like
GPs do. Hence GPs and BNNs are generally not used for
the same tasks.

Semi-Supervised Learning. Recently, [Jean et al., 2018]
proposed Semi-Supervised Deep Kernel Learning (SSDKL)
approach which uses posterior regularization, given a large
amount of unlabeled data, to reduce the labeled data require-
ment for GP kernel learning. Various other semi-supervised
learning approaches [Kingma et al., 2014, Odena, 2016,
Tarvainen and Valpola, 2017, Laine and Aila, 2016] have
also been studied which yield accurate predictions with few
labeled and many unlabeled examples. For such settings,
we propose a semi-supervised model, SSDPKL in section 3
which is constrained to ensure that the unlabeled data is not
projected too far away from the labeled data in the latent
space, and outperforms SSDKL for regression (section 4).

Other related work. There is a line of work on Deep GPs
[Damianou and Lawrence, 2013, Salimbeni and Deisenroth,
2017] seeks to improve the performance of GPs in the big-
data regime by hierarchically stacking multiple GPs and
training the model using Variational Inference. The authors
of [Salimbeni and Deisenroth, 2017] observe that DeepGP
is not better than a single layer GP for small datasets (with
similar or more labeled examples than what we have con-
sidered) while we show that DPKL generally has lower
RMSE than GP in these settings. Regression on distribu-
tion inputs has been theoretically studied in Póczos et al.
[2013], Bachoc et al. [2017, 2018]. They assume that the
input itself is a distribution while we use neural networks
to learn distributional embeddings of deterministic inputs.
There has also been a surge of interest in classification in the
small-data regime or few-shot classification. Recent results
are summarised in [Chen et al., 2019]. In particular, the
baseline models considered in their work can be directly
augmented with DPKL to improve predictive performance
in the few-shot setting as we show in Section 4.

3 DEEP PROBABILISTIC KERNEL
LEARNING

In this section we first describe our model - Deep Proba-
bilistic Kernel Learning (DPKL) illustrated in Figure 2a in
the context of GP regression, and then explain extensions to
classification and semi-supervised learning. The proofs of
theoretical results are contained in Appendix A.

3.1 MODEL OVERVIEW

DPKL predicts output y ∈ R given input x ∈ X ⊆ RD
using a Gaussian Process (GP) learned over probability dis-
tributions in a low dimensional latent space Z ⊆ Rd where
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Figure 2: (a) Our model (DPKL) maps training points to probability distributions in the latent space and learns a GP whose
kernel is the inner product between the RKHS embeddings of these distributions. (b) If unlabeled data is available we train a
semi-supervised model (SSDPKL) which is a regularized version of DPKL. The regularizer is the average squared error
between the RKHS norm of unlabeled points and their projections onto the subspace spanned by the labeled points.

Algorithm 1: Deep Probabilistic Kernel Learning
Input :Training points X and targets y along with a

set of initial model parameters {w(0)
i }mi=1

Output :A set of model parameters {wi}mi=1 ∼ p̂(w)
where p̂(w) is obtained by performing
functional gradient descent on equation (8)

1 Initialize model parameters {w(0)
i }mi=1 ∼ p0(w) for

some known p0(w)
2 for iteration t do
3 w

(t+1)
i = w

(t)
i − εtφ(w

(t)
i ),

4 where
φ(w) =

∑m
l=1 κ(w,wl)∇wl

L̂(w1, . . . ,wm)
5 end

distributions in Z are obtained by passing the input data
through a probabilistic neural network. The dimensionality
d of Z is much smaller than the dimensionality D of X .

Probabilistic Latent Space Mapping. Each data point x
passes through a probabilistic neural network with parame-
ters W ∼ p(W) to give a random variable Z = gW(x) ∈
Z . Thus a point xi is represented by the latent distribution
p(Z|xi) due to the stochasticity of W.

GP Regression over Latent Distributions. We assume a
GP prior H ∼ GP(0,K) over target functions H which
take distributions p(Z|xi) as input and output ŷi, an es-
timate of the true label yi. K is the kernel matrix which
models covariance between GP inputs (probability distribu-
tions). Given any two probability distributions p(Z|xi) and
p(Z|xj), the corresponding entry of K is given by

Kij = Ez∼p(Z|xi), z′∼p(Z|xj)[k(z, z′)] (2)

Here k can be any standard kernel like the SE kernel for

which the above expression would be

Kij = Ez∼Pr(Z|xi), z′∼Pr(Z|xj)[exp(−1

2
||z− z′||2)] (3)

This choice of kernel between probability distributions is
inspired by the Set Kernel of Gärtner et al. [2002] for which
consistency results and minimax rates were given in Szabó
et al. [2016]. Previous works [Muandet et al., 2012, 2017]
have used similar kernels to build predictive models, such
as SVMs, with distribution inputs. Kij corresponds to the
inner product between distributions p(Z|xi) and p(Z|xj) in
the Reproducing Kernel Hilbert Space (RKHS)Hk defined
by the kernel k [Muandet et al., 2017] and thus K is positive
definite. We expect that: a) The lower dimensionality of
Z will improve the performance of simple kernels like SE
in capturing the covariance (similarity) between points. b)
Probability distributions in the latent space Z will better
capture uncertainty due to scarcity of training data than
point embeddings. Hence we perform GP regression over
distributions in Z .

Approximation with Random Fourier Features. Observe
that in equation (2) the complexity of computing Kij is
O(m2) (if we use m samples of z and z′ to approximate the
expectation). Since the total number of (i, j) pairs is n2 the
overall complexity will be too large (O(n2m2)). However, if
k is shift-invariant, we can use the Random Fourier Features
approximation [Rahimi and Recht, 2008] to approximate it
as

k(z, z′) ≈ fV(z)T fV(z′) (4)

where V is a matrix whose rows v1, . . . ,vR are i.i.d sam-
ples from the Fourier Transform of k and fV(z) is a vector
with 2R elements whose lth element is given by

fV(z)r =

{
1√
R

cos(vTr z), 1 ≤ l ≤ R
1√
R

sin(vTr−Rz), R < r ≤ 2R
(5)



 The overall kernel is now linear and the computation has
complexity O(n2R+ nmR).

3.2 TRAINING ALGORITHM AND ITS
DERIVATION

The forward pass described above, is used to compute the
kernel between data points and consequently the predicted
GP mean and variance for test data (see section 2). To train
the model we need to find the optimal distribution p(W)
over its parameters in this setting.

Since the latent embedding Z for a data point x is given by
Z = gW(x), W ∼ p(W), we can rewrite equation (2) as

Kij = Ew,w′∼p(W)[k(gw(xi), gw′(xj))] = Kij [p] (6)

If Random Fourier Features are used then

Kij ≈ Ew∼p(W)[fV(gw(xi))]
TEw′∼p(W)[fV(gw′(xj))]

In both cases we can viewKij as a functional of p(W). The
overall data likelihood is then also a functional of p and the
negative log likelihood is given by (see [Rasmussen, 2003])

L[p] = − log Pr(y|X, p(W)) (7)

=
1

2
yT (K[p] + σ2I)−1y +

1

2
log(det(K[p] + σ2I))

where det(A) denotes the determinant of a matrix A.

Thus a maximum likelihood estimate, p∗(W), of the distri-
bution over model parameters is given by

p∗(W) = arg min
p(W)∈P

L[p] (8)

where P is the class of distributions in which we seek p∗.

Since the negative log likelihood, L[p], is a functional of the
distribution p, we can use Functional Gradient Descent to
search for distributions in P that minimize its value. How-
ever the choice of P is extremely critical to the success of
this approach. Previous works in learning GP kernels us-
ing neural networks [Wilson et al., 2016, Jean et al., 2018]
which seek a point estimate of the model parameters essen-
tially assume that P = {p(w)|p(w) = p(w)δ(w̄)}, i.e., P
is the space of Dirac Deltas centered around w̄. As we show
in section 4, these approaches are not very effective in small
data settings, possibly due to the restrictive nature of the
search space. However, choosing an arbitrary search space
might make it challenging to computeKij as in equation (6)
due to the difficulty in computing expectations with respect
to general high dimensional probability distributions.

Recent works [Liu and Wang, 2016], have shown that an
effective middle-ground in such settings is to choose P as

P = {p(u)|u = w + s(w),w ∼ p0(w), s ∈ Hκ} (9)

where Hκ is a RKHS given by a kernel κ between model
parameters w (note that this is not the RKHSHk into which
distributions in the latent space Z are embedded and which
is given by the kernel k). P includes all smooth transforma-
tions from the initial distribution p0. Distributions in this set
P can closely approximate almost any distribution, particu-
larly those admitting Lipschitz continuous densities [Villani,
2008].

Moreover, observe that for any smooth one-to-one trans-
form u = T (w), w ∼ p(W), the entries of K under the
transformed distribution p[T ](u) can be written as

Kij = Eu,u′∼p[T ](u)[k(gu(xi), gu′(xj))] (10)

= Ew,w′∼p(W)[k(gT (w)(xi), gT (w′)(xj))]. (11)

Since the above holds for infinitesimal shifts u = w+s(w),
a tractable choice of p0 (For eg. Gaussian), enables efficient
approximation of Kij by sample averages with samples ui,
ui = wi+s(wi),wi ∼ p0(w). Thus P is sufficiently large
but permits efficient computation.

Moreover Kij in equation (11) is a functional of the trans-
formation T (for fixed p(W)) i.e. a functional of the shift
s in our case. Therefore, the problem of finding p∗(W) in
equation (8) reduces to the problem of finding the optimal
shift (given p0(W)) i.e.

s∗(W) = arg min
s(W)

L[s]. (12)

Since s ∈ Hκ, (Hκ is the RKHS for the kernel κ), we can
solve equation (12) via functional gradient descent. The
following is an empirical estimate of the functional gradient
of the negative log-likelihood at s = 0.

Proposition 1. If we draw m realizations of model param-
eters w1, . . . ,wm ∼ p(w), p ∈ P , the functional gradient
of the negative log likelihood can be approximated as

∇sL |s=0 '
m∑
l=1

κ(wl, .)∇wl
L̂(w1, . . . ,wm) (13)

where, L̂ =
1

2
yT (K̂ + σ2I)−1y +

1

2
log(det(K̂ + σ2I))

is the empirical negative log likelihood, κ is the kernel
between model parameters, K̂ij = 1

m2

∑m
l,l′=1 kij(wl,wl′)

are the entries of the empirical kernel matrix K̂.

To estimate the optimal shift, s∗ (corresponding to the op-
timal distribution p∗) we draw an initial set of samples
w1, . . . ,wm ∼ p0(w) and iteratively apply the functional
gradient descent transformation u = w− ε∇sL |s=0. Since
these transformed weights correspond to samples from the
transformed distribution p[T ](u) we only need to evaluate
the gradient at s = 0, which is a crucial advantage since the
expression for the gradient at non-zero shifts is much more
complicated. The functional gradient in equation (13) is a



 weighted average of individual sample gradients with the
kernel between model parameters κ controlling the effect
that different samples have on each other. For m = 1 it
reduces to gradient descent on negative log likelihood as in
Deep Kernel Learning [Wilson et al., 2016]. Algorithm 1
summarises the training procedure for our model, DPKL.

Bias in Gradient Estimates. We note that the gradient es-
timates in equation (13) are biased as the expectation with
respect to weights w appears inside the matrix inversion in
equation (7). While DPKL already outperforms the current
state-of-the-art over a wide range of experiments, future
work on reducing this bias may give further improvements
(as in [Belghazi et al., 2018]).

Connection with SVGD. While our choice of search space
P follows that in Stein’s Variational Gradient Descent
(SVGD) [Liu and Wang, 2016] the goal of our work is quite
different from theirs. SVGD is a general purpose Bayesian
Inference algorithm which estimates posterior distributions
by minimizing KL divergence w.r.t the true posterior, and
has no particular connection to sample efficiency or repre-
sentation learning, while we seek to improve the quality of
learned latent representations and kernels in small data set-
tings by performing Maximum Likelihood estimation over
the space of probability distributions P . The different loss
functions also lead to different functional gradient estimates.

3.3 EXTENSIONS

Semi-Supervised Learning (SSDPKL). While our base
model, DPKL, only uses labeled data, it can be augmented
with unlabeled data using the regularizer of [Jean et al.,
2018] to give a semi-supervised model which we call SS-
DPKL. Assuming the dataset X has nl labeled points XL

(with labels yL) and nu unlabeled points XU , the new opti-
mization problem is

p∗(W) = arg min
p(W)∈P

1

nl
L[p] +

α

nu

∑
x∈XU

σ2(x). (14)

Here σ2(x) is the GP posterior variance (see section 2) and
α is the regularization parameter. Since [Jean et al., 2018]
also restrict P to Dirac Delta functions, our choice of P
in equation (9) can generalize this in the same way as it
generalizes Deep Kernel Learning. Training involves using
functional gradient descent. The following result (illustrated
in figure 2b) explains the rationale behind using this regu-
larized loss function in our model.

Proposition 2. For any unlabeled point, x ∈ XU , if ωx is
the embedding in the RKHSHk, of p(Z|x) and ωLx , is its or-
thogonal projection onto the subspaceHLk ⊆ Hk, spanned
by RKHS embeddings of p(Z|xi), i = 1, . . . , nl,xi ∈ XL

then, assuming the GP kernel matrix K is invertible, the
posterior variance of x is given by σ2(x) = ||ωx − ωLx ||2Hk

.

Thus minimizing posterior variance encourages the model to
learn a mapping that spans distributions in Z corresponding
to unlabeled data, which can improve generalization.

Classification. The connection between Gaussian Processes
and Bayesian Linear Regression (see [Rasmussen, 2003])
motivates us to consider Bayesian Logistic Regression
(BLR) as our base model for classification. Assuming there
are C classes, the probability of a data point xi belonging
to class c under this model is given by

ρic =
exp(θTc xi)∑C
c′=1 exp(θTc′xi)

, θc ∼ q(θ) (15)

The model can be trained using any Bayesian Inference
algorithm to find the optimal posterior distribution over
the weights θc for each class. When ||θc||2 = ||xi||2 = 1,
exp(θTc xi) ∝ exp(− 1

2 ||x− θc||2) and equation (15) can be
rewritten as

ρic =
k(xi, θc)∑C

c′=1 k(xi, θc′)
, θc ∼ q(θ) (16)

where k is the SE kernel. Previous works [Chen et al.,
2019] have shown that such normalization improves ac-
curacy in small-data (few-shot) classification. This moti-
vates us to replace the high-dimensional data points xi with
low-dimensional probabilistic embeddings Z = gW(x),
W ∼ p(W) analogous to DPKL, due to which ρic can be
written in terms of the corresponding probabilistic kernel as

ρic =
Ew∼p(W)[k(gw(xi), θc)]∑C

c′=1 Ew∼p(W)[k(gW(xi), θc′)]
, θc ∼ q(θ)

To reduce the computational cost the kernel k can be ap-
proximated by the corresponding Random Fourier Features
as in Section 3.1. Now in addition to Bayesian Inference
for learning the posterior over θc we also learn the optimal
distribution over model parameters p∗(W) ∈ P via the
Maximum Likelihood estimation approach of Algorithm 1.
The negative log likelihood in this case is given by

L =

n∑
i=1

C∑
c=1

yic logE[ρic] (17)

The expectation in equation (17) is approximated using sam-
ples drawn from the current estimate of the posterior of θc.
Experiments in Section 4 show that this model outperforms
BLR and is competitive with the state-of-the-art in few-shot
classification.

4 EXPERIMENTAL RESULTS

We apply our model DPKL, to various classification and
regression tasks in the small data regime. All models are
implemented in TensorFlow [Abadi et al., 2016]. We use
the SE kernel everywhere as the kernel κ between DPKL
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Figure 3: RMSE Results for regression on 6 UCI Datasets with n = {50, 100, 200, 300, 400, 500} labeled samples. Here
show results for DPKL v/s DKL [Wilson et al., 2016] on 4 datasets and the semi-supervised models SSDPKL v/s SSDKL on
the other 2 datasets. The clear superiority of DPKL and SSDPKL over their deterministic counterparts (DKL and SSDKL)
confirms the efficacy of our approach. See Appendix B for the remaining results.

model parameters w with bandwidth chosen according to
the median heuristic described in [Liu and Wang, 2016].

UCI Regression. We use DPKL, and its semi-supervised
variant, SSDPKL for regression on 6 datasets of varying
dimensionality from the UCI repository [Lichman et al.,
2013] as shown in Figure 3. We compare our models to
DKL [Wilson et al., 2016] and SSDKL [Jean et al., 2018]
(both of which use deterministic neural networks to map
data into the latent space), and GP and Semi-Superivsed GP
(SSGP) (regularized as in Equation (14)). The GP and SSGP
models use a Squared Exponential (SE) kernel directly
on the data i.e. k(xi,xj) = exp(− 1

2

∑
l

1
h2
l
(xil − xjl)

2).
The DKL and SSDKL models embed the data into a low-
dimensional latent space before using a SE kernel i.e.
k(xi,xj) = exp(− 1

2 ‖gw(xi)− gw(xj)‖2). The DPKL
and SSDPKL models embed the data into a probability
distribution in the latent space (as described in Section 3)
and then use the SE kernel between distributions as given
in Equation (3). We used the same neural network archi-
tecture as [Jean et al., 2018] (D − 100− 50− 50− d) for
mapping data points to the latent space in the DKL and
DPKL models. Here D is the dimensionality of the datasets
and d = 2 is the dimensionality of the latent embedding
z ∈ Z . In DPKL and SSDPKL, we used m = 10 sam-

ples from this architecture to represent the distribution over
model parameters. The lengthscales for the GP SE kernel,
and the neural network weights in DKL are optimized us-
ing gradient descent on the negative log-likelihood while
the distribution over neural network weights in DPKL is
optimized using functional gradient descent (Algorithm 1).
For each dataset we use n = {50, 100, 200, 300, 400, 500}
labeled examples. The semi-supervised models – SSDPKL,
SSDKL and SSGP, additionally have access to (at most)
10000 unlabeled examples from the corresponding datasets
while the supervised models, DPKL, DKL, and GP, do not
use any unlabeled data. More details on training procedure
are in Appendix C.

Figure 3 shows RMSE for supervised models on 4 datasets
and for semi-supervised models on the other 2 datasets.
Clearly DPKL (SSDPKL) improves over DKL (SSDKL)
across all datasets. While GP does a bit better than DPKL
on one of the lower dimensional datasets (Skillcraft), we
note that DPKL is significantly better than GP on all other
datasets, including the high dimensional datasets CTSlice
(D = 384) and Buzz (D = 77), thus clearly illustrating the
advantages of our approach in high dimensional settings.

An added benefit of our approach is better uncertainty quan-
tification. Since all Gaussian Process models output a vari-
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Figure 4: Uncertainty Quantification (average negative log-likelihood of test data) results for regression on 6 UCI Datasets
with n = {50, 100, 200, 300, 400, 500} labeled samples. for DPKL, DKL and GP. Lower negative log-likelihood indicates
better uncertainty quantification. DPKL generally has lower negative log-likelihood than GP and DKL.

ance in addition to the mean prediction we use the average
negative log likelihood of test data as in [Lakshminarayanan
et al., 2017] to quantify the uncertainty of model predictions.
A lower negative log likelihood implies that the model fits
the test data better. The results in Figure 4 shows that by pro-
jecting high dimensional data to low dimensional probability
distributions before making predictions, DPKL consistently
outperforms DKL and GP in this metric across all datasets.

Few-shot Classification. We apply DPKL to the 5-shot
classification task described in [Chen et al., 2019]. Here a
pre-trained base model with a deterministic feature extractor
(4-layer convolution backbone) attached to a classifier (any
suitable classifier), is fine-tuned on a small number of exam-
ples (5 per class) of classes that were unseen during training.
Accuracy is measured on a test dataset of examples from
the unseen classes. We keep the backbone (feature extrac-
tor) fixed and change the classifier in our experiments. We
compare the DPKL Classifier (described in Section 3.3) to
the Baseline++ with 1-NN classifier described in Appendix
A4 of [Chen et al., 2019] since it is the deterministic version
(deterministic embedding, deterministic logistic regression)
of the DPKL classification approach, and also to a classi-
fier consisting of a deterministic embedding layer followed
by Bayesian Logistic Regression (similar to [Snoek et al.,
2015]) which we call DBLR. Results in Table 1 show that

Method CUB mini-Imagenet
Baseline++ 68.94± 0.74 61.93± 0.65

DBLR 68.48± 0.71 60.12± 0.63
DPKL (Ours) 69.11± 0.72 64.96± 0.62

Table 1: DPKL has higher accuracy than the Baseline++
method of [Chen et al., 2019] as well as DBLR for 5-shot
classification on both CUB and mini-Imagenet datasets.

DPKL outperforms Baseline++ and DBLR for 5-shot classi-
fication on both the CUB and mini-Imagenet datasets which
were considered in [Chen et al., 2019]. DPKL outperforming
DBLR indicates that improvements are not obtained just by
replacing deterministic logistic regression with Bayesian lo-
gistic regression but by probabilistic embeddings learned in
DPKL. More details on training procedure are in Appendix
C and additional classification experiments are presented in
Appendix B.

5 CONCLUSION

We propose a new approach for small data learning that
maps high dimensional data to low dimensional probability



 distributions and then performs regression/classification on
these distributions. The distribution over model parameters
is learned via functional gradient descent. Our model out-
performs several baselines in GP regression and few-shot
classification while learning a meaningful representation of
the data and accurately quantifying uncertainties on test data.
In future we plan to theoretically analyze the convergence of
our approach, seek potential improvements through optimal
kernel selection and unbiased gradient estimation, and ap-
ply our model to areas like Bayesian Optimization [Brochu
et al., 2010] where GPs have been successful in the past.
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