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Abstract

Neural architecture search (NAS) has seen a steep
rise in interest over the last few years. Many al-
gorithms for NAS consist of searching through a
space of architectures by iteratively choosing an ar-
chitecture, evaluating its performance by training it,
and using all prior evaluations to come up with the
next choice. The evaluation step is noisy - the final
accuracy varies based on the random initialization
of the weights. Prior work has focused on devising
new search algorithms to handle this noise, rather
than quantifying or understanding the level of noise
in architecture evaluations. In this work, we show
that (1) the simplest hill-climbing algorithm is a
powerful baseline for NAS, and (2), when the noise
in popular NAS benchmark datasets is reduced to a
minimum, hill-climbing to outperforms many pop-
ular state-of-the-art algorithms. We further back
up this observation by showing that the number of
local minima is substantially reduced as the noise
decreases, and by giving a theoretical characteri-
zation of the performance of local search in NAS.
Based on our findings, for NAS research we sug-
gest (1) using local search as a baseline, and (2)
denoising the training pipeline when possible.

1 INTRODUCTION

Neural architecture search (NAS) is a widely popular area of
machine learning which seeks to automate the development
of the best neural network for a given dataset. Many methods
for NAS have been proposed, including reinforcement learn-
ing, gradient descent, and Bayesian optimization [Elsken
et al., 2018, Zoph and Le, 2017, Liu et al., 2018b]. Many
popular NAS algorithms can be instantiated by the opti-
mization problem mina∈A f(a), where A denotes a set of
architectures (the search space) and f(a) denotes the objec-

tive function for a, often set to the validation accuracy of
a after training using a fixed set of hyperparameters. With
the release of three NAS benchmark datasets [Ying et al.,
2019, Dong and Yang, 2020, Siems et al., 2020], the extreme
computational cost for NAS is no longer a barrier, and it
is easier to fairly compare different algorithms. However,
recent work has noticed that the training step used in these
benchmarks is quite stochastic [Ying et al., 2019, Siems
et al., 2020]. In NAS, where the goal is to search over com-
plex neural architectures, a noisy reward function makes the
problem even more challenging. In fact, recent innovations
are designed specifically to handle the noisy objective func-
tion [Real et al., 2019, Zaidi et al., 2020]. A natural question
is therefore, how much of the complexity of NAS can be
attributed to the noise in the training pipeline?

In this work, 1 we answer this question by showing that
the difficulty of NAS is highly correlated with the noise in
the training pipeline. We show that (1) the simplest local
search algorithm (hill-climbing) is already a strong baseline
in NAS, and (2), when the noise in the training pipeline is re-
duced to a minimum, local search is sufficient to outperform
many state-of-the-art techniques.

Local search is a simple and canonical greedy algorithm in
combinatorial optimization and has led to famous results
in the study of approximation algorithms [Michiels et al.,
2007, Cohen-Addad et al., 2016, Friggstad et al., 2019].
However, local search has been neglected in the field of
NAS; a recent paper even suggests that it performs poorly
due to the number of local minima throughout the search
space [Wang et al., 2018]. The most basic form of local
search, often called the hill-climbing algorithm, consists
of starting with a random architecture and then iteratively
training all architectures in its neighborhood, choosing the
best one for the next iteration. The neighborhood is typically
defined as all architectures which differ by one operation

1See the full-length paper here: https://arxiv.org/
abs/2005.02960. Our code is available at https://
github.com/naszilla/naszilla.
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 or edge. Local search finishes when it reaches a (local or
global) optimum, or when it exhausts its runtime budget.

We show that on NAS-Bench-101, 201, and 301/
DARTS [Ying et al., 2019, Dong and Yang, 2020, Siems
et al., 2020, Liu et al., 2018b], if the noise is reduced to a
minimum, then local search is competitive with all popular
state-of-the-art NAS algorithms. This result is especially sur-
prising because local search, which can be implemented in
five lines of code (Algorithm 1), is in stark contrast to most
state-of-the-art NAS algorithms, which have many mov-
ing parts and even use neural networks as subroutines [Wen
et al., 2019, Shi et al., 2019]. This suggests that the complex-
ity in prior methods may have been developed to deal with
the noisy reward function. We also experimentally show that
as the noise in the training pipeline increases, the number
of local minima increases, and the basin of attraction of the
global minimum decreases. These results further suggest
that NAS becomes easier when the noise is reduced.

Motivated by these findings, we also present a theoretical
study to better understand the performance of local search
under different levels of noise. The underlying optimization
problem in NAS is a hybrid between discrete optimization,
on a graph topology, and continuous optimization, on the
distribution of architecture accuracies. We formally define a
NAS problem instance by the graph topology, a global prob-
ability density function (PDF) on the architecture accuracies,
and a local PDF on the accuracies between neighboring ar-
chitectures, and we derive a set of equations which calculate
the probability that a randomly drawn architecture will con-
verge to within ε of the global optimum, for all ε > 0. As a
corollary, we give equations for the expected number of lo-
cal minima, and the expected size of the preimage of a local
minimum. These results completely characterize the perfor-
mance of local search. To the best of our knowledge, this is
the first result which theoretically predicts the performance
of a NAS algorithm, and may be of independent interest
within discrete optimization. We run simulations which sug-
gest that our theoretical results predict the performance on
real datasets reasonably well.

Our findings raise a few points for the field of NAS. Since
much of the difficulty is in the stochasticity of the training
pipeline, denoising the training pipeline as much as possible
is worthwhile for future work. Second, our work suggests
that local methods for NAS may be promising. That is, meth-
ods which explore the search space by iteratively making
small edits to the best architectures found so far. Further-
more, we suggest using local search as a baseline for future
work. We release our code, and we discuss our adherence to
the NAS research checklist [Lindauer and Hutter, 2019].

Our contributions. We summarize our contributions.

• We show that local search is a strong baseline in its own
right, and outperforms many state-of-the-art NAS algo-

rithms across three popular benchmark datasets when
the noise in the training pipeline is reduced to a mini-
mum. We also show that the number of local minima
increases as the noise in the training pipeline increases.
Our results suggest that making the training pipeline in
NAS more consistent, is just as worthwhile as coming
up with novel search algorithms.

• We give a theoretical characterization of the properties
of a dataset necessary for local search to give strong
performance. We experimentally validate these results
on real neural architecture search datasets. Our results
improve the theoretical understanding of local search
and lay the groundwork for future studies.

2 RELATED WORK

Local search has been studied since at least the 1950s in
the context of the traveling salesman problem [Bock, 1958,
Croes, 1958], machine scheduling [Page, 1961], and graph
partitioning [Kernighan and Lin, 1970]. Local search has
consistently seen significant attention in theory [Aarts and
Lenstra, 1997, Balcan et al., 2020, Johnson et al., 1988]
and practice [Bentley, 1992, Johnson and McGeoch, 1997].
There is also a large variety of work in local optimization
of noisy functions, handling the noise by averaging the
objective function over multiple evaluations [Rakshit et al.,
2017, Akimoto et al., 2015], using surrogate models [Booker
et al., 1998, Caballero and Grossmann, 2008], or using
regularization [Real et al., 2019].

NAS has gained popularity in recent years [Kitano, 1990,
Stanley and Miikkulainen, 2002, Zoph and Le, 2017], al-
though the first few techniques have been around since
at least the 1990s [Yao, 1999, Shah et al., 2018]. Com-
mon techniques include Bayesian optimization [Kandasamy
et al., 2018, Jin et al., 2018], reinforcement learning [Zoph
and Le, 2017, Pham et al., 2018, Liu et al., 2018a], gradient
descent [Liu et al., 2018b, Dong and Yang, 2019], prediction-
based [White et al., 2021a, Shi et al., 2019, White et al.,
2021b], evolution [Maziarz et al., 2018, Real et al., 2019],
and using novel encodings to improve the search [White
et al., 2020, Yan et al., 2020, 2021].

Recent papers have highlighted the need for fair and repro-
ducible NAS comparisons [Li and Talwalkar, 2019, Lin-
dauer and Hutter, 2019], spurring the release of three NAS
benchmark datasets [Ying et al., 2019, Dong and Yang, 2020,
Siems et al., 2020], each of which utilize tens of thousands
of pretrained neural networks. See the recent survey [Elsken
et al., 2018] for a more comprehensive overview on NAS.

There has been some prior work using local search for
NAS. Elsken et al. [2017] use local search with network
morphisms guided by cosine annealing, which is a more
complex variant. Wang et al. [2018] use local search as a
baseline, but kill the run after encountering a local minimum



 rather than using the remaining runtime budget to start a
new run. Concurrent work has also shown that simple local
search is a strong baseline on NASBench-101 [Ottelander
et al., 2020] for multi-objective NAS (where the objective is
a function of accuracy and network complexity). This work
focuses on macro search rather than cell-based search, and
does not investigate the effect of noise on the performance.
The existence of this work strengthens one of our conclu-
sions (that local search is a strong NAS algorithm) because
it is now independently verified.

3 PRELIMINARIES

In this section, we formally define the local search algorithm
and notation that will be used for the rest of the paper. Given
a set A, denote an objective function ` : A → [0,∞). We
refer to A as a search space of neural architectures, and `(v)
as the expected validation loss of v ∈ A over a fixed dataset
and training pipeline. When running a NAS algorithm, we
have access to a noisy version of `, i.e., when we train an
architecture a, we receive loss= `(v) + x for noise x drawn
from a distribution Dv (we explore different families of
distributions in Sections 4 and 5). The goal is to find v∗ =
argminv∈A`(v), the neural architecture with the minimum
validation loss, or an architecture whose validation loss is
within ε of the minimum, for some small ε > 0. We define
a neighborhood function N : A→ 2A. For instance, N(v)
might represent the set of all neural architectures which
differ from v by one operation or edge.

Local search in its simplest form (also called the hill-
climbing algorithm) is defined as follows. Start with a ran-
dom architecture v and evaluate `(v) by training v. Itera-
tively train all architectures in N(v), and then replace v
with the architecture u such that u = argminw∈N(v)`(w).
Continue until we reach an architecture v such that ∀u ∈
N(v), `(v) ≤ `(u), i.e., we reach a local minimum. See Al-
gorithm 1. We often place a runtime bound on the algorithm,
in which case the algorithm returns the architecture v with
the lowest value of `(v) when it exhausts the runtime budget.
In Section 4, we also consider two simple variants. In the
query_until_lower variant, instead of evaluating every archi-
tecture in the neighborhood N(v) and picking the best one,
we draw architectures u ∈ N(v) at random without replace-
ment and move to the next iteration as soon as `(u) < `(v).
In the continue_at_min variant, we do not stop at a local
minimum, instead moving to the second-best architecture
found so far and continuing until we exhaust the runtime
budget. One final variant, which we explore in Appendix A,
is choosing k initial architectures at random, and setting v1
to be the architecture with the lowest objective value.

Notation. Now we define the notation used in Sections 4
and 5. Given a search space A and a neighborhood function
N , we define the neighborhood graph GN = (A,EN ) such

Algorithm 1 Local search

Input: Search space A, objective function `,
neighborhood function N

1. Pick an architecture v1 ∈ A uniformly at random
2. Evaluate `(v1); denote a dummy variable `(v0) =∞;

set i = 1
3. While `(vi) < `(vi−1) :

i. Evaluate `(u) for all u ∈ N(vi)

ii. Set vi+1 = argminu∈N(vi)
`(u); set i = i+ 1

Output: Architecture vi

that for u, v ∈ A, the edge (u, v) is in EN if and only if
v ∈ N(u). We assume that v ∈ N(u) implies u ∈ N(v),
therefore, the neighborhood graph is undirected. We only
consider symmetric neighborhood functions, that is, v ∈
N(u) implies u ∈ N(v). Therefore, we may assume that
the neighborhood graph is undirected. Given G, N , and
a loss function `, define LS : A → A such that ∀v ∈
A, LS(v) = argminu∈N(v)`(u) if minu∈N(v) `(u) < `(v),
and LS(v) = ∅ otherwise. In other words, LS(v) denotes
the architecture after performing one iteration of local search
starting from v. See Figure 4.1 for an example. For integers
k ≥ 1, recursively define LSk(v) = LS(LSk−1(v)). We set
LS0(v) = v and denote LS∗(v) = mink|LSk(v)6=∅ LS

k(v),
that is, the output when running local search to convergence,
starting at v. Similarly, define the preimage LS−k(v) =
{u | LSk(u) = v} for integers k ≥ 1 and LS−∗(v) =
{u | ∃k ≥ 0 s.t. LS−k(u) = v}. That is, LS−∗(v) is a
multifunction which defines the set of all points u which
reach v at some point during local search. We refer to LS−∗

as the full preimage of v.

4 EXPERIMENTS

In this section, we discuss our experimental setup and re-
sults. To promote reproduciblity, we discuss how our ex-
periments follow the best practices checklist [Lindauer and
Hutter, 2019] in Appendix A, and we release our code at
https://github.com/naszilla/naszilla. We
start by describing the benchmark datasets used in our ex-
periments.

NAS benchmarks. To conduct our experiments, we use
the three most popular NAS benchmarks: NASBench-101,
201, and 301/DARTS. NASBench-101 consists of over
423,000 unique neural architectures with precomputed vali-
dation and test accuracies for 108 epochs on CIFAR-10. The
cell-based search space consists of five nodes which can take
on any DAG structure, and each node can be one of three
operations. Each architecture was trained a total of three
times using different random seeds. The NASBench-201
dataset consists of 56 = 15, 625 unique neural architectures,
with precomputed validation and test accuracies for 200

https://github.com/naszilla/naszilla


 epochs on CIFAR-10, CIFAR-100, and ImageNet-16-120.
The search space consists of a cell which is a complete
directed acyclic graph over 4 nodes. Therefore, there are(
4
2

)
= 6 edges. Each edge can be one of five operations. As

in NASBench-101, on each dataset, each architecture was
trained three times using different random seeds.

The DARTS [Liu et al., 2018b] search space is a popular
search space for large-scale cell-based NAS experiments on
CIFAR-10. The search space contains roughly 1018 archi-
tectures, consisting of two cells: a convolutional cell and
a reduction cell, each with six nodes. The first two nodes
are input from previous layers, and the last four nodes can
take on any DAG structure such that each node has degree
two. Each edge can take one of eight operations. Recently, a
surrogate benchmark, dubbed NASBench-301 [Siems et al.,
2020], has been created for the DARTS search space. The
surrogate benchmark is created using an ensemble of XG-
Boost models [Chen and Guestrin, 2016], each initialized
with different random weights.

Local search performance. We evaluate the relative per-
formance of local search for NAS in settings with and with-
out noise. In a real-world NAS experiment, noise reduction
can be achieved by modifying the training hyperparameters,
which we discuss later in this section. However, modifying
the hyperparameters of the NASBench architectures is im-
practical due to the extreme computational cost needed to
create the benchmarks [Ying et al., 2019, Dong and Yang,
2020]. Instead, we artificially remove much of the noise
in these benchmarks using two different techniques. On
NASBench-101 and 201, where each architecture was in-
dependently trained three times, the standard way to use
the benchmark is to draw validation accuracies at random.
However, for each architecture, we can average all three
validation accuracies to obtain a less noisy estimate. On
NASBench-301, where the standard way to evaluate archi-
tectures is by using one estimate from the ensemble uni-
formly at random, we can take the mean of all of the ensem-
ble estimates. This is shown to be less noisy even than the
data used to train the ensemble itself [Siems et al., 2020]. In
general, we can easily control the noise of NASBench-301
by returning the mean of the ensemble estimates plus a ran-
dom normal variable with mean 0 and standard deviation
equal to the standard deviation of the ensemble estimates,
multiplied by a constant x. x = 0 corresponds to the de-
noised setting, while x = 1 corresponds to the standard
setting.

We compare local search to random search, regularized
evolution [Real et al., 2019], Bayesian optimization, and
BANANAS [White et al., 2021a]. For every algorithm,
we used the code directly from the corresponding open
source repositories. For more details on the implementa-
tions, see Appendix A. We gave each algorithm a budget
of 300 evaluations. For each algorithm, we recorded the

Table 1: Avg. num. of iterations until convergence, num. of
local minima, and percent of initial architectures to reach
the global minimum, for CIFAR-10 on NASBench-201.

Version # iters # local min. % reached global min.

Denoised 5.36 21 47.4
Standard 4.97 55 6.71
Random 2.56 616 0.717

test loss of the architecture with the best validation loss
that has been queried so far. We ran 200 trials of each al-
gorithm and averaged the results. For local search, we set
N(v) to denote all architectures which differ by one op-
eration or edge. If local search converged before its bud-
get, it started a new run. On NASBench-101 and 301, we
used the query_until_lower variant of local search, and on
NASBench-201, we used the continue_at_min variant. See
Figure 4.2. On both NASBench-101 and 301, local search
outperforms all other algorithms when the noise is minimal,
amd performs similarly to Bayesian optimization in the stan-
dard setting. We include the results for all three datasets of
NASBench-201 in Appendix A.

Local minima statistics. Now we further show that de-
noised NAS is a simpler optimization problem by com-
puting statistics about the loss landscape of the noisy and
denoised search spaces. We start by running experiments on
NASBench-201. Since this benchmark is only size 15625,
the global minimum is known, which allows us to com-
pute the percent of architectures that converge to the global
minimum when running local search. We also compute the
number of local minima and average number of iterations
of local search before convergence. We run experiments
using the standard and denoised versions of NASBench-201
(defined earlier in this section), and we also use a fully ran-
domized version by replacing the validation error for each
architecture with a number drawn uniformly from [0, 1]. For
each experiment, we started local search from all 15625
initial seeds for local search, and averaged the results. See
Table 1. On the denoised search space, almost half of the
15625 architectures converge to the global minimum, but
under 7% reach the global minimum on the standard search
space. In Figure 4.1, we give a visualization of the topolo-
gies of the denoised and fully random search spaces.

Finally, we run experiments on NASBench-301. Due to the
extreme size (1018), the global minimum is not known. How-
ever, as described above, the surrogate nature of NASBench-
301 allows for a more fine-grained control of the noise. In
Figure 4.3, we plot the performance of NAS algorithms
with respect to the level of noise in the search space. We
also show that the average number of local search iterations
needed for convergence decreases with noise.



 

Figure 4.1: The local search tree for the architectures with the six lowest test losses (colored red) on CIFAR-10 on NASBench-
201, denoised (left) or fully random (right). Each edge represents an iteration of local search, from the colder-colored node
to the warmer-colored node. While 47.4% of architectures reach the global minimum in the denoised version, only 0.71% of
architectures reach the global minimum in the random version.
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Figure 4.2: Performance of NAS algorithms on standard and denoised versions of NASBench-101 (top left/middle) and
NASBench-301 (bottom left/middle). Probability that local search will converge to within ε of the global optimum, compared
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Figure 4.3: Amount of noise present in the architecture evaluation step of NASBench-301 vs. performance of NAS algorithms
(left), iterations (middle), and validation error (right).



 Discussion. The simple local search algorithm achieves
competitive performance on all NAS benchmarks, beating
out many popular algorithms. Furthermore, we see a dis-
tinct trend across different benchmarks showing that local
search performs best (relative to other algorithms) when
the noise in the training pipeline is reduced to a minimum.
Further experimentation shows that with less noise, there
are fewer local minima and local search takes more itera-
tions to converge. These results suggest that NAS becomes
substantially easier when the noise is reduced - enough for a
very simple algorithm to achieve strong performance. Since
local search can be implemented in five lines of code, we
encourage local search to be used as a benchmark in future
work. We also suggest denoising the noise in the training
pipeline. This can be achieved by techniques such as cosine
annealing the learning rate [Loshchilov and Hutter, 2016],
batch normalization [Ioffe and Szegedy, 2015], and regu-
larization techniques such as dropout [Baldi and Sadowski,
2013] and early-stopping [Prechelt, 1998].

5 THEORETICAL
CHARACTERIZATION

In this section, we give a theoretical analysis of local search
for NAS, including a complete characterization of its per-
formance. We present a general result which can be applied
to any NAS search space. We also give an experimental
validation of our results at the end of the section, which
suggests that our theoretical results predict the performance
of real datasets reasonably well.

In a NAS application, the topology of the search space is
fixed and discrete, while the distribution of validation losses
is randomized and continuous, due to the non-deterministic
nature of training a neural network. Therefore, we assume
that the validation loss for a trained architecture is sampled
from a global probability distribution, and for each archi-
tecture, the validation losses of its neighbors are sampled
from a local probability distribution. Recall the definitions
of GN and LS from the end of Section 3. Given a graph
GN = (A,EN ), each node v ∈ A has a loss `(v) ∈ R
sampled from a PDF which we denote by pdfn. For any
two neighbors (v, u) ∈ EN , the PDF for the validation
loss x of architecture u is given by pdfe(`(v), x). Choices
for the distribution pdfe are constrained by the fixed topol-
ogy of the search space, as well as the distribution pdfn. In
Appendix B, we discuss this further by formally defining
measurable spaces for all random variables in our frame-
work.

Our main result is a formula for the fraction of nodes in the
search space which are local minima, as well as a formula
for the fraction of nodes v such that the loss of LS∗(v) is
within ε of the loss of the global optimum, for all ε ≥ 0. In
other words, we give a formula for the probability that the
local search algorithm outputs a solution that is close to opti-

mal. Note that such a formula characterizes the performance
of local search. We give the full proofs for all of our re-
sults in Appendix B. For the rest of this section, we assume
for all v ∈ A, |N(v)| = s, and we assume GN is vertex
transitive (given u, v ∈ A, there exists an automorphism
of GN which maps u to v). Let v∗ denote the architecture
with the global minimum loss, therefore the support of the
distribution of validation losses is a subset of [`(v∗),∞).
That is,

∫∞
`(v)

pdfn(v)dv = 1. Technically, the integrals in
this section are Lebesgue integrals. However, we use the
more standard Riemann-Stieltjes notation for clarity. We
also slightly abuse notation and define LS−∗(v) = LS−∗(x)
when `(v) = x. In the following statements, we assume
there is a fixed graph GN , and the validation accuracies are
randomly assigned from a distribution defined by pdfn and
pdfe. Therefore, the expectations are over the random draws
from pdfn and pdfe.

2

Theorem 5.1. Given |A| = n, `, s, ε, pdfn, and pdfe,

E[|{v ∈ A | LS∗(v) = v}|]

= n

∫ ∞
`(v∗)

pdfn(x)
(∫ ∞

x

pdfe(x, y)dy
)s

dx, and

E[|{v ∈ A | `(LS∗(v))− `(v∗) ≤ ε}|]

= n

∫ `(v∗)+ε

`(v∗)

pdfn(x)
(∫ ∞

x

pdfe(x, y)dy
)s

· E[|LS−∗(x)|]dx.

Proof sketch.. To prove the first statement, we introduce an
indicator random variable to test if the architecture is a local
minimum: I(v) = I{LS∗(v) = v}. Then

E[|{v ∈ A | LS∗(v) = v}|]
= n · P ({v ∈ A | I(v) = 1})

= n

∫ ∞
`(v∗)

pdfn(x)
(∫ ∞

x

pdfe(x, y)dy
)s

dx.

Intuitively, in the proof of the second statement, we follow
similar reasoning but multiply the probability in the outer
integral by the expected size of v’s full preimage to weight
the integral by the probability a random point will converge
to v. Formally, we introduce an indicator random variable
on the architecture space that tests if a node will terminate
on a local minimum that is within ε of the global minimum:

Iε(v) = I{LS∗(v) = u ∧ l(u)− l(v∗) ≤ ε}

2In particular, given a node v with validation loss `(v) the prob-
ability distribution for the validation loss of a neighbor depends
only on `(v) and pdfe, which makes the local search procedure
similar to a Markov process. Our experiments in Figure 4.2 suggest
this is a reasonable assumption in practice.



 We use this random variable along with the first statement
of the theorem, to prove the second statement.

E[|{v ∈ A | `(LS∗(v))− `(v∗) ≤ ε}|]
= n · P ({Iε = 1})

= n

∫ `(v∗)+ε

`(v∗)

pdfn(x)

(∫ ∞
`(v)

pdfe(x, y)dy

)s
· E[|LS−∗(x)|]dx

In Appendix B, we use Theorem 5.1 along with Cheby-
shev’s Inequality [Chebyshev, 1867] to show that, in the
case where the validation accuracy of each architecture
has Gaussian noise, the expected number of local minima
can be bounded in terms of the standard deviation of the
noise. In the next lemma, we derive a recursive equation
for |LS−∗(v)|. We define the branching fraction of graph
GN as bk = |Nk(v)|/ (|Nk−1(v)| · |N(v)|), where Nk(v)
denotes the set of nodes which are distance k to v in GN .
For example, the branching fraction of a tree with degree d
is 1 for all k, and the branching fraction of a clique is b1 = 1
and bk = 0 for all k > 1. One more example is as follows.
In Appendix A, we show that the neighborhood graph of
the NASBench-201 search space is (K5)

6 and therefore its
branching factor is bk = 6−k+1

6k .

Lemma 5.2. Given A, `, s, pdfn, and pdfe, then for all
v ∈ A, we have the following equations.

E[|LS−1(v)|] = s

∫ ∞
`(v)

pdfe(`(v), y) (5.1)

·

(∫ ∞
`(v)

pdfe(y, z)dz

)s−1
dy, and

E[|LS−k(v)|] = bk−1 · E[|LS−1(v)|] (5.2)

·

(∫∞
`(v)

pdfe(`(v), y)E[|LS−(k−1)(y)|]dy∫∞
`(v)

pdfe(`(v), y)dy

)
.

For some PDFs, it is not possible to find a closed-form solu-
tion for E[|LS−k(v)|] because arbitrary functions may not
have closed-form antiderivatives. By assuming there exists a
function g such that pdfe(x, y) = g(y) for all x, we can use
induction to find a closed-form expression for E[|LS−k(v)|].
This includes the uniform distribution (g(y) = 1 for
y ∈ [0, 1]), as well as distributions that are polynomials
in x. In Appendix B, we use this to show that E[|LS−∗(v)|]
can be approximated by 1 + s ·G(`(v))s · eG(`(v))s , where
G(x) =

∫∞
x
g(y)dy. Now we use a similar technique to

give a closed-form expression for Theorem 5.1 when the
local and global distributions are uniform. We stress that
this lemma is simply an application of Lemma 5.2, and our
main results (Theorem 5.1 and Lemma 5.2) hold without
any assumptions on the local and global distributions.

Lemma 5.3. If pdfn(x) = pdfe(x, y) = U([0, 1]) ∀x ∈ A,
then E[|{v | v = LS∗(v)}|] = n

s+1 and

E[|{v | `(LS∗(v))− `(v∗) ≤ ε}|]

= n

∞∑
i=0

si (1− (1− ε)(i+1)s+1
)

(i+ 1)s+ 1
·
i−1∏
j=0

bj
js+ 1

 .

Proof sketch.. The probability density function of U([0, 1])
is equal to 1 on [0, 1] and 0 otherwise. Then∫∞
x

pdfe(x, y)dy =
∫ 1

x
dy = (1− x). We use this in com-

bination with Theorem 5.1 to prove the first statement:

E[|{v | v = LS∗(v)}|] = n

∫ ∞
`(v∗)

1 · (1− x)s dx =
n

s+ 1
.

To prove the second statement, first we use induction on the
expression in Lemma 5.2 to show that for all v ∈ A,

E[|LS−∗(v)|] =
∞∑
k=0

E[|LS−k(v)|]

=

∞∑
k=0

(
sk(1− `(v))sk ·

k−1∏
i=0

bi
is+ 1

)
.

We plug this into the second part of Theorem 5.1:

E[|{v | `(LS∗(v))− `(v∗) ≤ ε}|]

= n

∫ `(v∗)+ε

`(v∗)

1 · (1− x)s
∞∑
k=0

E[|LS−k(x)|]dx

= n

∫ `(v∗)+ε

`(v∗)

(1− x)s
∞∑
k=0

(
sk(1− x)sk

k−1∏
i=0

bj
is+ 1

)
dx

= n

∞∑
i=0

si (1− (1− ε)(i+1)s+1
)

(i+ 1)s+ 1
·
i−1∏
j=0

bj
js+ 1

 .

In the next section, we show that our theoretical results can
be used to predict the performance of local search.

Simulation Results. We run a local search simulation us-
ing the equations in the previous section as a means of ex-
perimentally validating our theoretical results with real data
(we use NASBench-201). In order to use these equations,
first we must approximate the local and global probability
density functions of the three datasets in NASBench-201.
We note that approximating these distributions are not fea-
sible for large search spaces; the purpose of our theoretical
results are meant only to provide a deeper understanding
of local search and lay the groundwork for future studies.
We start by visualizing the probability density functions of
the three datasets. See Figure 5.2. We see the most density
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Figure 5.1: Histogram of validation losses for CIFAR-100
(top) and ImageNet16-120 (bottom) in NASBench-201, fit-
ted with the best values of σ and v in Equation 5.3.

along the diagonal, meaning that architectures with similar
accuracy are more likely to be neighbors. Therefore, we can
approximate the PDFs by using the following equation:

pdf(u) =
1

σ
√
2π
· e−

1
2 (

u−v
σ )

2

∫ 1

0
1

σ
√
2π
· e−

1
2 (

w−v
σ )

2

dw
(5.3)

This is a normal distribution with mean u− v and standard
deviation σ, truncated so that it is a valid PDF in [0, 1]. We
note that prior work has also modeled architecture accura-
cies in NAS with a normal distribution [Real et al., 2019]. To
model the global PDF for each dataset, we plot a histogram
of the validation losses and match them to the closest-fitting
values of σ and v. See Figure 5.1. The best values of σ
are 0.18, 0.1, and 0.22 for CIFAR-10, CIFAR-100, and
ImageNet16-120, respectively, and the best values for v
are all 0.25. To model the local PDF for each dataset, we
compute the random walk autocorrelation (RWA) on each
dataset. RWA is defined as the autocorrelation of the accura-
cies of points visited during a random walk on the neighbor-
hood graph [Weinberger, 1990, Stadler, 1996], and was used
to measure locality in NASBench-101 in prior work [Ying
et al., 2019]. For the full details of the steps taken to model
the datasets in NASBench-201, see Appendix A.

Now we use Theorem 5.1 to compute the probability that

a randomly drawn architecture will converge to within ε of
the global minimum when running local search. Since there
is no closed-form solution for the expression in Lemma 5.2,
we compute Theorem 5.1 up to the 5th preimage. We com-
pare this to the experimental results on NASBench-201. We
also compare the performance of the NASBench-201 search
space with validation losses drawn uniformly at random, to
the performance predicted by Lemma 5.3. Finally, we com-
pare the preimage sizes of the architectures in NASBench-
201 with randomly drawn validation losses to the sizes
predicted in Lemma 5.2. See Figure 4.2. Our theory ex-
actly predicts the performance and the preimage sizes of
the uniform random NASBench-201 dataset. On the three
image datasets, our theory predicts the performance fairly
accurately, but is not perfect due to our assumption that the
distribution of accuracies is unimodal.

6 CONCLUSION

We show that the difficulty of NAS scales dramatically with
the level of noise in the architecture evaluation pipeline,
on popular NAS benchmarks (NASBench-101, 201, and
301). In particular, the simplest local search algorithm is
sufficient to outperform popular state-of-the-art NAS algo-
rithms when the noise in the evaluation pipeline is reduced
to a minimum. We further show that as the noise increases,
the number of local minima increases, and the basin of at-
traction to the global minimum shrinks. This suggests that
when the noise in popular NAS benchmarks is reduced to a
minimum, the number of local minima decreases, making
the loss landscape easy to traverse. Since local search is a
simple technique that often gives competitive performance,
we encourage local search to be used as a benchmark for
NAS in the future. We also suggest denoising the training
pipeline whenever possible in future NAS applications.

Motivated by our findings, we give a theoretical study which
explains the performance of local search for NAS on dif-
ferent search spaces. We define a probabilistic graph opti-
mization framework to study NAS problems, and we give
a characterization of the performance of local search for
NAS in our framework. Our results improve the theoretical
understanding of local search and lay the groundwork for
future studies. We validate this theory with experimental
results. Investigating more sophisticated variants of local
search for NAS such as Tabu search, simulated annealing,
or multi-fidelity local search, are interesting next steps.
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Figure 5.2: Probability density function for CIFAR-10, CIFAR-100, and ImageNet16-120 on NASBench-201. For each
coordinate (u, v), a darker color indicates that architectures with accuracy u and v are more likely to be neighbors.
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