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Abstract

We propose a new generative modeling technique
for learning multidimensional cumulative distri-
bution functions (CDFs) in the form of copu-
las. Specifically, we consider certain classes of
copulas known as Archimedean and hierarchical
Archimedean copulas, popular for their parsimo-
nious representation and ability to model different
tail dependencies. We consider their representa-
tion as mixture models with Laplace transforms of
latent random variables from generative neural net-
works. This alternative representation allows for
computational efficiencies and easy sampling, es-
pecially in high dimensions. We describe multiple
methods for optimizing the network parameters.
Finally, we present empirical results that demon-
strate the efficacy of our proposed method in learn-
ing multidimensional CDFs and its computational
efficiency compared to existing methods.

1 INTRODUCTION

Copulas are a special class of cumulative distribution func-
tions (CDFs) that model the dependencies between multiple
random variables in isolation from their marginals [Nelsen,
2010, Joe, 2014]. Copulas have found applications in many
areas, including hydrology [Genest and Favre, 2007] and fi-
nance [Cherubini et al., 2004]. In finance, for example, more
expressive modeling using copulas of the joint distribution
of two stocks can result in more pairs trading opportuni-
ties [Stander et al., 2013, Liew and Wu, 2013].

In machine learning, copulas have been used to create new
distributions, increasing the flexibility of modeling multi-
variate dependencies [Wilson and Ghahramani, 2010, Eli-
dan, 2010, Huang and Frey, 2011, Tagasovska et al., 2019,
Wiese et al., 2019, Kamthe et al., 2021, Chilinski and Silva,
2020]. The utility of copulas can be attributed to their pow-

erful representation capabilities, ease of use and intuitive
decomposition into marginals and a dependence function.
However, many challenges related to parameterization and
estimation are still unsolved.

A particularly useful class of copulas are known as
Archimedean copulas, which endow a specific structure
for representing the dependence function in terms of a
one-dimensional generator function. Most work involving
Archimedean copulas consider different parameterizations
for this generator function. Parameterizations of the gener-
ator function have generally been limited to simple forms,
since complicated generator functions lead to difficulties in
computing the copula density, a necessary component for
maximum likelihood estimation. Ling et al. [2020] proposed
parameterizing the generator function as a neural network,
but ran into computational difficulties for dimensions greater
than 5. We consider an alternative construction based on a
mixture representation with latent random variables, first
proposed by Marshall and Olkin [1988], wherein we param-
eterize a latent distribution, whose Laplace transform acts
as the generator function, with a generative neural network.
Depending on the application, this latent variable is some-
times known as a resilience or frailty parameter. Using this
construction, we can scale computations to higher dimen-
sions and bypass numerical issues involved with automatic
differentiation.

Employing the Laplace transform to a learned latent model
also provides important benefits beyond computational ef-
ficiency and numerical stability. When sampling from the
copula using established approaches [Marshall and Olkin,
1988, McNeil, 2008, Hering et al., 2010], knowledge of
the latent distribution is necessary. Parameterizing the la-
tent distribution with a generative neural network allows for
efficient sampling after training.

Archimedean copulas can also be extended to the so-called
hierarchical (or nested) Archimedean copulas, where multi-
ple generators are used in conjunction to increase expressive-
ness of the model [Joe, 1997]. This architecture mitigates a
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 central deficiency of vanilla Archimedean copulas — the as-
sumed symmetry in the dependence structure. We use a con-
struction based on Lévy subordinators, i.e. non-decreasing
Lévy processes such as the compound Poisson process, first
proposed by Hering et al. [2010], and parameterize the Lévy
subordinators using generative neural networks. We also use
Laplace transforms as in the vanilla Archimedean copula to
obtain the generator functions and subsequently recover a
richer class of copulas.

RELATED WORK

Our part of work on Archimedean copulas is related to [Ling
et al., 2020], where a neural network is proposed to repre-
sent the generator function of an Archimedean copula. We
propose instead a generative neural network to represent the
latent random variable, whose Laplace transform gives the
generator function of the Archimedean copula. We then ap-
proximate the Laplace transform with the empirical Laplace
transform using samples from the generative neural network.
We note that there exist prior work that replace the Laplace
transform with the empirical Laplace transform, such as
those on the estimation of compound Poisson processes
and distribution goodness-of-fit tests. These can be found
in [Csörgő and Teugels, 1990, Henze et al., 2012], but do
not consider/employ neural networks.

Existing semiparametric methods for Archimedean copulas
are mainly concentrated on two dimensional cases, and their
efficacy in higher dimensions remains unclear [Hernández-
Lobato and Suárez, 2011, Hoyos-Argüelles and Nieto-
Barajas, 2020]. Other work on the mixture representation
with a latent random variable is limited to cases of known
distributions that can be sampled and for which the Laplace
transform can be calculated, since it is often challenging
to find and sample from a distribution corresponding to
arbitrary Laplace transforms [McNeil, 2008, Hofert, 2008].

Our part of work on hierachical Archimedean copulas is
inspired by [Hering et al., 2010] who recognized that suffi-
cient nesting conditions of hierarchical Archimedean cop-
ulas may be satisfied using Lévy subordinators. We then
let the increments associated with the Lévy measure of the
Lévy subordinator be the output of a generative neural net-
work, and compute its integral in the Laplace exponent as
an expectation with samples from the generative neural net-
work. Related work parameterizing the Lévy measure with
a neural network can be found in [Xu and Darve, 2020], but
the integral is approximated as a Riemann sum, and it does
not relate to hierarchical Archimedean copulas.

Other related works combine one-parameter families of
Archimedean copulas, usually in a homogeneous manner,
where all components are from the same family. It is chal-
lenging to combine Archimedean copulas from different
families due to the nesting conditions. For example, the

Clayton and Gumbel copulas are not compatible for nest-
ing [McNeil, 2008]. Thus, related works on heterogeneous
Archimedean copulas have resulted in limited combinations
of different families [McNeil, 2008, Hofert, 2008, Savu and
Trede, 2010, Okhrin et al., 2013, Górecki et al., 2017].

MAIN CONTRIBUTIONS

First, we propose to use a generative neural network to rep-
resent the latent random variable, whose Laplace transform
provides the generator function of an Archimedean copula.
This allows approximation of the Laplace transform with its
empirical version through samples from the generative neu-
ral network. Computing higher-order derivatives using the
properties of the empirical Laplace transform additionally
allows scalability to higher-dimensional data. Second, we ex-
tend this concept to modeling hierarchical Archimedean cop-
ulas with Lévy subordinators. We represent the Lévy mea-
sure of a Lévy subordinator with a generative neural network
and compute its Laplace exponent using samples from the
generative neural network. We then propose three methods
for training: maximum likelihood with the copula density,
goodness-of-fit with the Cramér-von Mises statistic, and ad-
versarial training by minimizing a divergence between true
samples from data and fake samples from the copula. Finally,
we adapt existing Marshall-Olkin type efficient sampling
algorithms to our parameterization with generative neural
networks. The source code for this paper may be found at
https://github.com/yutingng/gen-AC.

OUTLINE

Section 2 provides the mathematical background on cop-
ulas, Archimedean copulas and hierarchical Archimedean
copulas. Section 3 discusses modeling, sampling and train-
ing generative Archimedean copulas. Section 4 extends
the construction to hierarchical Archimedean copulas. Sec-
tion 5 shows our experiment results on learning known
Archimedean and hierarchical Archimedean copulas that
have different tail dependencies. We also compare its flex-
ibility in fitting real-world data to commonly-used one-
parameter families. In addition, we show its computational
efficiency and sampling in higher-dimensions. Finally, we
conclude the paper in Section 6.

2 BACKGROUND

We begin by describing the necessary background on copu-
las. A copula is a multivariate cumulative distribution func-
tion (CDF) where all univariate margins are uniform, i.e. it
is the CDF of a vector of dependent uniform random vari-
ables. Multidimensional dependence modeling with copulas
is based on a theorem due to Sklar [1959] which gives a gen-
eral representation of a multivariate CDF as a composition
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 of its univariate margins and a copula.

Theorem 1 (Sklar’s theorem). For a d−variate cumulative
distribution function F , with jth univariate margin Fj , and
jth quantile function F−1j , the copula associated with F is
a cumulative distribution function C : [0, 1]d → [0, 1] with
U(0, 1) margins satisfying:

F (x) = C(F1(x1), · · · , Fd(xd)), x ∈ Rd, (1)

C(u) = F (F−11 (u1), · · · , F−1d (ud)), u ∈ [0, 1]d. (2)

In addition, if F is continuous, then C is unique.

Moreover, due to Sklar’s theorem, every CDF endows
such a decomposition. Thus, copulas allow characterization
of the multivariate dependence between the random vari-
ables X1, · · · , Xd separately from their univariate margins
F1, · · · , Fd [Nelsen, 2010, Joe, 2014].

2.1 ARCHIMEDEAN COPULAS

An important class of copulas are the Archimedean copulas,
due to their ease of construction and ability to represent dif-
ferent tail dependencies. An Archimedean copula is defined
as:

C(u) = ϕ
(
ϕ−1(u1) + · · ·+ ϕ−1(ud)

)
, (3)

with density:

c(u) =
∂dC(u1, · · · , ud)
∂u1 · · · ∂ud

(4)

=
ϕ(d)(ϕ−1(u1) + · · ·+ ϕ−1(ud))∏d

i=1 ϕ
′(ϕ−1(ui))

.

For the above expression to be a valid copula for all d, the
one-dimensional function ϕ : [0,∞)→ [0, 1], known as the
generator of the Archimedean copula must satisfy:

• ϕ(0) = 1, ϕ(∞) = 0,

• ϕ is completely monotone,
i.e. (−1)kϕ(k) ≥ 0 for all k ∈ {0, 1, 2, · · · }.

The criteria that ϕ is completely monotone, i.e. its deriva-
tives change signs, guarantees positiveness of the copula
density [Kimberling, 1974]. The class of completely mono-
tone ϕ coincides with the class of Laplace-Stieltjes trans-
forms (henceforth simply Laplace transforms) of a positive
random variable [Bernstein, 1929, Widder, 2015].

Theorem 2 (Bernstein [1929] and Widder [2015]). ϕ is
completely monotone and ϕ(0) = 1 if and only if ϕ is the
Laplace transform of a positive random variable,

ϕ(x) =

∫ ∞
0

e−xsdFM (s), (5)

where M > 0 is a positive random variable with Laplace
transform ϕ.

Conversely, a probabilistic construction of the Archimedean
copula as a mixture model, with the variables being condi-
tionally independent given a positive latent random variable,
leads to the Laplace transform representation for ϕ. For a
given d, ϕ may come from a broader class of functions than
Laplace transforms [McNeil and Nešlehová, 2009]. How-
ever, if ϕ is not a Laplace transform, the simple mixture rep-
resentation fails [Marshall and Olkin, 1988]. In the mixture
representation, the latent variable, depending on its applica-
tion, is known as a resilience or frailty parameter [Marshall
and Olkin, 1988, Joe, 1997]. Common Archimedean copu-
las such as the Ali-Mikhail-Haq, Clayton, Frank, Gumbel
and Joe copulas can be respectively derived from geometric,
gamma, logarithmic, stable, and Sibuya latent distributions.
The mixture representation also leads to efficient sampling
algorithms [Marshall and Olkin, 1988, McNeil, 2008].

We restate the probabilistic construction and sampling algo-
rithm in the supplementary material.

2.2 HIERARCHICAL ARCHIMEDEAN COPULAS

While Archimedean copulas have been widely employed,
the functional symmetry of the Archimedean copula implies
exchangeability of the underlying dependence structure,
which is sometimes not realistic. Hierarchical (or nested)
Archimedean copulas are popular for overcoming this draw-
back [Joe, 1997].

Cϕ0

Cϕ1 Cϕ2 CϕJ︷ ︸︸ ︷
u1,1, ..., u1,d1

︷ ︸︸ ︷
uJ,1, ..., uJ,dJ

Figure 1: Hierarchical Archimedean copula with J nested,
possibly hierarchical, Archimedean copulas.

In this case, the copula can be written as:

C(u) = Cϕ0
(Cϕ1

(u1), · · · , CϕJ
(uJ)), (6)

where Cϕj
are nested, possibly hierarchical, Archimedean

copulas with generators ϕj , inputs uj = [uj,1, · · · , uj,dj ],
j ∈ {1, · · · , J}, and u = [u1, · · · ,uJ ], d1 + · · ·+ dJ = d.

For the above expression to be a valid copula, additional
sufficient nesting conditions, derived from the nested mix-
ture representation, first given in [Joe, 1997] and restated
in [McNeil, 2008] for nesting to arbitrary depth are:

• ϕj for all j ∈ {0, 1, · · · , J} are completely monotone,

• (ϕ−10 ◦ ϕj)′ for j ∈ {1, · · · , J} are completely mono-
tone.



 The criteria that (ϕ−10 ◦ϕj)′ are completely monotone come
from the composition of an outer generator ϕ0 and an inner
generator ϕj to produce a completely monotone Laplace
transform nested generator of the form e−Mϕ−1

0 ◦ϕj , where
M is distributed with Laplace transform ϕ0 [Joe, 1997,
McNeil, 2008]. This criteria is addressed in [Hering et al.,
2010] using Lévy subordinators, i.e. non-decreasing Lévy
processes such as the compound Poisson process, by rec-
ognizing that the Laplace transform of Lévy subordinators
at a given ‘time’ t ≥ 0 have the form e−tψj , where the
Laplace exponent ψj has completely monotone derivative.
Conversely, a probabilistic construction by combining Lévy
subordinators evaluated at common ‘time’ t = M , leads to
a well-defined hierarchical Archimedean copula with an ef-
ficient sampling algorithm [Hering et al., 2010]. We restate
the probabilistic construction from [Hering et al., 2010] in
the supplementary material.

Thus for a given outer generator ϕ0, a compatible inner
generator ϕj can be modeled as a composition of the outer
generator and the Laplace exponent ψj of a Lévy subordi-
nator:

ϕj(x) = (ϕ0 ◦ ψj)(x), (7)

where the Laplace exponent ψj : [0,∞) → [0,∞) of a
Lévy subordinator has a convenient representation with drift
µj ≥ 0 and Lévy measure νj on (0,∞) due to the Lévy-
Khintchine theorem [Sato, 1999]:

ψj(x) = µjx+

∫ ∞
0

(1− e−xs)νj(ds). (8)

A popular Lévy subordinator is the compound Poisson pro-
cess with drift µj ≥ 0, jump intensity βj > 0 and jump size
distribution determined by its Laplace transform ϕMj . In
this case, the Laplace exponent has the following expres-
sion:

ψj(x) = µjx+ βj(1− ϕMj
(x)) (9)

= µjx+ βj(1−
∫ ∞
0

e−xsdFMj (s)),

where Mj > 0 is a positive random variable with Laplace
transform ϕMj

characterizing the jump sizes of the com-
pound Poisson process.

In addition, we choose µj > 0 to satisfy the condition
ϕj(∞) = (ϕ0 ◦ ψj)(∞) = 0 such that ϕj is a valid genera-
tor of an Archimedean copula.

3 GENERATIVE ARCHIMEDEAN
COPULAS

Motivated by the probabilistic construction of the
Archimedean copula, we propose to learn the distribution
of the positive latent variable by approximating its Laplace
transform using samples from a generative neural network.

3.1 MODELING THE LATENT VARIABLE WITH
A GENERATIVE NEURAL NETWORK

We let M be the output of a generative neural network such
that samples M ∼ FM are computed as M = G(ε; θ),
where G(.; θ) represents the generative neural network
with parameters θ and ε is a source of randomness. Un-
like the modeling of monotone functions with neural net-
works [Chilinski and Silva, 2020], there is no restriction
on the weights and intermediate activations of G(.; θ). In
this preliminary work, the network architecture is a multi-
layer perceptron. To guarantee that M is a positive random
variable, we use exp(.) as the output activation.

We then approximate the Laplace transform with its empiri-
cal version using L samples of M from G(.; θ) as:

ϕ(x) =

∫ ∞
0

e−xsdFM (s) = EM [e−Mx] ≈ 1

L

L∑
l=1

e−Mlx.

(10)

Derivatives of the Laplace transform are similarly approxi-
mated with their empirical version as:

ϕ(k)(x) = EM [(−M)ke−Mx] ≈ 1

L

L∑
l=1

(−Ml)
ke−Mlx.

(11)

Subsequently, we replace instances of ϕ and ϕ(k) in the
copula distribution, density and sampling algorithm with
their sample approximations computed as in (10) and (11).

3.2 GENERATING SAMPLES FROM THE
ARCHIMEDEAN COPULA

We modify existing Marshall-Olkin type sampling algo-
rithms [Marshall and Olkin, 1988, McNeil, 2008] to our
parameterization with generative neural networks, as de-
tailed in Algorithm 1 and Figure 2, on the next page.

This sampling method is efficient as it only requires sam-
pling unit exponential random variables Ej ∼ Exp(1), j ∈
{1, · · · , d} and a latent random variable M = G(ε; θ). In
addition, unlike the conditional sampling method, this sam-
pling method does not require differentiation of the copula
distribution to get the conditional distribution and does not
require inversion of the conditional distribution.

3.3 TRAINING METHODS

An important consideration when modeling CDFs is the
optimization procedure for fitting the model to data. We
describe multiple methods for fitting the model to data with
various performance and efficiency trade-offs.



 Algorithm 1 Sampling Generative Archimedean Copulas
Input: G(.; θ),

1: Sample M as M = G(ε; θ).
2: Sample i.i.d. Ej ∼ Exp(1), j ∈ {1, · · · , d}.
3: Approximate ϕ with samples {Ml}Ll=1, where Ml =
G(εl; θ), as in (10).

4: Compute U where Uj = ϕ(Ej/M), j ∈ {1, · · · , d}.
Output: U.

G(., θ)

{εl}Ll=1

{Ml}Ll=1 ϕ(x) ≈ 1
L

∑L

l=1
e−Mlx

ε

M

Uj = ϕ(Ej/M), j = 1, ..., d

Ej ∼i.i.d. Exp(1)

Generative neural network

Marshall-Olkin sampling

U = (U1, ..., Ud) : sample from the copula

ϕ(.)

Figure 2: Sampling Archimedean copulas using generative
neural networks and Marshall-Olkin type sampling.

3.3.1 Training with Maximum Likelihood

We consider training through maximum likelihood by min-
imizing the negative log likelihood with backpropagation
gradient descent on the model parameters, similar to the
proposal in [Ling et al., 2020]. However, since the copula
models the CDF, differentiation is required to obtain the
copula density. Unlike [Ling et al., 2020] that computes the
copula density from the copula distribution using automatic
differentiation, we compute the copula density from its ana-
lytical expression in (4) using the properties of the Laplace
transform for computing higher-order derivatives in (11).
For increasing dimensions, computing higher-order deriva-
tives using the Laplace transform representation instead of
automatic differentiation leads to a significant speed up in
computation.

For the computation of ϕ−1 and its derivative with respect
to model parameters, we borrow the method in [Ling et al.,
2020]. The inverse is computed using Newton’s root-finding
method. The derivatives are computed from the derivatives
of ϕ then supplemented to backpropagation.

3.3.2 Training with Goodness-of-Fit

To circumvent computing the copula density, the model
may also be fitted to data via minimum distance criterions
used in goodness-of-fit tests [Genest et al., 2009]. Though
not statistically efficient compared to maximum likelihood
estimation, minimum distance estimation is significantly
less computationally intensive.

We consider the Cramér-von Mises statistic [Cramér, 1928]
to measure a discrepancy between the model copula Cθ and
the empirical copula CN :

SN =
1

N

N∑
i=1

(Cθ(ui)− CN (ui))
2, (12)

where ui is an observation of the margins, N is the number
of observations and CN is the empirical copula given by:

CN (u) =
1

N

N∑
i=1

1{ui,1 ≤ u1, · · · , ui,d ≤ ud}. (13)

3.3.3 Adversarial Training with Samples

An alternative way to train the model is by minimizing a di-
vergence between true samples from data and fake samples
from the model copula, similar to generative adversarial
networks (GANs) [Goodfellow et al., 2014]. In this case,
we solve the minimax problem in GANs where the gener-
ating network must satisfy an Archimedean copula. This is
another method that allows training without computing the
copula density.

We create a discriminative neural network D(.;φ) with pa-
rameters φ and sigmoid(.) output activation to distinguish
between true samples from data and fake samples from the
copula. We then minimize the Jensen-Shannon loss between
true and fake samples as in [Goodfellow et al., 2014]:

min
θ

max
φ

EU∼data[log(D(U ;φ))]+EŨ∼C [log(1−D(Ũ ;φ))],

(14)
where Ũ ∼ C is generated via the sampling method de-
scribed in Algorithm 1 using the latent random variable
represented as the output of the generative neural network
G(.; θ) with parameters θ as discussed in Section 3.1.

4 GENERATIVE HIERARCHICAL
ARCHIMEDEAN COPULAS

In the following, we extend the application of generative
neural networks to hierarchical Archimedean copulas. We
present our results for two levels of hierarchy, but our con-
struction extends to nesting with more levels.



 4.1 MODELING THE LAPLACE EXPONENT
WITH A GENERATIVE NEURAL NETWORK

For a given outer generator ϕ0, the inner generator ϕj , j ∈
{1, · · · , J} is obtained as the composition ϕj = ϕ0 ◦ ψj ,
as in (7), where ψj is the Laplace exponent of a compound
Poisson process with Lévy-Khintchine representation, as
in (9). We let the drift µj > 0 and the jump intensity βj > 0
be trainable parameters with exp(.) output activation. We
let the jump size Mj > 0 be the output of a generative neu-
ral network G(.; θj) with parameters θj and exp(.) output
activation. We then compute the Laplace transform ϕMj and
its derivatives ϕ(k)

Mj
using samples from G(.; θj) as in (10)

and (11).

4.2 GENERATING SAMPLES FROM THE
HIERARCHICAL ARCHIMEDEAN COPULA

We modify the Marshall-Olkin type algorithm given in [Her-
ing et al., 2010] to work with our parameterization using
generative neural networks. We first describe sampling of
a compound Poisson process in Algorithm 2. We then de-
scribe sampling of a generative hierarchical Archimedean
copula in Algorithm 3. A sample from the hierarchical
Archimedean copula is obtained by combining compound
Poisson processes evaluated at a common ‘time’ t = M ,
where M is the random variable with distribution given by
the Laplace transform outer generator ϕ0.

Algorithm 2 Sampling compound Poisson process with
jump sizes parameterized by generative neural network
Input: t, µj , βj , G(.; θj),

1: Sample Nj(t) ∼ Pois(βjt), i.e. the number of jumps
by time t of a Poisson random variable with rate βj .

2: Sample Nj(t) samples of Mj from G(.; θj).
3: Compute Λj(t) = µjt+

∑Nj(t)
i=1 Mj,i.

Output: Λj(t).

4.3 TRAINING WITH GOODNESS-OF-FIT AND
MAXIMUM LIKELIHOOD

We first fit the outer generator ϕ0, fix it, then fit the inner
generators ϕj = ϕ0 ◦ ψj . Fixing the outer generator then
optimizing the inner generator provides additional numeri-
cal stability during training. In our experiments, the outer
generator was trained using minimium distance estimation
with the empirical copula based Cramér-von Mises statis-
tic in (12) and empirical copulas on Cϕj

. An alternative
method may be to train the outer generator using a compos-
ite likelihood with bivariate margins since bivariate margins
are Archimedean with generator given by the outer gen-
erator. The inner generators were trained using maximum
likelihood estimation with copula densities cϕj

in (4).

Algorithm 3 Sampling Generative Hierarchical
Archimedean Copulas
Input: G(.; θ0), {µj , βj , G(.; θj)}Jj=1,

1: Sample t = M from G(.; θ0).
2: Approximate ϕ0 with samples from G(.; θ0), as in (10).

3: for j ∈ {1, · · · , J} do
4: Sample Λj(M), the compound Poisson process at

t = M , following Algorithm 2.
5: Approximate ψj with samples from G(.; θj), as

in (10).
6: end for

7: Sample i.i.d. Ej,i ∼ Exp(1), j ∈ {1, · · · , J}, i ∈
{1, · · · , dj}.

8: Compute U = (U1,1, · · · , UJ,dJ ) as Uj,i = (ϕ0 ◦
ψj)(Ej,i/Λj(M)), j ∈ {1, · · · , J}, i ∈ {1, · · · , dJ}.

Output: U.

5 EXPERIMENTS

5.1 GENERATIVE ARCHIMEDEAN COPULA

5.1.1 Learning Bivariate Copulas with Different Tail
Dependencies and Fitting Real-World Data

Following the experiment setup in [Ling et al., 2020], we
consider the Clayton, Frank, and Joe copulas, chosen for
their different tail dependencies, and the following real-
world data sets: Boston housing, Intel-Microsoft (INTC-
MSFT) stocks and Google-Facebook (GOOG-FB) stocks.
We applied the three training methods discussed earlier:
maximum likelihood, goodness-of-fit and adversarial train-
ing. All training methods were implemented in PyTorch and
converged within 10k epochs. Experiment details are given
in the supplementary material.

The negative log-likelihoods from learning known copulas
are reported in Table 1. We use the following shorthands
‘GT’, ‘ACNet’, ‘MLE’, ‘CvM’, ’GAN’ to respectively de-
note ground truth, ACNet [Ling et al., 2020], and gener-
ative Archimedean copulas trained with maximum likeli-
hood, goodness-of-fit and adversarial training. The negative
log-likelihoods from fitting real-world data are reported
in Table 2, where the log-likelihood of the best-fit single
parameter copula (chosen from Clayton, Frank, Joe and
Gumbel, as in [Ling et al., 2020]), with shorthand ‘BF’ is re-
ported in place of the ground truth. The proposed generative
Archimedean copulas achieved comparable performance
to ACNet in terms of log-likelihood scores. In addition,
out of the three methods, training with maximum likelihood
achieved the best results; however, its increased computation
cost, due to computing derivatives and inverses, motivates
the use of the proposed alternative losses.



 
Table 1: Negative log-likelihoods of learning known copulas

Benchmark Generative AC
Dataset GT ACNet MLE CvM GAN

Clayton -0.94 -0.92 -0.89 -0.86 -0.89
Frank -0.90 -0.88 -0.89 -0.86 -0.89

Joe -0.51 -0.49 -0.48 -0.35 -0.47

Table 2: Negative log-likelihoods of fitting real-world data

Benchmark Generative AC
Dataset BF ACNet MLE CvM GAN

Boston -0.30 -0.27 -0.29 -0.30 -0.28
INTC-MSFT -0.19 -0.20 -0.16 -0.15 -0.17

GOOG-FB -0.93 -0.96 -0.95 -0.92 -0.94

Samples from the learned copulas are compared to the
ground truth in Figure 3. We additionally note the differ-
ences in sampling time between our method and the condi-
tional sampling method used in ACNet [Ling et al., 2020].
The time to generate 3000 samples using our method was on
average 3.8× 10−2 seconds. In comparison, the conditional
sampling method via automatic differentiation of the copula
distribution followed by inversion of the conditional distri-
bution, takes on average 1.98×10+2 seconds, the difference
on the order of 3 magnitudes.

5.1.2 Learning Latent Distributions

The generative neural network was able to learn the latent
Gamma distributions whose Laplace transforms give the
generator functions of Clayton copulas. We show the learned
latent distributions for Clayton copulas with parameters 1,
3, 5, 8 in Figure 4.

5.1.3 Learning Higher-Dimensional Copulas

While ACNet faces numerical issues for dimensions d ≥ 5
due to repeated automatic differentiation when computing
the copula density [Ling et al., 2020], the Laplace transform
representation allows efficient computation of higher-order
derivatives without automatic differentiation.

In addition to the bivariate copulas in Section 5.1.1, we fitted
Clayton, Frank and Joe copulas for 10 and 20 dimensions.
The negative log-likelihoods are given in Table 3. When
compared to the ground truth negative log-likelihoods for
10-dimensional and 20-dimensional datasets, the learned
negative log-likelihoods were off by 2%. During our experi-
ments, we could not obtain a reasonably trained ACNet for
high dimensions due to the computational complexity.

Moreover, while the CPU runtimes of ACNet for computing

(a)

(b)

Figure 3: Samples from ground truth and learned copulas
fitted with maximum likelihood, goodness-of-fit and adver-
sarial training. In (a), the copulas are Clayton, Frank and
Joe. In (b), the datasets are Boston housing, Intel-Microsoft
stocks and Google-Facebook stocks.

Figure 4: Gamma latent distributions of Clayton copulas
with parameters 1, 3, 5, 8, learned in solid blue; ground truth
in dashed black.

the copula density increases exponentially with dimensions,
the CPU runtimes of computing the copula density using
the Laplace transform representation increases linearly with
dimensions, as shown in Figure 5.



 
Table 3: Negative log-likelihoods of learning higher-
dimensional copulas

Ground Truth Generative AC
Dataset 10-dim 20-dim 10-dim 20-dim

Clayton -10.6 -23.2 -10.4 -22.8
Frank -10.4 -23.1 -10.4 -23.1

Joe -5.4 -12.2 -5.3 -12.0

Figure 5: CPU runtimes for computing the likelihoods of
3000 samples from generative Archimedean copula in solid
blue; ACNet [Ling et al., 2020] in dashed black.

5.2 HIERARCHICAL ARCHIMEDEAN COPULA

We demonstrate that our model can represent more complex
dependence structures, beyond the exchangeability implied
by the functional symmetry of Archimedean copulas, and
learn hierarchical Archimedean copulas.

We experiment with fitting a four-variate hierarchical
Archimedean copula Cϕ0(Cϕ1(u1, u2), Cϕ2(u3, u4)). The
ground truth was generated using the state-of-the-art HA-
Copula Toolbox [Górecki et al., 2017]. Samples from the
learned copulas are compared to the ground truth in Fig-
ure 6. In (a),Cϕ0

, Cϕ1
, Cϕ2

are Clayton copulas with param-
eters 1, 3, and 8. We let the outer generator be a generative
Archimedean copula. In (b), Cϕ0 , Cϕ1 , Cϕ2 are Clayton,
‘12’ and ‘19’ with parameters 0.5, 3, and 1. Since our model
is compatible with outer generators of other forms, we let the
outer generator be a one-parameter Clayton copula instead
of a generative Archimedean copula.

6 CONCLUSIONS

We modeled Archimedean and hierarchical Archimedean
copulas with generative neural networks based on their prob-
abilistic constructions as mixture and nested mixture models
with latent random variables. We gave efficient sampling al-
gorithms for sampling from the generative Archimedean and
hierarchical Archimedean copulas. We also described three
methods for fitting the model to data: maximum likelihood
with the copula density, goodness-of-fit with the empirical

(a)

(b)

Figure 6: Samples, displayed as mirrors on the diagonal,
from generative hierarchical Archimedean copulas above
in blue and from ground truth below in black. Each plot
is a bivariate margin (Ui, Uj). In (a), a homogeneous
nested Clayton copula. In (b), a heterogeneous hierarchi-
cal Archimedean copula with a Clayton outer generator
combined with inner generators ‘12’ and ‘19’, numbering
following [Nelsen, 2010, Górecki et al., 2017]

.



 copula-based Cramér von-Mises statistic and adversarial
training by minimizing a divergence between true samples
from data and fake samples from the copula. Empirically,
the generative Archimedean copula was able to learn known
copulas with different tail dependencies and fit real-world
data. We also showed an extension to higher-dimensional
data using hierarchical Archimedean copulas. Future work
includes an end-to-end application such as pairs trading and
architecture selection for the generative neural network.
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