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Abstract

Continuously-indexed flows (CIFs) have recently
achieved improvements over baseline normalizing
flows on a variety of density estimation tasks. CIFs
do not possess a closed-form marginal density, and
so, unlike standard flows, cannot be plugged in
directly to a variational inference (VI) scheme in
order to produce a more expressive family of ap-
proximate posteriors. However, we show here how
CIFs can be used as part of an auxiliary VI scheme
to formulate and train expressive posterior approx-
imations in a natural way. We exploit the condi-
tional independence structure of multi-layer CIFs
to build the required auxiliary inference models,
which we show empirically yield low-variance es-
timators of the model evidence. We then demon-
strate the advantages of CIFs over baseline flows in
VI problems when the posterior distribution of in-
terest possesses a complicated topology, obtaining
improved results in both the Bayesian inference
and surrogate maximum likelihood settings.

1 INTRODUCTION

Variational inference (VI) has emerged as a fast, albeit bi-
ased, alternative to Markov chain Monte Carlo for Bayesian
inference. VI methods attempt to minimize the KL diver-
gence from a parametrized family of distributions to a
true posterior over latent variables. The expressiveness of
this family is essential for good performance, with under-
expressive models leading to both increased bias and under-
estimation of posterior variance (Yin and Zhou, 2018).

If the density of the approximate posterior is available in
closed-form, then the variational family is said to be explicit.
Explicit models allow for straightforward estimation of the
VI objective, but can often lead to reduced expressiveness,
which limits their performance overall. Mean-field VI (Blei

et al., 2017), for example, imposes restrictive independence
assumptions between the latent variables of interest.

Normalizing flows (Tabak et al., 2010; Rezende and Mo-
hamed, 2015) provide an alternative family of explicit den-
sity models that yield improved expressiveness compared
with mean field alternatives. These methods push samples
from a simple base distribution (typically Gaussian) through
parametrized bijections to produce complex, yet still exact,
density models. Normalizing flows have performed well in
tasks requiring explicit density models (e.g. (Louizos and
Welling, 2017; Papamakarios et al., 2017; Ho et al., 2019)),
including VI, where flows have demonstrated the ability to
improve the quality of approximate posteriors (Rezende and
Mohamed, 2015; Durkan et al., 2019).

Although normalizing flows can directly improve the expres-
siveness of mean-field VI schemes, their inherent bijectivity
remains quite restrictive. We can overcome this limitation by
instead using continuously-indexed flows (CIFs) (Cornish
et al., 2020). CIFs relax the bijectivity constraint of standard
normalizing flows by augmenting them with continuous in-
dex variables, thus parametrizing an implicit density model
defined as the marginalization over these additional index-
ing variables. Beyond being well-grounded theoretically,
CIFs also have empirically demonstrated the ability to out-
perform relevant normalizing flow baselines in the context
of density estimation, and thus it is sensible to investigate
the performance of CIFs in VI.

A difficulty in applying CIFs to VI – and implicit models
more generally – is that their marginal distribution is in-
tractable, precluding evaluation of the standard VI objective.
However, conveniently, CIFs still admit a tractable joint
distribution over the variables of interest (latent variables in
VI) and the auxiliary indexing variables. We can therefore
appeal to the framework of auxiliary variational inference
(AVI) (Agakov and Barber, 2004), which facilitates the
training of implicit models with tractable joint densities as
variational inference models. CIFs also already prescribe a
model for inferring auxiliary variables – typically required
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 in AVI schemes – suggesting that CIFs are a natural fit here.
AVI methods more generally have shown improved expres-
siveness over the explicit counterparts in several settings
(Burda et al., 2016; Yin and Zhou, 2018), and are becom-
ing more popular with the rise of implicit models overall
(Tran et al., 2017; Lawson et al., 2019; Kleinegesse et al.,
2020), suggesting that this framework is able to overcome
any supposed drawbacks associated with not having access
to explicit densities.

In this work, we show that these benefits are also realized
when CIFs are applied within the AVI framework. We first
describe how CIFs can be used as the variational family in
AVI, naturally incorporating the components of CIF models
designed for density estimation, and we explain how we can
also amortize these inference models. We then empirically
demonstrate the advantages of using CIFs over standard nor-
malizing flows for modelling posteriors with complicated
topologies, and additionally how CIFs can facilitate max-
imum likelihood estimation of the parameters of complex
latent-variable generative models.

2 CONTINUOUSLY-INDEXED FLOWS
FOR VARIATIONAL INFERENCE

In this section we first review necessary background on vari-
ational inference (VI) – including auxiliary variational in-
ference (AVI) – and continuously-indexed flows (CIFs). We
then describe how CIFs naturally fit in as a class of auxiliary
variational posteriors, and extend to include amortization.
We summarize the results of this section in Algorithm 1.

2.1 VARIATIONAL INFERENCE

Given a joint probability density pX,Z , with observed data
X ∈ X and latent variable Z ∈ Z , variational inference
(VI) provides us with a means to approximate the intractable
posterior pZ|X(· | x). This is accomplished by introducing
a parametrized approximate posterior1 qZ , and maximizing
the evidence lower bound (ELBO)

L1(x) := Ez∼qZ [log pX,Z(x, z)− log qZ(z)] (1)

with respect to the parameters of qZ . This is equivalent to
minimizing the KL divergence between qZ and the true
posterior pZ|X(· | x).
Explicit VI methods, such as mean-field approaches or nor-
malizing flow models, define qZ in such a way that it can
be evaluated pointwise. Although this approach is compu-
tationally convenient, the expressiveness of the resulting
methods can often be limited. To improve on this, implicit

1We may also amortize qZ and replace it with the conditional
qZ|X , especially when using VI to facilitate generative modelling.
Further discussion on amortization is deferred to Subsection 2.4.

methods define qZ typically through some type of sampling
process with intractable marginal distribution, such as the
pushforward of a simple distribution through an unrestricted
deep neural network. These methods can be quite powerful
but also challenging to optimize, especially in the context
of VI (Tran et al., 2017), as we lose the tractability of (1).

Auxiliary Variational Inference In contexts where qZ is
obtained as qZ(z) :=

�
qZ,U (z, u) du for some joint den-

sity qZ,U that can be sampled from and evaluated pointwise,
its parameters can be learned via auxiliary variational in-
ference (AVI) (Agakov and Barber, 2004). We refer to U
here as an auxiliary variable. These approaches introduce
an auxiliary inference distribution rU |Z and optimize

L2(x) :=E(z,u)∼qZ,U

�
log

pX,Z(x, z) · rU |Z(u | z)
qZ,U (z, u)

�
. (2)

Key to this approach is the fact that L1(x)≥L2(x), and that
this bound is tight when rU |Z = qU |Z , which holds because

L1(x)=L2(x)+Ez∼qZ

�
DKL(qU |Z(·|z)||rU |Z(·|z))

�
. (3)

As such, optimizing the parameters of rU |Z jointly with
those of qZ,U will encourage learning better approximations
to the true posterior pZ|X . Note that, although we now are
optimizing a lower bound on L1, we are also optimizing over
a larger family of approximate posteriors which may end up
yielding a better optimum (cf. Proposition 3.1 below).

2.2 CONTINUOUSLY-INDEXED FLOWS

We now describe in detail the continuously-indexed flow
(CIF) model (Cornish et al., 2020), which we intend to
incorporate into an AVI scheme. CIFs define a density qZ
over Z as the Z-marginal of

W ∼ qW , U ∼ qU |W (· | W ), Z = G(W ;U), (4)

where qW is a noise distribution over Z , qU |W is a condi-
tional distribution over U describing an auxiliary indexing
variable, and G : Z × U → Z is a function such that
G(·;u) is a bijection for each u ∈ U . For all z ∈ Z , the
density model qZ is then given by the intractable integral
qZ(z) :=

�
qZ,U (z, u) du over the tractable joint density

qZ,U given by

qZ,U (z, u) = qW
�
G−1(z;u)

�
(5)

× qU |W
�
u | G−1(z;u)

� ��detDzG
−1(z;u)

��

for all z ∈ Z and u ∈ U , where G−1 denotes the inverse
of G (and DzG

−1 the Jacobian of G−1) with respect to its
first argument z (see Section 6 for a derivation). Typically,
qU |W is chosen to be conditionally Gaussian with mean
and covariance as the outputs of neural networks taking the
conditioning variables W and Z as input, and

G(w;u) := es(u) � (g(w) + t(u)) , (6)



 where g : Z → Z is some base bijection, s, t : U → Z
are arbitrary neural networks, and � denotes elementwise
multiplication. Cornish et al. (2020) used the model (4) in
the context of density estimation to model the generative
process of a set of i.i.d. data.

Multi-layer CIFs Cornish et al. (2020) also propose to
improve the expressiveness of (4) by taking the noise dis-
tribution qW to be a CIF model itself. Applying this recur-
sively L times, we can take qZ to be the WL-marginal in
the following model:

W0 ∼ qW0
, U� ∼ qU�|W�−1

(· | W�−1)

W� = G�(W�−1;U�), (7)

where � ∈ {1, . . . , L}. Here qW0 is typically a mean-field
Gaussian and each G� : Z × U → Z is bijective in its
first argument. Practically, multi-layer CIF models have
demonstrated far more representational power than single-
layer versions, although we note that we can still view this
multi-layer model as an instance of (4) for certain choices
of qU |W and G (as in Section 7).

Auxiliary Inference Distribution The intractability of
qZ arising from both (4) and (7) precludes direct maxi-
mum likelihood estimation. Cornish et al. (2020) therefore
introduce an auxiliary backward distribution, either rU |Z
or rU1:L|Z respectively, to enable training of CIFs through
an amortized ELBO. Particularly noteworthy is the struc-
ture of this distribution in the multi-layer case. The optimal
choice for rU1:L|Z would be qU1:L|Z , which can be shown
to factorize as qU1:L|Z(u1:L | z) = �L

�=1 qU�|W�
(u� | w�),

where wL := z and w� := G−1
�+1(w�+1;u�+1) recursively

for � ∈ {1, . . . , L − 1}. Although this gives us the form
of qU1:L|Z , the backward distributions qU�|W�

are not gen-
erally available in closed form. However this does at least
motivate defining rU1:L|Z to have the same form, which can
be done by introducing (reparametrizable) densities rU�|W�

and setting

rU1:L|Z(u1:L | z) :=
L�

�=1

rU�|W�
(u� | w�) (8)

with w� defined as above. The densities for rU�|W�
are also

taken to be parametrized conditional Gaussians. This struc-
tured inference procedure induces a natural weight-sharing
scheme between the forward and backward directions of the
model, as both are defined using G�.

2.3 CIF MODELS IN AVI

We can use CIFs as the family of approximate posteriors qZ
in VI by appealing to the framework of AVI. Starting with
the single-layer version, we see from (5) that CIFs admit
a tractable joint distribution qZ,U over latent and auxiliary

variables. We can then plug this distribution into (2), noting
also that CIFs already prescribe a form for rU |Z and thus are
a natural fit within an AVI scheme. However, we must take
one additional step to formulate an objective amenable to
optimization, as naïvely substituting qZ,U into (2) produces
an expectation over a distribution containing the parameters
of G itself. To address this, we show in Section 6 how to
rewrite this as an expectation over qW,U rather than qZ,U ,
obtaining the objective

E(w,u)∼qW,U

�
log

pX,Z(x, z)·rU |Z(u | z)
qW,U (w, u)·| detDwG(w;u)|−1

�
, (9)

where we write z := G(w;u) for readability. We always
select qW,U to be reparametrizable (Kingma and Welling,
2014), which makes the objective straightforward to op-
timize via stochastic gradient descent with respect to the
parameters of q, r, and G. Note however that rU |Z need
not necessarily be reparametrizable. This “direction” of
reparametrization contrasts with CIF models for density esti-
mation which require rU |Z – not qU |W – to be reparametriz-
able. Further discussion demonstrating that CIF models in
density estimation and VI can be viewed as “opposites” of
each other is provided in Subsection 3.3 and Section 9.

Multi-layer CIFs in AVI We can also use multi-layer
CIFs as past of an AVI scheme. Now, each of the qU�|W�−1

distributions in (7) is chosen to be reparametrizable, again
contrasting with (Cornish et al., 2020) which does not re-
quire reparametrizable distributions here. Figure 1a graph-
ically displays the joint model qZ,U1:L

. We also adopt the
form of rU1:L|Z from (8) and demonstrate this auxiliary in-
ference procedure in Figure 1b, although we do not require
the individual rU�|W�

distributions to be reparametrizable.
Being able to have rU1:L|Z match the structure of the true
auxiliary posterior qU1:L|Z is likely useful in lowering the
variance of estimators of the ELBO and gradients thereof.

We can now substitute our definitions for qZ,U1:L
(implied by

(7)) and rU1:L|Z into (2) to derive an optimization objective
for training multi-layer CIFs as the approximate posterior in
VI. We again must be careful about reparametrization, as we
need to write the objective as an expectation over qW0,U1:L

instead of qZ,U1:L
to be able optimize all parameters of

q, analogously to (9). Further details on how to do this
are provided in Section 7, with the full objective given in
(16). Algorithm 1 describes how to compute an unbiased
estimator of this objective, from which we can then obtain
unbiased gradients via automatic differentiation.

2.4 AMORTIZATION

VI methods can also be used to provide a surrogate
objective for maximum likelihood estimation of the pa-
rameters of latent-variable models, particularly for deep
generative models such as the variational auto-encoder



 

(a) Sampling Z ∼ qZ|X as defined in (4)

(b) Sampling U1:L ∼ rU1:L|Z,X as defined in (8)

Figure 1: Diagrams demonstrating how to sample from the CIF approximate posterior (left) and the auxiliary inference
model (right). The red highlighting corresponds to amortization – these can be ignored for models not requiring amortization.

(VAE) (Kingma and Welling, 2014; Rezende et al.,
2014). In these settings, the goal is to maximize the
marginal log-likelihood

�
i log pX(xi) over the observed

data {xi}i, with respect to the parameters of p, where
log pX(x) := log

�
pX,Z(x, z) dz is a density model con-

taining parametrized pX,Z(x, z). This integral is often in-
tractable, and thus we resort to maximizing the ELBO (1)
(or (2)) with respect to both the parameters of p and q as
it bounds the marginal log-likelihood from below. In this
case, we would like to amortize the cost of variational infer-
ence across an entire dataset, rather than compute a brand
new approximate posterior for each datapoint, and so we
parametrize our variational distribution as an explicit func-
tion of the data.

We can readily incorporate amortization into the single-
layer CIF by replacing qW with qW |X in (4), and rU |Z
with rU |Z,X in (9) since the true auxiliary posterior qU |Z,X

will now carry an explicit dependence on the data X . For
multi-layer CIFs, it is again straightforward to incorporate
amortization into the model for q by replacing qW0

with
qW0|X in (7). Additional care must be taken when construct-
ing the auxiliary inference model r, however, as the explicit
dependence on data will appear in each term of the factor-
ization of the true auxiliary posterior qU1:L|Z,X . We thus
structure rU1:L|Z,X similarly:

rU1:L|Z,X(u1:L | z, x) :=
L�

�=1

rU�|W�,X(u� | w�, x),

where w� is as defined in (8). The full amortized objective is
given in (17) in the Appendix. Figure 1 graphically demon-
strates how to incorporate amortization into both q and r,
while Algorithm 1 includes a provision for this case as well.

3 COMPARISON TO RELATED WORK

In this section we first compare against methods using ex-
plicit normalizing flow models for variational inference,

Algorithm 1 Unbiased L-layer CIF ELBO estimator

function ELBO(x, amortized)
if amortized then

q0 ← qW0|X(· | x)
else

q0 ← qW0

w0 ∼ q0
Δ ← − log q0(w)
for � = 1, . . . , L do

u ∼ qU�|W�−1
(· | w�−1)

w� ← G�(u;w�−1)
if amortized then
r� ← rU�|W�,X(· | w�, x)

else
r� ← rU�|W�

(· | w�)
Δ ← Δ+ log r�(u)− log qU�|W�−1

(u | w�−1)
+ log | detDG�(w�−1;u)|

return Δ+ log pX,Z(x,wL)

then move on to a discussion of implicit VI methods, and
lastly compare the structure of CIFs in basic density estima-
tion to CIFs in VI.

3.1 NORMALIZING FLOWS FOR VI

Normalizing flows (NFs) originally became popular as a
method for increasing the expressiveness of explicit varia-
tional inference models (Rezende and Mohamed, 2015). NF
methods define qZ as the Z-marginal of

W ∼ qW , Z = g(W ), (10)

where g : Z → Z is a bijection. We can equivalently write
qZ as qZ := g#qW , where g#qW denotes the pushforward
of the distribution qW under the map g. Using the change
of variable formula, we can rewrite (1) here as

L1(x) = Ew∼qW

�
log

pX,Z(x, g(w))

qW (w) · | detDg(w)|−1

�
. (11)



 This objective is a simplified version of the CIF VI objective
(9). The following proposition, which we adapt here to the
VI setting from Cornish et al. (2020, Proposition 4.1), shows
that generalizing from (11) to (9) is beneficial, as a CIF
model trained by this auxiliary bound will perform at least as
well in inference as its corresponding baseline flow trained
via maximization of (11).

Proposition 3.1. Assume a CIF inference model with com-
ponents qφU |W , rφU |Z , and Gφ is parametrized by φ ∈ Φ, with

associated objective (9) denoted as Lφ
2 . Suppose there exists

ψ ∈ Φ such that for some bijection g, Gψ(·;u) = g(·) for
all u ∈ U . Similarly, suppose qψU |W and rψU |Z are such that,

for some density ρ on U , qψU |W (· | w) = rψU |Z(· | z) = ρ(·)
for all w, z ∈ Z . For a given x ∈ X , if Lφ

2 (x) ≥ Lψ
2 (x),

DKL

�
qφZ || pZ|X(· | x)

�
≤ DKL

�
g#qW || pZ|X(· | x)

�
.

The proof of this result, from which we also see that
Lψ
2 (x) = L1(x) (where L1(x) is as written in (11)) for

all x ∈ X , is provided in Section 8. This shows that optimiz-
ing a CIF using the auxiliary ELBO L2 will produce at least
as good of an inference model (as measured by the KL diver-
gence) as a baseline normalizing flow optimized using the
marginal ELBO (11), in the limit of infinite samples from
the inference model. Note that our choices of G from (6)
and qU |W and rU |Z as conditionally Gaussian will usually
entail the conditions of Proposition 3.1, since for example
we have G(w;u) = g(w) in (6) if the final layer weights in
the s and t networks are zero. We also empirically confirm
that Proposition 3.1 holds in the experiments.

Beyond the discussion above, we also note that the bijec-
tivity constraint of baseline normalizing flows can lead to
problems when modelling a density that is concentrated on a
region with complicated topological structure (Cornish et al.,
2020, Corollary 2.2), and may cause flows to become nu-
merically non-invertible in this case (Behrmann et al., 2020).
Many models such as neural spline flows (NSFs) (Durkan
et al., 2019) and universal flows (Huang et al., 2018; Jaini
et al., 2019) have been proposed to improve expressiveness
within the standard framework based on a single bijection.
CIFs, on the other hand, use auxiliary variables to provide
a mechanism for circumventing the limitations of using a
single bijection, but lose analytical tractability as a result.

3.2 IMPLICIT VI METHODS

Several other AVI methods exist that, like our approach, also
require the specification of parametrized auxiliary inference
distribution rU |Z . Hierarchical variational models (HVMs)
(Ranganath et al., 2016) are one such example, which take
qZ,U (z, u) := qZ|U (z | u) · qU (u) for parametrized distri-
butions qZ|U and qU both analytically tractable. Although
both CIFs and HVMs specify tractable qZ,U , the CIF joint

distribution (5) does not admit such a simple factorization,
which may therefore increase expressiveness. Furthermore,
unlike CIFs, HVMs do not admit a natural mechanism for
matching the auxiliary inference model rU |Z to the struc-
ture of the true auxiliary posterior qU |Z when considering
multiple levels of hierarchy.

Related to these are approaches are Hamiltonian-based VI
methods (Salimans et al., 2015; Caterini et al., 2018), which
build qZ,U by numerically integrating Hamiltonian dynam-
ics, inducing a flow that is bijective now on the extended
space Z × U instead of just Z . In contrast, CIFs can be
used to augment any type of normalizing flow (not just
Hamiltonian dynamics), and are not restricted to a specific
family of bijections G. Hamiltonian methods also suffer
from greatly increasing computational requirements as the
number of parameters in pX,Z grows, since they require
Dz log pX,Z(x, z) at every flow step.

There also exist methods which that do not parametrize
rU |Z , but instead build an auxiliary inference distribution in
VI by drawing extra samples from the approximate poste-
rior qZ and re-weighting (as noted in Lawson et al. (2019)).
These methods, including the importance-weighted autoen-
coder (IWAE) (Burda et al., 2016) and semi-implicit varia-
tional inference (Yin and Zhou, 2018), effectively perform
inference over an extended space consisting of K copies of
the original latent space (Domke and Sheldon, 2018). These
approaches may thus require far more memory to train than
parametrized AVI methods, and often require care to ensure
the variance of estimators of the objective (and gradients
thereof) is controlled (Rainforth et al., 2018b; Tucker et al.,
2019). That being said, it may be possible to combine multi-
sample bounds with CIF models using a framework such as
the one in Sobolev and Vetrov (2019), which demonstrates
how to use IWAE-like approaches within HVMs.

A separate class of implicit VI models proposes expressive
but intractable joint densities requiring density ratio estima-
tion to train (Huszár, 2017; Tran et al., 2017). CIFs, along
with other AVI methods, avoid density ratio estimation by
instead constructing a tractable joint density qZ,U .

3.3 CIFS FOR DENSITY ESTIMATION

As mentioned earlier, CIFs were originally proposed as a
model for density estimation (DE), a setting in which we
have access to a set of observed data {xi}i over which we
would like to build a density model pX maximizing the
marginal likelihood. This constitutes the key distinction
between this work and Cornish et al. (2020): here, we only
use CIFs for parametrizing an inference model qZ , assuming
we already have access to a forward density model pX,Z .

However, the inference procedure required to train CIFs
for DE is actually very closely related to the model (4). In
particular, if we relabel the forward CIF model for DE as r



 (instead of p used by Cornish et al. (2020)), the single-layer
CIF density estimation objective is equivalent to

E(x,u)∼qX,U

�
log

rZ(G(x;u)) · rU |Z(u | G(x;u))

q∗X(x)·qU |X(u | x)·| detDxG(x;u)|−1
�
,

(12)
where q∗X is the unknown data-generating distribution from
which we have i.i.d. samples, and qX,U (x, u) := q∗X(x) ·
qU |X(u | x). See Section 9 for a derivation. Comparing this
with (9), we see that CIFs for density estimation may be in-
terpreted as performing AVI targeting rZ with an amortized
inference model defined as the Z-marginal of

X ∼ q∗X , U ∼ qU |X(· | X), Z = G(X;U). (13)

Furthermore, despite the aesthetic similarities between (7)
of Cornish et al. (2020) defining p for DE, and (4) here
defining q for VI, it is actually the q models that share a
natural correspondence with each other. In both cases, q
refers to an inference model that must be reparametrized,
whereas neither p in DE nor r here require this. We might
even consider using a CIF as the inference distribution for
a CIF density model, which may yield additional benefits
from added compositionality, although we leave these con-
siderations as future work.

4 EXPERIMENTS

In this section, we investigate using CIFs to build more
expressive variational models in posterior sampling and
maximum likelihood estimation of generative models. We
compare inference models based on the Masked Autore-
gressive Flow (MAF) (Papamakarios et al., 2017) and the
autoregressive variant of the Neural Spline Flow (NSF)
(Durkan et al., 2019) to CIF-based extensions. Both of these
baseline models empirically provide good performance in
general-purpose density estimation. We use the ADAM
optimizer (Kingma and Ba, 2015) throughout. Hyperpa-
rameters for all experiments are available in Section 10.
Code will be made available at https://github.com/
anthonycaterini/cif-vi.

4.1 TOY MIXTURE OF GAUSSIANS

Our first example looks at using VI to sample from a
toy mixture of Gaussians. Given component means {µk}k
and covariances {Σk}k, we directly define the “posterior”2

pZ|X(z | x) :=
�K

k=1 N (z;µk,Σk)/K, where K is the
total number of components, so that the joint target is
pX,Z(x, z) ∝ pZ|X(z | x). We work in two dimensions
with component means adequately spaced out in a square
lattice. Although the support of pZ|X is all of R2, it is con-
centrated on a subset of K disconnected components, which

2Note that there is no data x in this example – we define the
“posterior” directly. Details are in Section 10.

is not homeomorphic to R2, and thus we anticipate diffi-
culties in using just a normalizing flow as the approximate
posterior. We compare baseline NSF models to CIF-based
extensions.

The initial distribution for both the NSF and CIF models is
given by qW := N (0,σ2

0I), with σ0 taken as either a fixed
hyperparameter or a trainable variational parameter. The
CIF extension includes an auxiliary variable u ∈ R at each
layer, conditional Gaussian distributions for qU�|W �−1 and
rU�|W�

parametrized by small neural networks, and a single
small two-headed neural network to output s and t in (6) at
each layer, adding only 8.5% more parameters on top of the
baseline NSF model.

Marginal ELBO Estimator For all experiments in this
section, we will measure the trained models on estimates of
the marginal ELBO (1). When using an explicit variational
method, such as an NSF, this is readily estimated by basic
Monte Carlo (MC) with N i.i.d. samples z(i) ∼ qZ for
i ∈ {1, . . . , N}:

�L(x) := 1

N

N�

i=1

log
pX,Z(x, z

(i))

qZ(z(i))
. (14)

However, recall that in implicit methods qZ is not avail-
able in closed form, which precludes direct evaluation of
(14). Thus, we first must build an estimator of qZ(z) for all
z ∈ Z to use within (14). We can do this via importance
sampling, taking M i.i.d. samples u(j) ∼ rU |Z(· | z) for
j ∈ {1, . . . ,M} from our trained auxiliary inference model:

qZ(z) ≈
1

M

M�

j=1

qZ,U (z, u
(j))

rU |Z(u(j) | z) =: �qZ(z). (15)

The full estimator of the marginal ELBO for auxiliary mod-
els is then obtained by substituting (15) into (14); this is
written out in full in Section 11. Although this estimator is
positively biased (because it includes the negative logarithm
of an unbiased MC estimator), it is still consistent, and its
bias is naturally controlled by the training procedure which
encourages rU |Z to match the intractable qU |Z . We can mit-
igate any further bias by increasing M (Rainforth et al.,
2018a). A table displaying estimates of the marginal ELBO
on a single trained model for various choices of N and M
is also available in Section 11; we choose N = 10,000 and
M = 100 based on these results.

Results For our first experiment, we select K = 9 and
fix σ0 throughout training to either 0.1, 1, or 10. We train
both NSF baselines and CIF-NSF extensions with three
different random seeds for each setting of σ0. We show a
kernel density estimation of the approximate posterior of the
average case model on each configuration in Figure 2 and
report the average of the marginal ELBO estimates across
all three runs in the titles of the plots. We can clearly see
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σ0 = 0.1 σ0 = 1 σ0 = 10

Figure 2: Samples from the trained inference models visualized using a KDE plot for a range of σ0 values. We ran each
configuration 3 times, displaying the average case of the three runs in the image, with the average plus/minus standard
error of the marginal ELBO across the three runs shown in the title of the plot (higher is better). Models in the top row are
CIF-NSFs, and those in the bottom row are baseline NSFs. We can see that when σ0 = 0.1, the NSF does not have enough
initial noise to consistently cover the target, and when σ0 = 10, the NSF has too much noise and cannot locate the target.
The CIF-NSF at least locates each mode in all cases and provides higher-quality approximations across the board.

from both the ELBO values and the plots themselves that
the CIF extensions are more consistently producing higher-
quality variational approximations across the range of σ0,
as form of (6) allows the model to directly control the noise
of the outputted samples. The NSF baselines only produce
reliable models for σ0 = 1.

In this example it is quite clear how the parametrization
of the CIF model “cleans up” a major deficiency of the
baseline method by rescaling the initial noise. However,
we might also allow σ0 to be learned as part of the overall
variational inference procedure to further probe the effec-
tiveness of CIFs, and we experiment with this on a more
challenging problem (K = 16). We find that the trained
CIF models again outperform the baseline NSFs (estimated
marginal ELBO over 3 runs of −0.116± 0.021 for CIFs
vs. −0.562± 0.008 for basleine NSFs), thus demonstrating
the increased expressiveness of CIFs beyond just rescaling.

4.2 GENERATIVE MODELLING OF IMAGES

For our second example, we use amortized variational in-
ference to facilitate the training of a generative model of
image data in the style of the variational auto-encoder (VAE)
method (Kingma and Welling, 2014). We attempt to build
models of the MNIST (LeCun et al., 1998) and Fashion-
MNIST (Xiao et al., 2017) datasets, which both contain
256-bit greyscale images of size 28 × 28. We employ dy-
namic binarization of these greyscale images at each training

step. The likelihood function to describe an image relies on
a neural network “decoder” π : Z → [0, 1]d, such that

Z ∼ N (0, I), X ∼
d�

j=1

Ber(· | πj(Z))

is the generative process for an image X . In our experi-
ments, we consider two different types of decoders: a small
convolutional network with only one hidden layer, and a
larger convolutional network with several residual blocks as
in e.g. Durkan et al. (2019). For the experiments with the
smaller decoder, we use a 20-dimensional latent space Z ,
and for the larger decoder, we increase to 32 dimensions.

Inference Methods We consider several models of infer-
ence to aid in surrogate maximum likelihood estimation
of the parameters of π. First we consider a VAE inference
model, where

qZ|X(· | x) := N
�
µZ(x), diag σ2

Z(x)
�

with an “encoder” neural network taking in image data x
and outputting both µZ and log σZ . The encoder that we use
in all experiments is a single-hidden-layer convolutional net-
work which “matches” the structure of the small decoder;
we keep the encoder small since the VAE here is just a
base upon which we build more complicated inference mod-
els. We also consider an importance-weighted version of
this VAE model (IWAE) with K = 5 importance samples



 
Table 1: Test-set average marginal log-likelihood (plus/minus one standard error) over three runs. Runs that are within one
standard error of the best-performing model are shown in bold.

Model Small Target Large Target
MNIST Fashion-MNIST MNIST Fashion-MNIST

VAE −94.83± 0.05 −238.54± 0.11 −86.27± 0.04 −229.72± 0.03
IWAE (K = 5) −93.14± 0.10 −237.03± 0.05 −84.23± 0.09 −227.80± 0.02

Small MAF −91.98± 0.19 −237.09± 0.15 −83.41± 0.09 −228.74± 0.24
Large MAF −92.68± 0.26 −237.57± 0.03 −83.38± 0.12 −228.72± 0.27
CIF-MAF −90.87± 0.05 −236.31± 0.14 −82.70± 0.12 −227.64± 0.05

Small NSF −91.12± 0.15 −236.65± 0.17 −83.06± 0.05 −228.58± 0.18
Large NSF −90.79± 0.02 −236.48± 0.13 −83.12± 0.10 −228.46± 0.07
CIF-NSF −90.82± 0.09 −236.48± 0.20 −83.31± 0.17 −228.54± 0.12

(Burda et al., 2016), which we find roughly matches the
computation time per epoch of the flow-based inference
methods below.

The first flow-based model that we consider is a 5-layer
masked autoregressive flow (MAF) (Papamakarios et al.,
2017), which is equivalent to an inverse autoregressive flow
(IAF) (Kingma et al., 2016) when removing the hypernet-
works producing the flow parameters. We also run exper-
iments with a 10-layer neural spline flow (NSF) (Durkan
et al., 2019), for which we clip the norm of the gradients to a
maximum of 5 – as suggested for tabular density estimation
– for increased stability of training. Additional hyperparam-
eter settings for each flow are available in Section 10. As
alluded to previously, for each of the flow-based methods
we will use the small VAE encoder as a base distribution
qW0|X to project the image data into the dimension of the
latent space; we do this rather than using a large VAE en-
coder as the base distribution in the large target experiments
(as is typically done) to force the flow models to handle
more of the inference. We also consider two baseline vari-
ants for each model, a larger and smaller version, which we
control by changing the number of hidden channels in the
autoregressive maps.

Finally, we consider amortized CIF-based extensions of the
smaller variants of the flow models mentioned above, so
that in the end our CIF models have approximately the
same total number of parameters as the larger baseline
flows. We use a 2-dimensional u at each flow step. We
include parametrized conditional Gaussian distributions for
qU�|W�−1

and rU�|W�,X at each layer � ∈ {1, . . . , L}, with
additional care taken in the structure of the r network to
combine vector inputs W� with image inputs X – details
are provided in Appendix 10.3.3. We use a single neural
network at each layer to parametrize s� and t� appearing in
G�.

Results The results of the experiment are available in Ta-
ble 1. We use the standard importance-sampling based esti-
mator of the marginal likelihood from Rezende et al. (2014,
Appendix E) with 1,000 samples, which we find empirically
produces low-variance estimates for the small target model3

as noted in Appendix 10.5. We see that, in each experiment,
CIF models are either producing the best average perfor-
mance as measured by test-set estimated average marginal
likelihood, or are within error bars of the best. Importantly,
we note that CIFs are outperforming the baseline models
which they are built directly on top of across the board: CIF-
MAF and CIF-NSF significantly improve upon Small MAF
and Small NSF, respectively. This justifies the claims of
Proposition 3.1, demonstrating that we are not penalized for
using the auxiliary objective instead of the standard ELBO.

We also can see that the CIF models produce better results
than the IWAE models, which can themselves be seen as a
method for auxiliary VI as previously mentioned. Despite
IWAE methods being more parameter-efficient, we found
that increasing K for IWAE significantly increased training
time per epoch over the CIF models.

5 CONCLUSION AND DISCUSSION

In this work, we have presented continuously-indexed flows
(CIFs) as a novel parametrization of an approximate poste-
rior for use within variational inference (VI). We did this by
naturally incorporating the CIF model into the framework
of AVI. We have shown that the theoretical and empirical
benefits of CIFs over baseline flow models extend to the VI
setting, as CIFs outperform baseline flows in both sampling
from complicated target distributions and facilitating maxi-
mum likelihood estimation of parametrized latent-variable
models. We now add a brief further discussion on CIFs in

3We expect the same low-variance behaviour to translate to the
larger target model, but did not run this for computational reasons.



 VI and consider some directions for future work.

Modelling Discrete Distributions One issue with CIFs
for VI (indeed, CIFs more generally) is that they are cur-
rently only designed to model continuous distributions, un-
like e.g. HVMs. It may be possible however to alleviate
this constraint by using discrete flows (Hoogeboom et al.,
2019) as a component of the overall CIF model, although it
remains to be seen if the theoretical and empirical benefits
of CIFs over baseline flows would extend to this case.

CIFs in Other Applications This work can serve as a
template for applying CIFs more generally in applications
where NFs have proven effective, such as compression (Ho
et al., 2019) and approximate Bayesian computation (Papa-
makarios et al., 2019). These approaches may require the
formulation of appropriate, application-specific surrogate
objectives, but the expressiveness gains could overcome the
additional costs (as in VI and density estimation) and could
therefore be investigated.
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