
 
Time-Variant Variational Transfer for Value Functions

Giuseppe Canonaco *1 Andrea Soprani *1 Matteo Giuliani1 Andrea Castelletti1 Manuel Roveri1

Marcello Restelli1

1Department of Electronics Information and Bioengineering, Politecnico di Milano, Milan, Italy

Abstract

In most of the transfer learning approaches to rein-
forcement learning (RL) the distribution over the
tasks is assumed to be stationary. Therefore, the tar-
get and source tasks are i.i.d. samples of the same
distribution. Unfortunately, this assumption rarely
holds in real-world conditions, e.g., due to season-
ality or periodicity, evolution in the environment
or faults in the sensors/actuators. In the context of
this work, we consider the problem of transferring
value functions through a variational method when
the distribution that generates the tasks is time-
variant, proposing a solution that leverages this
temporal structure inherent in the task generating
process. Furthermore, by means of a finite-sample
analysis, the previously mentioned solution is theo-
retically compared to its time-invariant version. Fi-
nally, the experimental evaluation of the proposed
technique is carried out on the lake Como water
system representing a real-world scenario and on
three different RL environments with three distinct
temporal dynamics.

1 INTRODUCTION

Reinforcement Learning (RL) literature [Sutton and Barto,
2011] usually assumes the task assigned to the agent to
be stationary. This assumption is not likely to hold in real-
world applications, where the system to be controlled may
be subject to different variations over time. For instance,
in the context of finance, applying RL under the assump-
tion of stationary markets would impair the performance
of our agent in the long run due to seasonality or market
evolution usually intrinsic to this kind of scenario. Similarly,
while controlling a water reservoir system, the agent must
be able to take into account shifts to the system’s dynamics
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induced through the decades by climate change [Giuliani
et al., 2016]. Finally, also in the context of robotic systems,
stationarity assumptions could impair the attainable perfor-
mances because the agent is not prepared to deal with faults
affecting sensors or actuators.

Being able to relax the stationarity assumption would highly
increase the applicability of RL in real-world scenarios. For
this reason, the research has recently increased its interest in
the direction of RL for non-stationary environments. Chan-
dak et al. [2020] propose a policy gradient algorithm which
strives to optimize the future performance of the policy
assuming that smooth changes in the environment imply
smooth changes in a given policy performance. Cheung et al.
[2020], instead, devise a sliding window approach to RL in
non-stationary Markov Decision Processes (MDPs) [Puter-
man, 2014] together with a bandit over RL framework to
remove the dependency of their algorithm on the variation
budget. Domingues et al. [2020] propose an algorithm where
time-dependent kernels are leveraged in order to recover a
regret upper bound for continuous non-stationary environ-
ments. Finally, Canonaco et al. [2020] use an active-adaptive
scheme to deal with non-stationary environments.

In addition to the stationarity assumption, RL algorithms
require a huge amount of experience to achieve effective
results [Vinyals et al., 2019, Silver et al., 2018, OpenAI
et al., 2019], hence, in most cases, it is impractical to di-
rectly apply an RL algorithm onto a real system because
the experience collection would be incredibly slow. This
translates into the need for sample efficient RL algorithms,
which could be built, among all other alternatives, through
Transfer Learning (TL) [Taylor and Stone, 2009, Lazaric,
2012]. In a nutshell, TL enables an RL algorithm to reuse
knowledge coming from a set of already solved tasks in
order to speed up the learning phase on related new ones.

Depending on what kind of knowledge representation is
being transferred, we have different TL algorithms in the
related literature. Therefore, in order to perform the transfer,
we may have algorithms leveraging policies or options [Fer-
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 nández and Veloso, 2006, Konidaris and Barto, 2007], sam-
ples [Taylor et al., 2008, Lazaric et al., 2008, Tirinzoni
et al., 2018b, 2019], features [Barreto et al., 2017, Lehnert
and Littman, 2018], value-functions [Taylor et al., 2007,
Tirinzoni et al., 2018a] or parameters [Killian et al., 2017,
Nagabandi et al., 2018, Du and Narasimhan, 2019]. In the
classical TL setting, the source and target tasks usually
come from the same distribution, hence the Bayesian frame-
work particularly fits because we can iteratively refine the
prior knowledge coming from the source tasks as more evi-
dence from the target is collected. Following this rationale,
in Wilson et al. [2007], under the assumption that the tasks
share similarities in their MDP representation, a hierarchical
Bayesian solution is proposed, whose main drawback lies
in the need to solve an auxiliary MDP in order to perform
actions on the task currently faced. Another methodology,
along this line of research, has been developed in Lazaric
and Ghavamzadeh [2010], which still leverages hierarchical
Bayesian models, but this time assuming the tasks share
commonalities through their value functions. Furthermore,
in Doshi-Velez and Konidaris [2016], a Bayesian frame-
work able to adapt optimal policies to variations of the task
dynamics is developed. They use a latent variable, which,
together with the state-action couple, entirely describes the
system dynamics. The uncertainty over the latent variable
is modeled independently of the uncertainty over the state.
This limitation is overcome in the extension to their frame-
work proposed in Killian et al. [2017]. In Perez et al. [2020]
another extension to Doshi-Velez and Konidaris [2016] is
proposed, which accounts for multiple variation factors that
potentially also come from the reward function. A more gen-
eral and efficient approach is instead developed in Tirinzoni
et al. [2018a], which iteratively refines the distribution over
optimal value functions by means of a variational procedure
as more experience from the target task is collected.

Applying RL techniques in a scenario where sample effi-
ciency is of paramount importance and the available his-
torical knowledge has an intrinsic time-variant nature is
incredibly challenging. Therefore, inspired by the work of
Tirinzoni et al. [2018a], we will propose, for the first time
in literature, a TL algorithm for RL able to model time
variations in the distribution inherent to the task generating
process. In addition, we will provide a theoretical compari-
son between our solution and the time-invariant approach
of Tirinzoni et al. [2018a] promising a performance improve-
ment in our favor. Finally, we will provide an experimental
comparison of the two approaches in three different RL en-
vironments with three distinct temporal dynamics and in a
real-world scenario represented by a water reservoir system.

2 PRELIMINARIES

In this section, we extend the setting introduced in Tirinzoni
et al. [2018a] by adding a time-variant distribution over the

tasks. We introduce basic RL concepts and some notation
in Section 2.1, and we describe the variational approach to
transfer in Section 2.2.

2.1 REINFORCEMENT LEARNING
BACKGROUND

Let us consider a time-variant distribution Dt over tasks.
We model each taskMt coming from Dt as a discounted
MDP [Puterman, 2014], which is defined as a tupleMt =
{S,A,Pt,Rt, p0, γ}, where S and A represent the state
space and the action space, respectively, Pt is the Marko-
vian transition function with Pt(s′|s, a) being the transi-
tion density from state s to state s′ given that the action
a is executed on the environment. The reward function is
defined as Rt : S × A → R, assumed to be uniformly
bounded by a constant Rmax > 0. Finally, p0 and γ ∈ [0, 1)
are the initial state distribution and the discount factor, re-
spectively. Therefore, for each task t our goal is to find a
deterministic policy, πt : S → A, maximizing the long-
term return over a possibly infinite horizon. In other words,
this means being able to get π∗t ∈ arg maxπ Jt(π), where
Jt(π) = EMt,π[

∑∞
h=0 γ

hRt(sh, ah)]. The optimal policy
π∗t is a greedy policy w.r.t. the optimal value function, i.e.,
π∗t (s) = arg maxaQ

∗
t (s, a) for all s, where Q∗t (s, a) is

defined as the expected return obtained by taking action a
in state s and then following the optimal policy afterward.
From now on, for the sake of readability, we will drop t
whenever this does not imply ambiguity.

In this context, we focus on a set of parametrized value
functions, Q = {Qθ : S × A → R|θ ∈ Rp}, also
called Q-functions. We assume that each Qθ ∈ Q is uni-
formly bounded by Rmax

1−γ . An optimal Q-function is also
the fixed point of the optimal Bellman operator [Puter-
man, 2014], which is defined as follows: TQθ(s, a) =
R(s, a) + γEs′∼P [maxa′ Qθ(s

′, a′)]. Therefore, a measure
of optimality for a value function during learning is its
Bellman error, defined as Bθ = TQθ − Qθ. Of course,
if Bθ(s, a) = 0 ∀(s, a) ∈ S × A, then Qθ is optimal,
which implies that minimizing the squared Bellman error,
||Bθ||2ν , is a good objective for learning (where ν is the dis-
tribution over S × A, assumed to exist). In practice, the
Bellman error is not used, since it requires two independent
samples of the next state s′ for each couple (s, a) [Mail-
lard et al., 2010, Sutton and Barto, 2011]. For this reason,
usually, the Bellman error is replaced by the Temporal Dif-
ference (TD) error b(θ), which corresponds to an approxima-
tion of the former using one sample 〈sh, ah, rh, sh+1〉, so
bh(θ) = rh + γmaxa′ Qθ(sh+1, a

′) − Qθ(sh, ah). There-
fore, given a set D = 〈sh, ah, rh, sh+1〉Nh=1, the squared
TD error on D is ||Bθ||2D = 1

N

∑N
h=1 bh(θ)2 (with a little

abuse of notation w.r.t. the definition of the Bellman error).



 2.2 VARIATIONAL TRANSFER OF VALUE
FUNCTIONS

In the context described above, an optimal solution to an RL
problem is a greedy policy w.r.t. an optimal value function
that is parameterized by a vector of weights θ. Therefore,
we can safely consider a distribution over optimal weights
p(θ) instead of the distribution D over tasks since the latter
induces a distribution over optimal Q-functions [Tirinzoni
et al., 2018a]. Now, given a prior on the weights p(θ) and a
dataset D = 〈sh, ah, rh, sh+1〉Nh=1, the optimal Gibbs pos-
terior that minimizes an oracle upper bound on the expected
loss is defined as [Catoni, 2007]:

q(θ) =
e−Ψ||Bθ||2Dp(θ)∫
e−Ψ||Bθ′ ||2Dp(θ′)dθ′

, (1)

where Ψ > 0, which will be set to ψ−1N , for some constant
ψ > 0 as in Tirinzoni et al. [2018a]. It is worth noting that
q becomes a Bayesian posterior every time e−Ψ||Bθ||2D can
be interpreted as the likelihood of D. Since the integral at
the denominator of Equation (1) is intractable, a variational
approximation through a parametrized family of posteriors
qξ, such that ξ ∈ Ξ, is proposed. In this way, it is sufficient
to find ξ∗ such that qξ∗ minimizes the Kullback-Leibler (KL)
divergence w.r.t. the Gibbs posterior q, which is equivalent
to minimizing the (negative) evidence lower bound (ELBO)
defined as [Blei et al., 2017]:

min
ξ∈Ξ
L(ξ) = min

ξ∈Ξ

{
Eθ∼qξ

[
||Bθ||2D

]
+

ψ

N
DKL(qξ(θ)||p(θ))

}
. (2)

Therefore, the idea behind the variational transfer of value
functions (as shown in Algorithm 1) is to alternate a sam-
pling from the posterior on the optimal value function with
the optimization of the posterior via ∇ξL(ξ), assuming
to have already solved a finite number of source tasks
M1 . . .Mn, which, in turn, implies having the set of their
approximate solutions Θs = {θ1, . . . , θn}.1 The weight re-
sampling in line 8 can be interpreted as a guess on the task
that we need to solve based on the current belief. After sam-
pling, the algorithm acts on the RL problem as if such guess
was correct (line 9) and then will adjust the belief based on
the new experience through the optimization of the varia-
tional parameters ξ (lines 12 and 13). Notice that, as long
as∇ξL(ξ) can be efficiently computed, any approximator
for the Q-functions and any prior/posterior distributions can
be used. To this end, since the max operator in the temporal
difference error of Equation (2) is not differentiable, the
mellowmax is used instead, which is differentiable and was
proven to converge to the same fixed point of the optimal

1Notice that, in the context of this work, M1 . . .Mn are sam-
ples coming from a time-variant distribution, hence independent
but not identically distributed.

Bellman operator in Tirinzoni et al. [2018a]. From now on,
we will denote the mellow Bellman error by B̃θ.

Algorithm 1 Variational Transfer

1: Input: Target taskMt, source weights Θs

2: Estimate prior p(θ) from Θs

3: Initialize parameters: ξ ← arg minξ∈ΞDKL(qξ||p)
4: Initialize dataset D = ∅
5: while True do
6: Sample initial state s0 ∼ p0

7: while sh is not terminal do
8: Sample weights θ ∼ qξ(θ)
9: Take action ah = arg maxaQθ(sh, a)

10: sh+1 ∼ Pt(·|sh, ah), rh+1 = Rt(sh, ah)
11: D ← D ∪ 〈sh, ah, rh+1, sh+1〉
12: Estimate∇ξL(ξ) using D′ ⊆ D
13: Update ξ with ∇ξL(ξ) using any optimizer (e.g.,

Kingma and Ba [2014])
14: end while
15: end while

3 TIME-VARIANT KERNEL DENSITY
ESTIMATION FOR VARIATIONAL
TRANSFER

In the context of this work, we will model the evolution
of time over a discrete grid of asymptotically dense time
instants. Let {θij}Mi

j=1 be a set of independent solutions for
the ith family of tasks, observed at time ti = i

n , 1 ≤ i ≤ n,
with θij ∈ Rp and θij ∼ P (·, ti). Notice that, for the sake
of generality, at time ti, we allow to tackle Mi times the ith

family of tasks represented by the distribution P (·, ti) with
associated probability density function p(θ, ti). Furthemore,
let Mi be a discrete random variable for each i. Finally,
let us introduce a Time-Variant Kernel Density Estimator
defined as follows:

p̂(θ, t) =
1

a0(−ρ)N̄λ|H| 12

n∑
i=1

KT

(
t− ti
λ

)
Mi∑
j=1

KS(H−
1
2 (θ − θij)),

(3)

which is based on Hall et al. [2006] and will be used as
a prior to model a time-variant distribution on the solved
tasks. The factor a0(−ρ) =

∫ 1

−ρKT (t)dt is used to recover
consistency at the boundaries [Jones, 1993], therefore also
in t = 1, which represents the time instant that will be used
in Algorithm 1 to produce a prior for the current family
of tasks. KT is the temporal kernel, whereas KS is the
multivariate non-negative spatial kernel. Furthermore, H
is the spatial kernel bandwidth matrix, λ ∈ [0, 1] is the
temporal kernel bandwidth, and N̄ =

∑n
i=1Mi.

Given the following assumptions, also stated in Hall et al.
[2006]:



 Assumption 3.1 (Task independence). For 1 ≤ i 6= i′ ≤
n,1 ≤ j ≤ Mi, and 1 ≤ j′ ≤ Mi′ , θij and θi′j′ are
independent;

Assumption 3.2 (Differentiable density function). p(θ, t) :
Rp × (0, 1]→ R is twice differentiable for every t, θ;

Assumption 3.3 (Bounded derivatives). p(θ, t) : Rp ×
(0, 1]→ R has two bounded derivatives;

Assumption 3.4 (On the spatial kernel). Let α =
(α1, . . . , αp) be a multi-index, with αi ≥ 0 for i = 1, . . . , p,
θα =

∏p
i=1 θ

αi
i for each θ ∈ Rp, and N0 is an index set

where all p components of each member are either 0 or even
integers.∫

Rp
KS(θ)dθ = 1, lim

||θ||→∞
||θ||pKS(θ) = 0,∫

Rp
θαKS(θ)dθ = µα ≤ ∞, α ∈ N0,∫

Rp
θαKS(θ)dθ = 0, α /∈ N0;

Assumption 3.5 (On the temporal kernel).∫ c

−c
KT (t)dt = 1,

∫ c

−c
tKT (t)dt = 0,∫ c

−c
t2KT (t)dt = σT ≤ ∞;

the following theorem holds:

Theorem 3.6 (Uniform consistency of the density estimator).
Assume 3.1 - 3.5. Moreover, assume that KS is spherically
symmetric, with a bounded, Hölder-continuous derivative,
that KT is a compactly supported kernel on a subset of R,
that all the Mis are independent and identically distributed
random variables with mean m > 0 and all moments finite,
independent of the θijs. TakeH and λ such that |H| 12 (n)→
0, λ(n) → 0 and n1−ε|H| 12λ → ∞ for some ε > 0 as
n→∞, then

p̂(θ, t) = p(θ, t)+

O
[
(N̄ |H| 12λ)−

1
2 (log n)

1
2 + tr(H) + λ

]
uniformly in (θ, t) ∈ K × I, with probability 1, where K is
a compact subset of Rp and I is a compact subset of (0, 1].

A proof of the above theorem is shown in Appendix A and
leverages the same approach as in Hall et al. [2006] being a
weaker version, in terms of convergence rate, of their The-
orem 1. This weakening was necessary to obtain an upper
bound in closed-form expression of the KL-divergence be-
tween the prior and the posterior in Equation (2). 2 Indeed,

2This upper bound cannot be obtained by directly using the
estimator proposed in Hall et al. [2006] because of the negative
weights associated with the spatial kernel.

if we choose qξ(θ) = 1
K

∑K
k=1N (θ|µk,Σk), with varia-

tional parameter ξ = (µ1, . . . , µK ,Σ1, . . . ,ΣK), and we
choose KS as a Gaussian kernel, then for a fixed time in-
stant t our prior is a mixture of Gaussians with non-uniform
weights. Therefore, through the upper bound on the KL-
divergence shown in Appendix B which leverages Hershey
and Olsen [2007], we have that the ELBO upper bounds the
KL-divergence between the approximate and the exact pos-
terior. Since the covariance matrices of the posterior must be
positive definite, we will learn the factor L of their Cholesky
decomposition as in Tirinzoni et al. [2018a].

Let us comment on the previous assumptions and their limit-
ing effects on applications. For what concerns Assumptions
3.4 and 3.5, they do not pose any limit, since, as we know
from kernel density estimation theory [Wand and Jones,
1994], the kernel type is not relevant for a good estimate of
the density. Assumptions 3.2 and 3.3, instead, are necessary
to have some regularity allowing the time-variant distribu-
tion to be learned (without those assumptions the kernel
density estimator would not be consistent). The range of
time-variant distributions where our approach will be theo-
retically effective is reduced due to Assumptions 3.2 and 3.3,
but remains still relevant from an application perspective
since it allows to solve real problems such as controlling the
lake Como water system as shown in Section 6.6.

4 FINITE-SAMPLE ANALYSIS

In order to provide a finite sample analysis of Algorithm 1
based on the prior of Section 3, we extend Theorem 2 of Tir-
inzoni et al. [2018a] to deal with time-variant contexts, en-
abling also a theoretical comparison between the two re-
spective versions of Algorithm 1. Therefore, considering the
family of linearly parametrized value functions, Qθ(s, a) =
θTφ(s, a), having bounded weights ||θ||2 ≤ θmax and uni-
formly bounded features ||φ(s, a)||2 ≤ φmax, and assuming
that only finite data are available, we can bound the expected
mellow Bellman error under the variational distribution min-
imizing Equation (2) for any fixed target taskMt through
the following theorem.

Theorem 4.1 (Bound on the expected mellow Bellman
error). Let ξ̂ be the variational parameter minimizing
Equation (2) on a dataset D of N i.i.d. samples dis-
tributed according to Mt and ν. Moreover, let θ∗ =
arg infθ ||B̃θ||2ν and define v(θ∗) = EN (θ∗, 1

N I)
[v(θ)],

with v(θ) = Eν [VarPt [b̃(θ)]], where b̃(θ) = r +
γmellow-maxa′Qθ(s′, a′) − Qθ(s, a). Then, there exist
constants c1, c2, c3 such that with probability at least 1− δ
over the choice of D:

Eqξ̂

[∣∣∣∣∣∣B̃θ∣∣∣∣∣∣2
ν

]
≤2
∣∣∣∣∣∣B̃θ∗ ∣∣∣∣∣∣2

ν
+ v(θ∗) + c1

√
log 2

δ

N
+

c2 + ψp logN + ψϕ(Θs)

N
+

c3
N2

,



 where

ϕ(Θs) =
1

σ2

∑
j:θj∈Θs

ζ(j) with (4)

ζ(j) =
cp̂je
−β||θ∗−θj ||∑

j′:θj′∈Θs
cp̂j′e
−β||θ∗−θj′ ||

||θ∗ − θj ||,

assuming the matrix H of Equation (3) to be an isotropic
covariance matrix with variance σ2, β = 1

2σ2 and cp̂j the
weight assigned to the jth prior component. Furthermore,
we are assuming Mi = 1 for each i in our estimator.

The above theorem shows the difference between the plain
mixture version of Algorithm 1 [Tirinzoni et al., 2018a]
and our solution which lies in the constant c2 and in the
term ϕ(Θs). Looking at ϕ(Θs), we can shed some light
on the different theoretical properties of the two versions.
More specifically, in the plain mixture version, the factor
cp̂j does not appear, which implies uniform importance of
the source solutions Θs w.r.t. the target task. On the other
hand, in our version of the algorithm, we can give different
importance to each source solution through cp̂j . Increasing
the weight of sources similar to the target will reduce ϕ(Θs).
In our time-variant scenario, this weight will be greater on
more recent solutions than older ones, potentially enabling a
reduction of the term ϕ(Θs) w.r.t. the time-invariant version.
For what concern c2, the main difference is due to a different
expression of the KL-divergence upper bound, and the usage
of non-uniform weights. A proof for the above theorem
together with the definition of all the constants is provided
in Appendix C.

5 RELATED WORKS

Our work is inspired by Tirinzoni et al. [2018a]. Differ-
ently from them, we leverage a time-variant structure un-
derlying the task generating process, which lets us cope
with time-variant scenarios. A theoretical comparison be-
tween the two solutions is available in Section 4 through
Theorem 4.1, whereas the experimental comparison is in
Section 6. Furthermore, our work relates both to Wilson
et al. [2007], which deals with finite MDPs, and to Lazaric
and Ghavamzadeh [2010], which leverages the commonal-
ities in the value function structure, but, in contrast to our
work, they do not account for a time-variant distribution.
The work done in Doshi-Velez and Konidaris [2016], Killian
et al. [2017], Perez et al. [2020] leverage latent embeddings
in order to model variations between tasks, which eventually
are solved through a model-based RL algorithm, while we
propose a model-free approach.

Another related work is Hall and Willett [2015], in which
the authors develop a theoretical low-regret algorithm ac-
counting for potential underlying dynamics. However, they

use the online learning framework, whereas we are work-
ing in a transfer learning setting. Furthermore, in Du and
Narasimhan [2019], videos are used to learn a prior (mainly
to model the physical dynamics) which is incorporated into
a model-based RL algorithm. In Yang et al. [2020], a single-
episode policy-transfer methodology was developed lever-
aging variational inference, but for contexts in which the
differences in dynamics can be identified in the early steps
of an episode. In the context of supervised learning, our
work relates also to Minku and Yao [2014], which proposes
a transfer learning mechanism in the context of a possibly
non-stationary environment through a weighting approach,
and Du et al. [2019], which, instead, do transfer in non-
stationary environments through ensembles. Finally, in the
meta-learning framework, Khodak et al. [2019] is able to
consider optimal initializations varying through time, Men-
donca et al. [2020] provide robustness to distributional shifts
during meta-testing through an experience relabeling mech-
anism, and Fu et al. [2020] develop a Context-based Meta-
RL algorithm which leverages contrastive learning and an
information-gain-based exploration strategy showing good
performances in out-of-distribution tasks. These last three
approaches are meta-learning based, while our work consid-
ers a transfer learning setting.

6 EXPERIMENTS

In this section, we compare our time-variant solution for
transfer learning with the associated non-time-variant solu-
tion of Tirinzoni et al. [2018a] in three different domains
with three different temporal dynamics and a real-world sce-
nario.3 The first three domains were chosen from Tirinzoni
et al. [2018a] (adding the temporal dynamics) in order to en-
able a faithful comparison. The real-world problem consists
in controlling a water reservoir system, where the temporal
dynamic is due to the climate change across the decades. A
detailed description of the used parameters together with the
analytical expression of the employed temporal dynamics
are provided in Appendix D.

6.1 TEMPORAL DYNAMICS

The distribution over the tasks is usually a given distribution
over one or more parameters defining the task itself. There-
fore, in order to obtain time variance in such distribution,
we will change its mean over time according to a certain
dynamic. These dynamics are linear, polynomial, and sinu-
soidal. In the context of these experiments, we will use a
time-variant Gaussian distribution, clipping its realizations
within the domain of the task-defining parameters (for fur-
ther details see Appendix D). Instead, in the water reservoir
system, the temporal dynamic is inherent to the data and, as
already mentioned, due to climate change.

3Code at https://github.com/AndreaSoprani/T2VT-RL.

https://github.com/AndreaSoprani/T2VT-RL
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(a) 2-rooms polynomial dynamic.
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(b) 2-rooms linear dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) 2-rooms sin dynamic.

Figure 1: Average return achived by the algorithms with 95% confidence intervals computed using 50 independent runs.

6.2 TWO-ROOMS ENVIRONMENT

In this setting, we have an agent navigating two rooms
separated by a wall (see Figure 2). The agent starts from
the bottom-left corner and must reach the opposite one. The
only way to reach this goal is to pass through the door whose
position is unknown to the agent. The actions available to
the agent are up, down, left, and right, which let the agent
to move in the respective directions by one position, unless
he/she hits a wall (in this last case the position remains
unchanged). Furthermore, the final position of the agent
after a movement action is altered by a Gaussian noise
N (0, 0.2). The state space is modeled through a 10 × 10
continuous grid. Finally, the reward function is 0 everywhere
except in the goal state, where it is 1. The discount factor
γ = 0.99. For this setting, we used linearly parametrized
Q-functions with 121 evenly-spaced radial basis features.

Start

Goal

Figure 2: 2-Rooms Environment.

We considered source tasks taken at ten different time in-
stants to learn the target, corresponding to the eleventh in-
stant of time. We sampled five tasks from the time-variant
distribution for each i = 1, . . . , 11. The parameter that de-
fines the task is the door location, hence the time-variant
distribution is over that parameter, as we mentioned above.
We solve all the source tasks by directly minimizing the
TD error, then we exploit the learned solutions to perform
the transfer over the target. We compare our time-variant
variational transfer algorithm leveraging a c-components

posterior (c-T2VT) with the mixture of Gaussian variational
transfer using still c-components (c-MGVT) [Tirinzoni et al.,
2018a]. More specifically, our time-variant prior will con-
sider the source task solutions as equally spaced samples
in the time interval [0, 1], moreover, in order to perform
transfer to the eleventh task, we will use the distribution
provided by our estimator for t = 1. Finally, the temporal
kernel will be Epanechnikov [Epanechnikov, 1969, Wand
and Jones, 1994] in the context of all the experiments.

The average return over the last 50 learning episodes as a
function of the number of training iterations is shown in
Figure 1, for the time dynamics mentioned in Section 6.1.
Each learning curve is computed using 50 independent runs,
each of which resamples both the source and target tasks,
with 95% confidence intervals. For polynomial and linear
dynamics, we can see an advantage of our technique in
the early learning iterations. The sinusoidal dynamic is de-
signed to disadvantage our technique w.r.t. c-MGVT, indeed,
it makes the target task appear twice in the sources. This fact
inevitably favors c-MGVT, which will give a higher weight
to those source tasks being sampled from the same distri-
bution of the target. Observe that c-MGVT gives uniform
weights to all the source tasks, hence increasing the repli-
cas importance within the sources, whereas c-T2VT gives
increasing weights the more recent the source solution.

6.3 THREE-ROOMS ENVIRONMENT

This scenario is an extension of the previous one, hence the
environmental settings remain the same, the agent has just
an additional wall to traverse in order to reach his/her goal.
Of course, the position of the door for this additional wall is
still unknown to the agent. To increase the complexity of the
dynamics, we let the two doors move in opposite directions
starting at the two far ends of the room, each door with
the same dynamic. In Figure 3, we compare c-T2VT with
c-MGVT using still 95% confidence intervals. As for the
polynomial dynamics, we observe a better performance of c-
T2VT w.r.t. c-MGVT, whereas, for the sinusoidal dynamics,
we have essentially the same behavior as in the two rooms
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(a) 3-rooms polynomial dynamic.
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(b) 3-rooms linear dynamic.
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(c) 3-rooms sin dynamic.

Figure 3: Average return achived by the algorithms with 95% confidence intervals computed using 50 independent runs.

environment. Finally, in the linear dynamics, we observe that
the difference in performance between the two algorithms
is not statistically significant.

6.4 MOUNTAIN CAR

In this section, we consider a classic control problem known
as Mountain Car [Sutton and Barto, 2011]. In Mountain Car,
the agent is an underpowered car whose goal is to escape
a valley. Due to the limitation to its engine, the car has to
drive up along the two slopes of the valley in order to gain
sufficient momentum to overcome gravity (further details
in Appendix D.4). In Figure 4, we have a comparison be-
tween c-T2VT and c-MGVT on the three proposed dynam-
ics. We observe a statistically significant improvement in
the polynomial dynamics across the whole learning process
for c-T2VT, which also extends to the sinusoidal dynamic
case. We would like to highlight the differences between the
sinusoidal dynamic in Mountain Car w.r.t. the previous two
environments. Here our algorithm is able to perform better
due to a bias-variance trade-off in its favor. More specifi-
cally, the value functions vary more rapidly in Mountain
Car than in the room environments w.r.t. a change in the
task-defining parameters. Therefore, our prior estimator has
less variance, since it considers only the latest sources, at
the cost of a bias increase, because it discards the first task,
which has the same parametrization as the target (due to
the periodicity of the sin function). c-MGVT considers all
the source tasks with the same weight, hence it is able to
consider the tasks that have an equivalent parametrization to
the target, but are farther behind in the sources’ history. This
fact decreases the bias at the cost of accepting a greater vari-
ance in the prior estimation. In Mountain Car, the trade-off
proposed by our algorithm is more advantageous than the
one proposed by c-MGVT due to the more rapidly changing
behavior of the value functions. As for the linear dynamics,
we do not observe a statistically significant difference in
performance between the two algorithms, even though the
average of 1-T2VT is the best one.

6.5 CHOOSING λ THROUGH
MAXIMUM-LIKELIHOOD

Up to now, we have kept λ and H at given constant values
in order to provide a more faithful comparison between c-
T2VT and c-MGVT (H was the same in the two algorithms
whereas λ was set to 0.3333 leveraging the intuition that
the more recent tasks were more important than the older
ones). Of course, from the theory of Kernel Density Estima-
tion [Wand and Jones, 1994], we know that appropriately
setting these parameters is crucial to get a good estimate of
the density. Therefore, an automatic data-driven approach
would be desirable. In the context of this work, we propose
a maximum likelihood scheme (assuming Mi = 1 ∀ i):

arg max
λ

Lλ =

n∏
h=1

p̂−h(θh, th)

p̂−h(th)
, where (5)

p̂−h(θh, th) =
1

a0(−ρ)(N̄ − 1)λ|H| 12∑
i 6=h

KT

(
th − ti
λ

)
KS(H−

1
2 (θh − θi))

p̂−h(th) =

∫
p̂−h(θh, th)dθh

=
1

a0(−ρ)(N̄ − 1)λ

∑
i6=h

KT

(
th − ti
λ

)
.

In Appendix D.3, we report the performance achievable
with this approach together with a sensitivity analysis w.r.t.
the parameter λ for every environment discussed so far.
Furthermore, still in Appendix D.3, we include some im-
plementation details related to the optimization of the like-
lihood function in Equation (5). Note that, in accordance
with what has been done in Tirinzoni et al. [2018a], the
spatial bandwidth is set to 10−5I which would prevent us
from successfully optimizing Equation (5) due to numerical
issues, hence we set it to I in order to select the best lambda.
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(a) Mountain Car polynomial dynamic.
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(b) Mountain Car linear dynamic.
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(c) Mountain Car sin dynamic.

Figure 4: Average return achived by the algorithms with 95% confidence intervals computed using 50 independent runs.
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Figure 5: Average return achived by the algorithms with
95% confidence intervals computed using 100 independent
runs on the lake Como environment.

6.6 REAL-WORLD SCENARIO: CONTROLLING
THE LAKE COMO WATER SYSTEM

Lake Como is the third largest lake in Italy thanks to its
surface area of 146 km2 and the fifth deepest in Europe
with its maximum depth at 425 meters. It is a lake of glacial
origin which has been regulated since 1946 by a human
operator to prevent flooding along the lake shores and supply
water to the downstream users, which are composed of 4
irrigation districts (total irrigated area of 1400 km2) and 9
run-of-river power plants (total capacity of 92 MW ).

To design the optimal lake operation, we can leverage RL to
find an optimal control policy π∗ for the water reservoir sys-
tem of lake Como [Castelletti et al., 2010]. For this setting,
the state space includes the day of the year and lake storage
volume. The first is encoded as sine and cosine functions
of 2π t

period , where t is the day and period is the year’s
length, which enables accounting for the time-dependency
and cyclostationarity of the system, and, consequently, of
the operating policy. The second one is governed by the
mass conservation equation vt+1 = vt+ it+1−%t+1, where
it+1 is the net inflow volume in the time interval [t, t+ 1)

and %t+1 = ft(vt, at, it+1) is the actual release accom-
plished by the system. The release function ft(·) accounts
for physical and normative constraints on the storage and
release [Soncini-Sessa et al., 2007]. Observe that, the ac-
tual release depends on the previous storage volume, the
policy’s decision (corresponding to the amount of water the
agent would like the system to release), and the inflow it+1,
which is influencing the system throughout the whole time
period [t, t+ 1). The reward function is composed of three
main costs related to water demand, flooding events, and
actions feasibility. It is noteworthy to point out the fact that,
being the net inflow volume composed of historical data,
this setting constitutes an environment incredibly close to
the real-world system. Further details are in Appendix D.4.

In order to successfully apply RL onto the lake Como water
system, we need to carefully take into account the time-
variant nature of the net inflow volume, which has changed
much since the mid 40s due to the climate change our planet
is currently undergoing [Giuliani et al., 2016]. Furthermore,
if we were to leverage an RL algorithm to control the water
reservoir system, TL would be a must to reduce the amount
of data needed to reach an optimal behavior and to mitigate
the usage of sub-optimal policies onto the system. Since we
do not have another time-variant transfer algorithm for RL
in the literature, we will again compare T2VT with MGVT
to analyze the benefit of accounting for time variance.

Historical data span from 1946 to 2006 and will be split into
12 years chunks, each one representing a task. Hence, the
sources will consist of the tasks [1946, 1957], [1958, 1969],
[1970, 1981], [1982, 1993], whereas the target is represented
by the task [1994, 2006]. Results are reported in Figure 5,
where we compare 3-T2VT coupled with the maximum-
likelihood approach of Section 6.5 against 3-MGVT. As
we can see, there is a beneficial effect on the optimization
process by accounting for time-variance in the source solu-
tions. Indeed, our algorithm performs better than 3-MGVT
especially in the early iterations where the performance
difference is statistically significant.



 7 DISCUSSION AND CONCLUSIONS

In this paper, we presented a time-variant approach for trans-
ferring value functions through a variational scheme. In or-
der to deal with a time-variant distribution of the tasks, we
have devised a suitable estimator for the prior to be used
in the variational scheme providing its uniform consistency
over a compact subset of Rp × (0, 1]. We have, then, pro-
vided a finite sample analysis on the performance of the vari-
ational transfer algorithm based on our estimator, enabling
a theoretical comparison with the time-invariant version
of Tirinzoni et al. [2018a]. Finally, we have experimentally
proved our algorithm abilities to deal with time-variant dis-
tributions even in a real-world scenario represented by the
lake Como water system.

Notice that discriminating the source tasks w.r.t. time is
an additional step that brings transfer learning approaches
and learning in non-stationary environments a bit closer
together [Minku, 2019]. It is also important to highlight
the fact that, instead of considering time, we could switch
to any other variable (e.g., the task-defining parameter) as
long as it is available together with each source solution
and we can properly remap it into (0, 1]. This could enable
us to leverage completely different structures in order to
perform transfer to the target task. Finally, we would also
like to highlight the possibility of using this time-variant
transfer paradigm in lifelong learning scenarios [Chen and
Liu, 2018] as a potential future direction.
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