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Abstract

We introduce neural Markov logic networks
(NMLNs), a statistical relational learning sys-
tem that borrows ideas from Markov logic. Like
Markov logic networks (MLNs), NMLNs are an
exponential-family model for modelling distribu-
tions over possible worlds, but unlike MLNs, they
do not rely on explicitly specified first-order logic
rules. Instead, NMLNs learn an implicit represen-
tation of such rules as a neural network that acts as
a potential function on fragments of the relational
structure. Similarly to many neural symbolic meth-
ods, NMLNs can exploit embeddings of constants
but, unlike them, NMLNs work well also in their
absence. This is extremely important for predict-
ing in settings other than the transductive one. We
showcase the potential of NMLNs on knowledge-
base completion, triple classification and on gener-
ation of molecular (graph) data.

1 INTRODUCTION

Statistical relational models are typically learned from one
or more examples of relational structures that typically con-
sist of a large number of ground atoms. Examples of such
structures are social networks, protein-protein interaction
networks etc. A challenging task is to learn a probability
distribution over such relational structures from one or few
examples. One possible approach is based on the assumption
that the relational structure has repeated regularities; this
assumption is implicitly or explicitly used in most works
on statistical relational learning. Statistics about these reg-
ularities can be computed for small substructures of the
training examples and used to construct a distribution over
the whole relational structures. Together with the maximum-
entropy principle, this leads to exponential-family distri-
butions such as Markov logic networks [Richardson and

Domingos, 2006]. In classical MLNs, however, either do-
main experts are required to design some useful statistics
about the domain of interest by hand (i.e. logical rules)
or they need to be learned by structure learning based on
combinatorial search. Recently, many authors have tried
to improve relational learning by integrating it with neural
computation [Rocktäschel and Riedel, 2017, Kazemi and
Poole, 2018, Sourek et al., 2018]. However, these hybrid
approaches usually relax (or drop) the goal of modeling the
joint probability distribution, preventing them from being
applied to more complex learning and reasoning tasks.

In this paper, we propose neural Markov logic networks
(NMLN). Here, the statistics (or features), which are used
to model the probability distribution, are not known in ad-
vance, but are modelled as neural networks trained together
with the probability distribution model. NMLNs overcome
several limitations of existing approaches. In particular, (i)
they can be used as an out-of-the-box tool in heterogeneous
domains; (ii) they allow expressing and learning joint prob-
ability distributions of complete relational structures.

The main contributions presented in this paper are as fol-
lows: (i) we introduce a new class of potential functions
exploiting symmetries of relational structures; (ii) we intro-
duce a new statistical relational model called neural Markov
logic networks (iii) we identify subclasses of NMLNs that
allow for faster inference; (iv) we showcase the model’s ef-
fectiveness on three diverse problems: generative modelling
of small molecules, knowledge-base completion and triple
classification.

The paper is structured as follows. In Section 2, we intro-
duce preliminary concepts. In Section 3, we introduce the
NMLN model. Section 4 focuses on a central component of
NMLNs which are relational potential functions. In Section
5 we discuss inference in NMLNs. In Section 6, we show
the results of the experiments we conducted. In Section 7,
we position the proposed model in the literature. Finally,
Section 8 concludes the paper.
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 2 PRELIMINARIES

We consider a function-free first-order logic language L ,
which is built from a set of constants CL and predicates
RL =

⋃
i Ri, where Ri contains the predicates of arity i. For

c1,c2, . . . ,cm ∈ CL and R ∈Rm, we call R(c1,c2, . . . ,cm) a
ground atom. We define possible world ω to be the pair
(C ,A ), where C ⊆ CL , A is a subset of the set of all
ground atoms that can be built from the constants in C
and any relation in RL . We define ΩL to be the set of all
possible worlds over L . Intuitively, a given possible world
defines a set of true facts one can state using the constants
(entities) and the relations of the language L .

Definition 1 (Fragments). Let ω = (C ,A ) be a possible
world. A fragment ω〈S 〉 is defined as the restriction of ω

to the constants in S . It is a pair ω〈S〉= (S ,B), with S
the constants of the restriction and B a set of ground atoms
only using constants from S .

Example 2.1. Given a language based on the
set of constants CL = {Alice,Bob,Eve} and a
set of relations RL = {sm(x), f r(x,y)}, con-
sider a possible world on this language ω =
(CL ,{sm(Alice), f r(Alice,Bob), f r(Bob,Eve)}).
Then, for instance, the fragment induced by the
set of constants S = {Alice,Bob} is ω〈S〉 =
(S ,{sm(Alice), f r(Alice,Bob)}).

The set of all fragments of ω that are induced by size-k
subsets of constants will be denoted by Γk(ω). Similarly,
Γk(L ) will denote the set of all possible fragments in a
given first-order language L .

3 THE MODEL

In this section we introduce neural Markov logic networks
(NMLNs), an exponential-family model for relational data
that is based on potential functions represented by neural
networks.

3.1 NEURAL MARKOV LOGIC NETWORKS

We need two classes of potential functions: fragment poten-
tials and global potentials, which are defined on fragments
and possible worlds, respectively.

Definition 2 (Fragment Potential). Given a first-order logic
language L , a fragment potential function φ is any paramet-
ric function φ(γ;w,We) from Γk(L ) to R with parameter
vectors w and We.

We explain the role of the parameter vectors w and We of
fragment potential functions farther in the paper. For now,
they are just some parameters.

Definition 3 (Global potential). Given a parametric frag-
ment potential function φ(γ;w,We), we define the paramet-
ric global potential function:

Φ(ω;w,We) =
1

|Γk(ω)| ∑
γ∈Γk(ω)

φ(γ;w,We).

With these two definition we can now introduce neural
Markov logic networks.

Definition 4 (Neural Markov Logic Network). Given a set
of fragment potential functions φ1, . . . , φm, and the respec-
tive global potential functions Φ1, . . . , Φm, a neural Markov
logic network (NMLN) is the parametric exponential-family
distribution over possible worlds from a given ΩL :

P(ω) =
1
Z

exp

(
∑

i
βiΦi(ω;wi,We)

)
,

where βi, wi and We are parameters and Z =

∑ω∈ΩL
exp(∑i βiΦi(ω;wi,We)) is the normalization con-

stant (partition function).

Neural Markov logic networks are a fairly standard
exponential-family model (their main strength lies in the
flexibility of their potential functions which we explain in
the next section), so one can rely on standard maximum-
likelihood estimation to learn them from data.

Learning When given only one training example ω̂ ,
NMLNs can be learned by maximizing the log-likelihood:

max
wi,We,βi

{
m

∑
i=1

βiΦi(ω̂;wi,We)− logZ

}
. (1)

The maximization of the log-likelihood is carried out by a
gradient-based method (see Appendix ??). When multiple
training examples on domains of the same sizes are available
then the maximum likelihood generalizes straightforwardly.
For the more general case where domains of training and test
data differ, it is more natural to view the learning problem
as min-max entropy optimization. We discuss this in more
detail in Appendix ??.

Expressivity The potential functions in NMLNs play sim-
ilar role as rules in classical MLNs. In fact, as we show in
Appendix B, any MLN without existential quantifiers can be
straightforwardly represented as an NMLN.1 Standard first-
order logic rules could be added simply as other potentials
to NMLNs.

1By using max-pooling in the definition of global potentials,
one can obtain even richer class of NMLN models that can repre-
sent any “Quantified MLN” [Gutiérrez-Basulto et al., 2018]. These
models are not considered in this paper.



 4 RELATIONAL POTENTIALS

In this section we delve into details of fragment potential
functions, their properties and their representation.

4.1 SYMMETRIC FRAGMENT POTENTIALS

We start by introducing symmetric fragment potentials
which are fragment potential function that treat any two
fragments isomorphic to each other in the same way. Sym-
metric potentials are useful to model relational structures,
such as molecules, where the same molecule may be rep-
resented by many isomorphic relational structures. Sym-
metric fragment potentials can be seen as analogical to
formulas in MLNs that do not contain constant symbols.
For instance, the constant-free formula sm(x)∧ fr(x,y)⇒
sm(y), which can be used in an MLN, applies to all do-
main elements in the same way. Likewise, a symmet-
ric fragment potential should not distinguish structures
that are isomorphic, i.e. differ just by renaming of con-
stants, such as ({Alice,Bob},{ f r(Alice,Bob),sm(Alice)})
and ({Alice,Eve},{ f r(Alice,Eve),sm(Alice)}). Next we
formalize this intuition and define symmetric fragment po-
tentials.

Definition 5 (Symmetric fragment potentials). Two frag-
ments γ and γ ′ are isomorphic if γ can be obtained from γ ′

by renaming (some of) the constants (renaming here refers
to an injective mapping). A fragment potential function φ

is symmetric if φ(γ,w) = φ(γ ′,w) whenever γ and γ ′ are
isomorphic.

Note that symmetric fragment potentials do not depend on
the parameter vector We.

If the fragment potential φ is symmetric then the global
potential Φ must be symmetric as well, i.e. if ω and ω ′

are isomorphic possible worlds then Φ(ω;w) = Φ(ω ′;w).
Hence, an NMLN is symmetric if its potential functions are
symmetric. A symmetric NMLN gives the same probability
to any two isomorphic worlds.

4.1.1 Representing Symmetric Fragment Potentials

Once we have defined symmetric fragment potentials, we
still need to represent them. To this end, we use the concept
of fragment anonymization. Given a fragment γ = (S ,B),
its anonymizations Anon(γ) is a list of |S |! fragments ob-
tained as follows. First, we construct the set of all bijective
mappings from the set S to {1,2, . . . , |S |}. This is the set
of anonymization functions and we denote it by AnonF(γ).
Then, we obtain each of the elements of Anon(γ) by taking
one function from AnonF(γ) and applying it to γ . Note that
Anon(γ) may contain several identical elements.

Example 4.1. Consider again the fragment
γ = (S ,{sm(Alice), f r(Alice,Bob)}). The set of

anonymization functions is AnonF(γ) = {{Alice 7→
1,Bob 7→ 2},{Alice 7→ 2,Bob 7→ 1}} and the re-
spective list of anonymizations is then the list:
Anon(γ) = (γ ′,γ ′′) where γ ′ = ({1,2},{sm(1), f r(1,2)})
and γ ′′ = ({1,2},{sm(2), f r(2,1)}).

We use anonymizations to define symmetric fragment po-
tentials starting from not necessarily symmetric functions.
Specifically, for a given function φ ′(γ;w) on fragments over
the language L0 with CL0 = {1,2, . . . ,k}, we define the
symmetric fragment potential as

φ(γ;w) = ∑
γ ′∈Anon(γ)

φ
′(γ ′;w), (2)

Clearly, any potential computed as above must be symmetric
(and, vice versa, any symmetric potential can be represented
in this way).

4.1.2 Neural Net Representations of Potentials

Anonymizations of fragments can also be represented us-
ing binary vectors. All possible ground atoms that we can
construct from the available relations (from RL ) and the
constants from {1,2, . . . , |S |} can be ordered (e.g. lexi-
cographically) and then used to define the binary-vector
representation.

Example 4.2. Let RL = {sm(x), fr(x,y)}. Consider the
fragment γ from Example 4.1. If we order the possi-
ble ground atoms lexicographically as: fr(1,1), fr(1,2),
fr(2,1), fr(2,2), sm(1), sm(2), its two anonymizations can
be represented by the binary vectors (0,1,0,0,1,0) and
(0,0,1,0,0,1).

From now on we will treat anonymizations and their binary-
vector representations interchangeably as long as there is
no risk of confusion. Representing anonymizations as bi-
nary vectors allows us to represent the functions φ ′ above
using standard feedforward neural networks; the parame-
ters w are then the weights of the neural network. These
networks take, as input, a binary-vector representation of
the current anonymization and return a real value as output.
When functions φ ′ are represented as neural networks, Equa-
tion 2 is actually defining a sharing scheme of the weights
for the fragment potential φ . This scheme is imposing, by
construction, an invariance property w.r.t. isomorphisms of
fragments.

Relation to CNNs One can get a nice intuition about the
properties of this class of functions when comparing them
with Convolutional Neural Networks (CNN). While a CNN
computes the same set of features for an input and its spatial
translation (i.e. translation invariance), a symmetric frag-
ment potential computes the same set of features for sym-
metric fragments.



 4.2 GENERAL FRAGMENT POTENTIALS

Now we explain how to represent general non-symmetric
potentials that will allow us to learn vector-space embed-
dings of constants from the domain, which is also a key
feature of many existing transductive models, like NTP
[Rocktäschel and Riedel, 2017]. In what follows We will
denote the embedding parameters and We(c1, . . . ,ck) will
denote the concatentation of the embedding vectors of c1,
. . . , ck.

Consider a potential φ ′(γ;w,We) on fragments over the
language L0 with CL0 = {1,2, . . . ,k} where w and we are
some parameter vectors. As was the case for the symmetric
potentials, using the binary-vector representation of frag-
ments in L0, φ ′ can be represented, for instance, as a feedfor-
ward neural network. We can then write the general potential
function as

φ(γ;w,We) =

∑
π∈AnonF(γ)

φ
′(π(γ);w,We(π

−1(1), . . . ,π−1(k)))

Again it is not difficult to show that any symmetric or non-
symmetric fragment potential function can be represented
in this way. We may notice that when We(c) gives the same
vector for all constants, the potential will also be symmetric,
which is not the case in general. As we show in Section 6.2,
the addition of embedding of constants helps improving the
prediction capability of our model in transductive settings.

5 INFERENCE

We use Gibbs Sampling (GS) for inference in NMLNs.
Gibbs Sampling requires a large number of steps before
converging to the target distribution. However, when we use
it for learning inside SGD to approximate gradients (Ap-
pendix ?? ), we run it only for a limited number of steps
[Hinton, 2002].

Handling Determinism Gibbs sampling cannot effec-
tively handle distributions with determinism. In normal
Markov logic networks, sampling from such distributions
may be tackled by an algorithm called MC-SAT [Poon and
Domingos, 2006]. However, MC-SAT requires an explicit
logical encoding of the deterministic constraints, which is
not available in NMLNs where deterministic constraints are
implicitly encoded by the potential functions.2 Our solution
is to simply avoid learning distributions with determinism by
adding noise during training. We set a parameter πn ∈ [0,1]
and, at the beginning of each training epoch, each ground

2In fact, only constraints that are almost deterministic, i.e.
having very large weights, can occur in NMLNs but, at least for
Gibbs sampling, the effect is the same. Such distributions would
naturally be learned in our framework on most datasets.

atom of the input (training) possible worlds is inverted with
probability πn. This added noise also prevents the model
from perfectly fitting training data, acting as a regularizer
[Bishop, 1995].

5.1 FASTER INFERENCE FOR k ≤ 3

The performance of Gibbs sampling can be improved using
the idea of blocking [Jensen et al., 1995] in combination
with the massive parallelism available through GPUs. We
describe such a method for NMLNs with fragments of size
k ≤ 3. For simplicity we assume that all the relations are
unary or binary (although it is not difficult to generalize the
method to higher arities). The description below applies to
one pass of Gibbs sampling over all possible ground atoms.

Case k = 1: This is the most trivial case. Any two atoms
U(c), U ′(c′) and R(c,c′) are independent when c 6= c′,
where U , U ′ and R are some relations (in fact, all R(c,c′)
where c 6= c′ have probability 0.5 in this case). Hence, we
can run in parallel one GS for each domain element c –
each of these parallel GS runs over the unary atoms of the
form U(c) and reflexive binary atoms R(c,c) for the given
constant c over all relations.

Case k = 2: The sets of unary and reflexive atoms that
were independent for k = 1 are no longer independent.
Therefore we first run GS sequentially for all unary and
reflexive atoms for the k = 2 case. However, conditioned on
these unary and reflexive binary atoms, the atoms in any col-
lection R1(c1,c′1), . . . , Rn(cn,c′n) are independent provided
{ci,c′i} 6= {c j,c′j} for all i 6= j. Therefore we can now create
one GS chain for every 2-fragment and run these GS in
parallel.3 We note that similar ideas were exploited in lifted
sampling algorithms [Venugopal and Gogate, 2012].

Case k = 3: We first sample unary and reflexive atoms
as we did for k = 2. Conditioned on these, the atoms in
any collection R1(c1,c′1), . . . , Rn(cn,c′n) are independent
provided {ci,c′i}∩{c j,c′j}= /0 for all i 6= j (compare this to
k = 2). This gives us a recipe for selecting atoms that can
be sampled in parallel. First, we construct a complete graph
of size n and identify the constants from the domain with its
vertices. We then find an edge-coloring of this graph with
the minimum number of colors. When n is even then n−1
colors are sufficient, when it is odd then we need n colors
(finding the coloring is trivial). We then partition the set of
pairs of constants based on the colors of their respective

3We can further increase scalability of NMLNs for k = 2 for
transductive-learning problems such as knowledge graph comple-
tion by exploiting negative-based sampling. Here, when using GS
to estimate the gradients while training, instead of running it on all
pairs of constants, we use only those pairs for which there are at
least some relations and only a sub-sample of the rest of pairs (and
estimate gradients, accounting for the subsampling rate).



 

Figure 1: Faster Inference: k=3. Partitioning of the atoms
according to a edge-coloring scheme. Nodes represent con-
stants, while edges represent binary atoms. Constants con-
nected by edges of the same colour belongs to independent
fragments, which can be sampled in parallel.

edges. GS can be run in parallel for atoms in the different
2-fragments corresponding to edges that have the same color
(see Figure 1), conditioned on the unary and reflexive binary
atoms. This brings an O(n) speed-up (if the parallel GS
chains fit in the GPU).4

6 EXPERIMENTS

In this section, we report experiments done with NMLNs
on three diverse tasks: on the one hand molecular (graph)
generation and, on the other, knowledge base completion
and triple classification. The aim of these experiments is to
show that NMLNs can be used as an out-of-the-box tool for
statistical relational learning.

We implemented5 neural Markov logic networks in Ten-
sorflow. In Appendix ??, we provide detailed information
about neural network architectures, hyperparameters grids
and selected hyperparameters .

6.1 GRAPH GENERATION

By modeling the joint probability distribution of a relational
structure and by learning the potentials as neural networks,
NMLNs are a valid candidate for generative tasks in non-
euclidean settings, which are receiving an increasing interest
recently [You et al., 2018, Li et al., 2018]. To generate a set
of relational structures, we can just collect samples gener-
ated by Gibbs sampling during training of an NMLN and re-
turn top-n most frequently occurring ones (or, alternatively,

4Another speed-up for transductive problems such as
knowledge-graph completion, where we only care about ranking
individual atoms by their marginal probabilities, can be achieved
as follows. We sample subsets of the domain of size m < n. For
each of the samples we learn an NMLN and predict marginal prob-
abilities of the respective atoms using Gibbs sampling. At the end,
we average the marginal probabilites.

5https://github.com/GiuseppeMarra/nmln/
tree/uai2021
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Figure 2: Molecules generation. A sample of generated
molecules by a NMLN.
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Figure 3: Molecules generation. Comparison of chemical
properties of generated and real molecules.

top n from the last N sampled ones to allow time for NMLNs
to converge). In this section, we describe a molecule genera-
tion task. We used as training data the ChEMBL molecule
database [Gaulton et al., 2016]. We restricted the dataset to
molecules with 8 heavy atoms (with a total of 1073 training
molecules). We used the RDKit framework 6 to get a FOL
representation of the molecules from their SMILES encod-
ing. We show a more detailed description of the training
data and generation setting in Appendix ??.

In Figure 2, we show the set of top-20 sampled molecules.
The first three molecules turn out to be isomers of hexanoic
acid, the fourth is known as 4-hydroxyvaleric acid, the fifth
is the alcohol called heptanol etc.

Furthermore, in Figure 3, we compare the normalized count
of some statistics on the training and generated molecules,
as it has been recently done in Li et al. [2018]. These statis-
tics represent both general structural properties as well as
chemical functional properties of molecules.

In order to measure the generalization and novelty of the
approach, we counted how many of the most frequently
generated molecules are contained in the training set. We
use this knowledge as an indication of the generalization

6https://rdkit.org/
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Figure 4: Molecules generation. Percentage of generated
molecules in the training set when increasing the number of
generated molecules.

capability of the model in terms of the novelty (w.r.t. the
training set) of the generated molecules. The results are
shown in Figure 4. It is shown that 53 out of the 100 most
frequently generated molecules are indeed in the training set,
which is a good sign, because we expect training molecules
to be very likely. However, for larger number of generated
molecules, NMLNs generate lots of new molecules, that
have never been observed during training process.

However, these numbers still do not tell us whether the
novel generated molecules (i.e. the ones not in the trainig
set) are meaningful or not. Since we reject generated chem-
ically invalid molecules during training (since they can be
just checked with an automatic tool like RDkit, we get a
method reminiscent of rejection sampling), all the generated
molecules are chemically valid and thus we check whether
they are known in larger databases than the one we used for
training. We selected 1007 of the novel generated molecules
and we checked in the ChemSpider dataset8 if they are in-
dexed or not. 83 out of 100 molecules are indeed existing
molecules, which are shown in Table ?? of the supplemental
material. We still don’t know if the remaining 17 molecules
are simply not indexed in ChemSpider, are impossible for
more complex chemical reasons (not checkable with RDkit)
or they just represent completely novel molecules. However,
it is rather impressive that most of these generated molecules
actually exist and were not present in the training data.

Comparison with MLN. The strength of NMLN in gener-
ative tasks can be also evaluated when compared with the
same task solved in a symbolic way using Markov Logic
Network. We could expect that in order to encode the dis-
tribution of molecules, a MLN would need a prohibitively
large number of rules. On the contrary, an approximation
of such rules can be represented rather compactly in the
neural potentials of NMLNs. We learned the structure of a

7Chemical databases limit the queries one can do for free.
8http://www.chemspider.com

Figure 5: Molecules generation. A sample of generated
molecules by a standard MLN.

MLN using Alchemy9. The setting of the experiment and
the learned rules are available in Appendix ??. As expected,
MLNs were not able to learn a set of rules capable of cor-
rectly encoding the distribution. In fact, all the sampled
molecules were rejected by RDkit, because they always vio-
late the maximum admissible number of bonds of at least
one atom of the molecule (e.g. a carbon atom with 6 bonds).
We show some of the generated “molecules” in Figure 5. It
is evident how there are too many non-carbon atoms w.r.t.
training molecules. Moreover, the molecules are too densely
connected.

6.2 KNOWLEDGE BASE COMPLETION

In Knowledge Base Completion (KBC), we are provided
with an incomplete KB and asked to complete the missing
part. The KBC task is inherently in the transductive set-
ting and the data are provided in a positive-only fashion:
we cannot distinguish between unknown and false facts.
Kuželka and Davis [2019] studied KBC tasks under the
missing-completely-at-random assumption and showed con-
sistency of learning MLNs by maximum-likelihood where
both missing and false facts are treated in the same way
as false. Their arguments can be modified to give similar
consistency guarantees for NMLNs.

Smokers. The “Smokers” dataset [Richardson and
Domingos, 2006] is a classical example in statistical re-
lational learning literature. Here, two relations are defined
on a set of constants representing people: the unary predicate
smokes identifies those people who smoke, while the binary
predicate friendOf indicates that two people are friends.
This dataset is often used to show how a statistical relational
learning algorithm can model a distribution by finding a
correlation of smoking habits of friends. For example, in
MLNs, one typically uses weighted logical rules such as:
∀x ∀y friendOf(x,y)→ smokes(x)↔ smokes(y). We
trained a NMLN on the small smokers dataset. Since no

9https://alchemy.cs.washington.edu/
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Figure 6: Knowledge Base Completion in the Smokers
dataset. A grey circle means that the predicate smokes is
True and a white one that it is unknown. Links represent the
relation friendOf. The given world is shown in 6a and
the completed one in 6b. The NMLN learnt that friendOf
is symmetric, that a friend of at least two smokers is also a
smoker, and that two smokers, who are friends of the same
person, are also friends.

prior knowledge about the type of rules that are relevant
was used by NMLNs, the model itself had to identify which
statistics are mostly informative of the provided data by
learning the potential functions. We started here with the
Smokers dataset in order to (i) illustrate the Knowledge
Base Completion task and (ii) to provide some basic intu-
itions about what kind of rules the model could have learned.
In Figure 6, we show the KB before and after completion.
In Figure 6b, we highlight only new facts whose marginal
probability after training is significantly higher than the
others.

Nations, Kinship and UMLS We use the Nations, Kin-
ship and Unified Medical Language System (UMLS) KBs
from [Kok and Domingos, 2007]. Nations contains 56 bi-
nary predicates, 14 constants and 2565 true facts, Kinship
contains 26 predicates, 104 constants and 10686 true facts,
and UMLS contains 49 predicates, 135 constants and 6529
true facts. These datasets have been exploited to test KBC
performances in Neural Theorem Provers [Rocktäschel and
Riedel, 2017]. Greedy-NTPs [Minervini et al., 2020a] and
CTP [Minervini et al., 2020b] were recently introduced and
the authors showed that their models were able to outper-
form original NTPs as well as other models proposed in
the literature for tackling KBC tasks. In this section, we
show how we can use NMLNs to tackle a KBC task on the
Nations, Kinship and UMLS datasets.

We followed the evaluation procedure in [Minervini et al.,

Table 1: MRR and HITS@m on Nations, Kinships and
UMLS. K3 and K2E are two variants of neural Markov
logic networks.

Dataset Metric
Model

NTP GNTP CTP K3 K2E

Nations

MRR 0.61 0.65 0.70 0.81 0.78
H@1 0.45 0.49 0.56 0.71 0.66
H@3 0.73 0.78 0.81 0.89 0.86
H@10 0.87 0.98 0.99 0.98 0.99

Kinship

MRR 0.35 0.75 0.76 0.82 0.84
H@1 0.24 0.64 0.64 0.73 0.76
H@3 0.37 0.85 0.85 0.88 0.90
H@10 0.57 0.95 0.95 0.96 0.97

UMLS

MRR 0.80 0.85 0.85 0.50 0.92
H@1 0.70 0.76 0.75 0.39 0.89
H@3 0.88 0.94 0.94 0.54 0.94
H@10 0.95 0.98 0.98 0.71 0.97

2020a]. In particular, we took a test fact and corrupted its
first and second argument in all possible ways such that the
corrupted fact is not in the original KB. Subsequently, we
predicted a ranking of every test fact and its corruptions
to calculate MRR and HITS@m (H@m). The ranking is
based on marginal probabilities estimated by running Gibbs
sampling on the NMLN. We compare the original Neu-
ral Therem Prover (NTP) model [Rocktäschel and Riedel,
2017], Greedy NTP (G-NTP) [Minervini et al., 2020a], CTP
[Minervini et al., 2020b], NMLNs with k = 3 and no em-
beddings (K3) and NMLNs with k = 2 and embeddings of
domain elements (K2E). In Table 1, we report the results
of the KBC task. NMLN K2E outperforms competitors by
a large gap on almost all datasets and metrics. Moreover,
we can make two observations. Embeddings seem to play
a fundamental role in the sparser datasets (i.e. Kinship and
UMLS), where the relational knowledge is limited. How-
ever, both on Nations and Kinship, NMLN-K3 still performs
better than differentiable provers, even if it cannot exploit
embeddings to perform reasoning and it has to rely only on
the relational structure of fragments to make predictions.
This is a clear signal that, in many cases, the relational struc-
ture already contains a lot of information and that NMLNs
are better in modeling and exploiting these relational regu-
larities.

6.3 TRIPLE CLASSIFICATION

In triple classification, one is asked to predict if a given
triple belongs or not to the knowledge base. Even though
there exists an entire class of methods specifically devel-
oped for this task, we wanted to show that our method is
general enough to be also applicable to this large scale prob-
lems. We performed experiments on WordNet [Miller, 1995]



 and FreeBase [Bollacker et al., 2008], which are standard
benchmarks for large knowledge graph reasoning tasks. We
used the splits WN11 and FB13 provided in Socher et al.
[2013]. Interestingly, NMLN with k = 2 achieves an accu-
racy of (74.4,84.7) in WN11 and FB13, respectively. This
compares similarly or favourably w.r.t. standard knowledge
graph embeddings methods, like SE [Bordes et al., 2011]
(53.0,75.2) or TransE [Bordes et al., 2012](75.9,81.5).
However, it is outperformed by newer methods, like TransD
[Ji et al., 2015] (86.4,89.1) and DistMult-HRS [Zhang et al.,
2018] (88.9,89.0). This is likely due to the fact that these
two datasets are extremely sparse and very few pairs of con-
stants are related by more that one relation. Unlike knowl-
edge graph embedding methods, which are tuned for the
specific task of predicting head or tail entity of a triple, our
model is general and learns a joint probability distribution.
The fact that it can still perform similarly to state-of-the-art
methods on this specialized task is in fact rather surprising.

7 RELATED WORK

NMLNs as SRL NMLNs are an SRL framework inspired
by Markov Logic Networks [Richardson and Domingos,
2006]. From certain perspective, NMLNs can be seen as
MLNs in which first-order logic rules are replaced by neural
networks (for an explicit mapping from MLNs to NMLNs,
refer to Appendix ??). While this may seem as a rather
small modification, the gradient based learning of NMLNs’
potentials allows more efficient learning than the usual com-
binatorial structure-learning.

An alternative approach to improve performance of structure
learning in MLNs is represented by the gradient boosted
MLNs [Khot et al., 2015]. However, as also noted in [Khot
et al., 2015], the boosting approach has not been extended
to the generative learning setting where one optimizes like-
lihood rather than pseudo-likelihood. In contrast, NMLNs
are generative and trained by optimizing likelihood. Finally,
unlike NMLNs, standard MLNs do not support embeddings
of domain elements.

NMLNs as NeSy NMLNs integrate logical representa-
tions with neural computation, which is the domain of in-
terest of Neural Symbolic Artificial Intelligence – NeSy
[Besold et al., 2017, De Raedt et al., 2020]. Lippi and Fras-
coni [2009] was an early attempt to integrate MLNs with
neural components. Here, an MLN was exploited to de-
scribe a conditional distribution over ground atoms, given
some features of the constants. In particular, the MLN was
reparametrized by a neural network evaluated on input fea-
tures. A similar approach is the one in Marra et al. [2019],
where a continuous relaxation of the logical potentials al-
lows for a faster inference in specific tasks. A related ap-
proach in the domain of logic programming is provided
in Manhaeve et al. [2018], where the probabilistic logic

programming language ProbLog [De Raedt et al., 2007] is
extended to allow probabilities of atoms to be predicted by
neural networks and to exploit differentiable algebraic gen-
eralizations of decision diagrams to train these networks. A
common pattern in these approaches is that neural networks
are "simply" exploited to parameterize a known relational
model. Compared to NMLN, they still rely on combina-
torial structure learning (or rules hand-crafted by experts).
Recently, there has been a renaissance of ILP methods in
which neural computing is used to improve the search pro-
cess [Ellis et al., 2018, Rocktäschel and Riedel, 2017, Min-
ervini et al., 2020a, Sourek et al., 2018]. These typically
use templates or program sketches to reduce the size of the
search space and gradient based methods to guide the search
process. Unlike NMLN, none of these systems can model
joint probability distributions over relational structures.

NMLNs as KGE NMLNs are also related to the many
different knowledge graph embedding methods [Wang et al.,
2017] as they can also exploit embeddings of domain ele-
ments and (implicitly) also relations. NMLNs and KGEs
are most similar when k = 2 and there are no unary and re-
flexive binary atoms. In this case, the NMLN still explicitly
models the probabilistic relationship between different rela-
tions on the same pairs of constants, which KGE methods
do not capture explicitly. Moreover, KGE methods cannot
model unary relations (i.e. attributes) of the entities. Some-
what surprisingly, as noted by Kazemi and Poole [2018],
this problem is less well understood than link-prediction
in KGEs. Furthermore, NMLNs can naturally incorporate
both models of attributes and links, as demonstrated, e.g.,
on the small Smokers dataset and in the molecular gener-
ation experiment. Moreover, if we properly fix the neural
architecture of NMLNs, many existing KGE methods can
be explicitly modelled as NMLNs. So NMLNs are more
flexible and can solve tasks that KGE methods cannot. On
the other hand, KGEs are very fast and optimized for the KG
completion tasks, as we also observed in our experiments
(cf Section 6.3).

8 CONCLUSIONS

We have introduced neural Markov logic networks, a sta-
tistical relational learning model combining representation
learning power of neural networks with principled handling
of uncertainty in the maximum-entropy framework. The
proposed model works remarkably well both in small and
large domains despite the fact that it actually solves a much
harder problem (modelling joint probability distributions)
than specialized models such as various knowledge graph
embedding methods.
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