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Abstract

Batch Bayesian optimisation (BO) is a success-
ful technique for the optimisation of expensive
black-box functions. Asynchronous BO can re-
duce wallclock time by starting a new evaluation
as soon as another finishes, thus maximising re-
source utilisation. To maximise resource alloca-
tion, we develop a novel asynchronous BO method,
AEGiS (Asynchronous ε-Greedy Global Search)
that combines greedy search, exploiting the surrog-
ate’s mean prediction, with Thompson sampling
and random selection from the approximate Pareto
set describing the trade-off between exploitation
(surrogate mean prediction) and exploration (sur-
rogate posterior variance). We demonstrate empir-
ically the efficacy of AEGiS on synthetic bench-
mark problems, meta-surrogate hyperparameter
tuning problems and real-world problems, showing
that AEGiS generally outperforms existing meth-
ods for asynchronous BO. When a single worker is
available performance is no worse than BO using
expected improvement.

1 INTRODUCTION

Bayesian Optimisation (BO) is a popular sequential ap-
proach for optimising time-consuming or costly black-box
functions that have no closed-form expression or derivative
information [Brochu et al., 2010, Snoek et al., 2012]. BO
comprises two main steps which are repeated until conver-
gence or the budget is exhausted. Firstly, a surrogate model
is constructed using previous evaluations; this is typically
a Gaussian process (GP), due to its strength in uncertainty
quantification and function approximation [Rasmussen and
Williams, 2006, Shahriari et al., 2016]. Secondly, an ac-
quisition function is optimised to select the next location to
expensively evaluate. Such functions attempt to balance the

exploitation of locations with a good predicted value with
the exploration of locations with high uncertainty.

In real-world problems it is often possible to use hardware
capabilities to run multiple evaluations in parallel. For ex-
ample, the number of hyperparameter configurations that
can be evaluated in parallel when training neural networks
[Chen et al., 2018] is only limited by the computational
resources available. The desire to speed up optimisation
wallclock time through parallel evaluation led to the devel-
opment of parallel BO in which q locations are jointly selec-
ted to be evaluated synchronously. It has been successfully
applied in many areas such as drug discovery [Hernández-
Lobato et al., 2017], heat treatment, [Gupta et al., 2018],
and hyperparameter configuration [Kandasamy et al., 2018].

When the runtime for evaluations varies, such as when op-
timising the number of units in the layers of a neural net-
work, or indeed the number of layers themselves, synchron-
ous parallel approaches will result in resource underutilisa-
tion because all evaluations must finish before the next q
locations can be suggested. To counteract this, asynchron-
ous BO approaches have been proposed that allow for the
evaluation of functions asynchronously; i.e., as soon as an
evaluation has completed, another can be submitted. In order
to take into account the uncertainty in the surrogate model at
and around locations which are still being evaluated, a num-
ber of methods have been proposed to penalise either the
surrogate model itself or the acquisition function in order to
limit the selection of locations near places that are currently
under evaluation [Ginsbourger et al., 2008, González et al.,
2016, Alvi et al., 2019].

Kandasamy et al. [2018] presented an alternative approach
based on Thompson sampling (TS) that draws surrogate
function realisations from the GP posterior and optimises
these to suggest new locations to evaluate without the need
to penalise the model or acquisition function. However, TS
relies on there being enough stochasticity to create suffi-
ciently diverse function draws with meaningfully different
optima. Therefore, TS tends to be insufficiently exploratory
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 in low dimensions (as draws are very similar to the mean
prediction) and over-exploratory in high dimensions where
the posterior uncertainty is large across much of the domain.

ε-greedy methods have been shown to be remarkably suc-
cessful in sequential and synchronous parallel optimisation
[De Ath et al., 2020, De Ath et al., 2021]. Most of the time
these exploit the mean prediction of the surrogate model by
expensively evaluating the location with the best posterior
mean, ignoring the uncertainty in the surrogate’s prediction,
but making deliberately exploratory samples with probab-
ility ε. In this work we combine a greedy exploitation of
the mean prediction with Thompson sampling and random
selection from the approximate Pareto set that maximally
trades off exploration and exploitation. Specifically, we in-
troduce an ε-greedy scheme that, with probability εT per-
forms Thompson sampling or with probability εP random
selection from the approximate Pareto set, and exploits the
surrogate model’s posterior mean prediction the rest of the
time, i.e. with probability 1− (εT + εP ). For convenience
we write ε = εT + εP . One of the reasons for the success
of ε-greedy methods is that model inaccuracy introduces
some accidental exploration even when exploiting the mean
prediction. This effect becomes dominant as the dimension
increases, and we therefore investigate how ε can be reduced
with increasing dimension.

• We present AEGiS (Asynchronous ε-Greedy Global
Search), a novel asynchronous BO algorithm that com-
bines greedy exploitation of the posterior mean predic-
tion with Thompson sampling and random selection from
the approximate Pareto set between exploration and ex-
ploitation.

• We present results on fifteen well-known benchmark
functions, three meta-surrogate hyperparameter tuning
problems and two robot pushing problems. Empirically,
we demonstrate that AEGiS outperforms existing meth-
ods for asynchronous BO on synthetic and hyperpara-
meter optimisation problems.

• We investigate how the degree of deliberate exploration ε
should be controlled with increasing dimension, d, show-
ing empirically that ε = min(2/

√
d, 1) yields superior

performance to increased or decreased rates of explora-
tion with respect to problem dimensionality.

• We present an ablation study that verifies the importance
of all three components, namely the Pareto set selec-
tion, Thompson sampling, and exploitation, showing that
AEGiS achieves performance that is greater than the sum
of its individual components.

• We show empirically that selection from the exploration-
exploitation Pareto set is superior to selection from the
entire problem domain.

We begin in Section 2 by reviewing sequential, synchron-
ous and asynchronous BO, and Thompson sampling, before

introducing AEGiS in Section 3. Section 4 details extens-
ive empirical evaluation of AEGiS against other popular
methods on well-known test problems, and also includes
an ablation study. We finish with concluding remarks in
Section 5.

2 BAYESIAN OPTIMISATION

Our goal is to minimise a black-box function f : X 7→ R,
defined on a compact domain X ⊂ Rd. The function itself
is unknown, but we have access to the result of its evaluation
f(x) at any location x ∈ X . We are particularly interested
in cases where the evaluations are expensive, either in terms
of time or money or both. We therefore seek to minimise f
in either as few evaluations as possible to incur as little cost
as possible or for a fixed budget.

2.1 SEQUENTIAL BAYESIAN OPTIMISATION

Bayesian Optimisation (BO) is a global search strategy that
sequentially samples the problem domainX at locations that
are likely to contain the global optimum, taking into account
both the predictions of a probabilistic surrogate model and
its corresponding uncertainty [Jones et al., 1998]. It starts
by generating M initial sample locations {xi}Mi=1 with a
space filling algorithm, such as Latin hypercube sampling
[McKay et al., 1979], and expensively evaluates them with
the function fi = f(xi). This set of observations DM =
{(xn, fn , f(xn))}Mn=1 is used for initial training of the
surrogate model. Following training, and at each iteration of
BO, the next location to be expensively evaluated is chosen
as the location that maximises an acquisition function α(x).
Thus f(·) is next evaluated at x′ = argmaxx∈X α(x). The
dataset is augmented with x′ and f(x′) and the process
is repeated until the budget is exhausted. The value of the
global minimum is then estimated to be the best function
evaluation seen during optimisation, i.e. f? = mini{fi}.

Gaussian Processes Gaussian processes (GPs) are com-
monly used as the surrogate model for f . A GP defines a
prior distribution over functions, such that any finite num-
ber of function values have a joint Gaussian distribution
[Rasmussen and Williams, 2006] with mean m(x) and a
covariance κ(x,x′ |θ) with hyperparameters θ. Henceforth,
w.l.o.g. we use a zero-mean prior m(x) = 0 ∀x ∈ X . Con-
ditioning the prior distribution on data consisting of f eval-
uated at t sampled locations Dt, the posterior distribution
of f is also a GP with posterior mean and variance

µ(x | D,θ) = m(x) + κ(x, X)K−1f (1)

σ2(x | D,θ) = κ(x,x)− κ(x, X)>K−1κ(X,x). (2)

Here, X ∈ Rt×d and f = (f1, f2, . . . , ft)
> are the

matrix of design locations and corresponding vector of
function evaluations respectively. The kernel matrix K ∈



 Rt×t is Kij = κ(xi,xj |θ) and κ(x, X) ∈ Rt is given
by [κ(x, X)]i = κ(x,xi |θ). Kernel hyperparameters
θ are learnt by maximising the log marginal likelihood
[Rasmussen and Williams, 2006].

Acquisition Functions The choice of where to evalu-
ate next in BO is determined by an acquisition function
α : Rd 7→ R. Perhaps the most commonly used acquisition
function is Expected Improvement (EI) [Jones et al., 1998],
which is defined as the expected positive improvement over
the best-seen function value f? thus far:

αEI(x) = Ep(f(x) | D) [max (f? − f(x), 0)] . (3)

However, many other acquisition functions have also been
proposed, including probability of improvement [Kushner,
1964], optimistic strategies such as UCB [Srinivas et al.,
2010], ε-greedy strategies [Bull, 2011, De Ath et al., 2021],
and information-theoretic approaches [Scott et al., 2011,
Hennig and Schuler, 2012, Henrández-Lobato et al., 2014,
Wang and Jegelka, 2017, Ru et al., 2018].

2.2 PARALLEL BAYESIAN OPTIMISATION

In parallel BO, the algorithm has access to q workers that
can evaluate f in parallel and the focus is on minimising
the optimisation time, acknowledging that the total com-
putational cost will be greater than for strictly sequential
evaluations. The goal is to select a batch of q promising
locations to be expensively evaluated in parallel. In the syn-
chronous setting, the BO algorithm sends out a batch of q
locations to be evaluated in parallel, and waits for all q eval-
uations to be completed before submitting the next batch.
However, in the asynchronous setting, as soon as a worker
has finished evaluating f a new location is submitted to it
for evaluation. Therefore, if f takes a variable time to eval-
uate, the asynchronous version of BO will result in more
evaluations of f for the same wallclock time.

One of the earliest synchronous approaches was the qEI
method of Ginsbourger et al. [2008], a generalisation of the
sequential EI acquisition function (3) that jointly proposes
a batch of q locations to evaluate. Similarly, the parallel
predictive entropy search [Shah and Ghahramani, 2015] and
the parallel knowledge gradient [Wu and Frazier, 2016] also
jointly propose q locations and are based on their sequential
counterparts. However, these methods require the optimisa-
tion of a d×q problem that becomes prohibitively expensive
to solve as q increases [Daxberger and Low, 2017].

Consequently, the prevailing strategy has become to se-
quentially select the q batch locations. Penalisation-based
methods penalise the regions of either the surrogate model
[Azimi et al., 2010, Desautels et al., 2014] or the acquisition
function that correspond to locations that are currently under
evaluation. The Kriging Believer method of Ginsbourger
et al. [2010], for example, hallucinates the results of pending

evaluations by using the surrogate model’s mean prediction
as its observed value. The local penalisation methods of
González et al. [2016] and Alvi et al. [2019] directly penal-
ise an acquisition function. De Ath et al. [2020] show that
an ε-greedy method that usually exploits the most promising
region, with occasional exploratory moves, is effective.

Asynchronous BO has received less attention. Janusevskis
et al. [2012] proposed an asynchronous version of the qEI
method that uses the qEI criterion assuming that the p loca-
tions currently under evaluation are fixed, and optimises the
position of the remaining q − p locations. Kandasamy et al.
[2018] suggest using Thompson sampling to select locations
to evaluate. Thompson sampling (TS) [Thompson, 1933] is
a randomised strategy for sequential decision-making un-
der uncertainty [Kandasamy et al., 2018]. At each iteration,
TS selects the next location to evaluate x′ according to the
posterior probability that it is the optimum. If p∗(x | D) de-
notes the probability that x minimises the surrogate model
posterior, then

p∗(x | D) =
∫
p∗(x | g) p(g | D) dg (4)

=

∫
δ(x− argmin

x∈X
g(x)) p(g | D) dg, (5)

where δ is the Dirac delta distribution. Thus, all the prob-
ability mass of p∗(x | D) is at the minimiser of g. In the
context of BO, this corresponds to sampling a function g(·)
from the surrogate model’s posterior p(· |x,D) and select-
ing x′ = argminx∈X g(x) as the next location to evaluate.
This can then be trivially applied in the sequential, synchron-
ous and asynchronous settings by sampling and minimising
as many function realisations as required. Thus, the BO
loop using TS involves building a surrogate model with
previously evaluated locations (ignoring those that may be
currently under evaluation), drawing as many function real-
isations as there are free workers, finding the minimiser of
each realisation and evaluating f at those locations.

Kandasamy et al. [2018] analyse Thompson sampling in
terms of maximum information gain. They show that both
synchronous and asynchronous TS algorithms making n
function evaluations are almost as good as if the n evalu-
ations were made sequentially. Furthermore, they extend the
notion of simple regret to incorporate the (random) num-
ber of evaluations made in a given time. Under this metric
they show that asynchronous TS outperforms synchronous
and sequential algorithms using a variety of evaluation-time
models.

Traditionally, g has been approximately optimised by pick-
ing the minimum of a randomly sampled set of discrete
points [Kandasamy et al., 2018]. Recently, Wilson et al.
[2020] have identified an elegant decoupled sampling
method, which we use here, that decomposes the GP pos-
terior into a sum of a weight-space prior term that is approx-
imated by random Fourier features, and a pathwise update



 in function space. Unlike other fast approximations, such
as [Rahimi and Recht, 2008], this method does not suffer
from variance starvation [Calandriello et al., 2019]. It scales
linearly with the number of locations queried during optim-
isation of g, and is pathwise differentiable, meaning that
gradient-based optimisation can be employed.

Recently, De Palma et al. [2019] proposed to draw realisa-
tions of acquisition functions instead, by drawing a new set
of surrogate model hyperparameters from their posterior
distribution for each acquisition function. An advantage of
these TS-based methods is that each draw from either the
model or hyperparameter posterior defines a new distinct
acquisition function. A drawback is that they rely on the un-
certainty in the surrogate model to give sufficient diversity
in position to the locations selected, unlike acquisition func-
tions which implicitly or explicitly balance exploration and
exploitation.

3 AEGIS

It is well recognised that the fundamental problem in global
optimisation is to balance exploitation of promising loca-
tions found thus far with exploration of new areas which
have not been explored. While extremely appealing in its
simplicity, Thompson sampling (TS) tends to over-exploit in
low dimensions (because after a number of evaluations the
posterior variance is reduced and most sampled realisations
are similar to the posterior mean), but under-exploit in high
dimensions (because there are insufficient samples to drive
the posterior variance away from the prior, resulting in ef-
fectively random search). The efficacy of ε-greedy methods
in sequential and synchronous BO over a range of dimen-
sions [De Ath et al., 2020, De Ath et al., 2021] motivates
an ε-greedy strategy to switch between greedy exploitation
of the surrogate model, exploration, and TS. Specifically, at
each step we optimise a TS function draw with probability
εT or perform exploration each with probability εP , and ex-
ploit the surrogate model’s posterior mean prediction µ(x)
of the rest of the time, i.e. with probability 1− (εT + εP ).

The AEGiS method is outlined in Algorithm 1. With prob-
ability 1 − (εT + εP ), the mean prediction from the sur-
rogate model is minimised to find the next location x′ to
evaluate (line 6). Alternatively, with probability εT , a TS
step taken: the next location is determined by sampling
a realisation g(·) from the surrogate posterior and find-
ing its minimiser (lines 8 and 9). Otherwise (lines 11 and
12), with probability εP , the location to evaluate is chosen
from the approximate Pareto set of all locations which max-
imally trade off between exploitation (minimising µ(x))
and exploration (maximising σ2(x)). A full discussion
is given by De Ath et al. [2021]. Briefly, a location x1

dominates x2 (written x1 � x2) iff µ(x1) ≤ µ(x2) and
σ(x1) ≥ σ(x2), and at least one of the inequalities is strict.
If both x1 � x2 and x2 � x1 then x1 and x2 are said

Algorithm 1 AEGiS

Inputs: Dt: Training data; T : Evaluation budget

1: M = |Dt|
2: for t =M + 1, . . . , T do
3: Condition model posterior on Dt; see (1) and (2)
4: r ∼ U(0, 1)
5: if r < 1− (εT + εP ) then . Exploit surrogate model
6: x′ ← argmin

x∈X
µ(x)

7: else if r < 1− εP then . Thompson sample
8: g ∼ p(f | D)
9: x′ ← argmin

x∈X
g(x)

10: else . Approximate Pareto set selection
11: P̃ ← MOOptimisex∈X (µ(x), σ

2(x))

12: x′ ← randomChoice(P̃)
13: Submit new job to evaluate x′

14: while all workers in use do
15: Wait for a worker to finish
16: Dt ← Dt−1 ∪ {(x′, f(x′))} . Augment data

to be mutually non-dominating. The maximal set of mutu-
ally non-dominating solutions is known as the Pareto set
P = {x ∈ X |x′ 6� x ∀x′ ∈ X} and comprises the optimal
trade-off between exploratory and exploitative locations.
Since it is infeasible to enumerate X , we sample a location
from the approximate Pareto set P̃ ≈ P which is found
using a standard multi-objective optimiser (lines 11 and 12).

Selecting a random location from P̃ ensures that no other
location could have been selected that has either more un-
certainty given the same predicted value or a lower pre-
dicted value given the same amount of uncertainty. There-
fore, when considering the two objectives of both reducing
the overall model uncertainty and finding the location with
the minimum value, these locations are optimal with respect
to a specific exploitation-exploration trade-off. Indeed, the
maximisers of both EI and UCB are members of P [De Ath
et al., 2021].

Rather than selecting from P̃ , a more exploratory procedure
is to select from the entire feasible space X . That is, lines
11 and 12 are replaced with x′ ← randomChoice(X ). We
denote this variant by AEGiS-RS. However, as shown below,
it is less effective than selection from P̃ .

At the beginning of an optimisation run, the initial q loca-
tions to be evaluated are chosen by first selecting the most
exploitative location (line 6). The remaining q − 1 locations
are each chosen by performing either Thompson sampling
or selection from the approximate Pareto set P̃ with probab-
ilities εT /(εT + εP ) and εP /(εT + εP ) respectively. This
ensures that the most exploitative location is only chosen
once during initialisation. The remaining evaluated locations
in an optimisation run are chosen according to Algorithm 1.

As discussed above, inaccuracies in the surrogate model
provide an element of exploration even when disregarding



 the uncertainty in the posterior p(f | Dt). On the other hand,
TS tends to be over-exploitative in low dimensions (d . 4)
and too exploratory in high dimensions. The performance of
sequential ε-greedy algorithms is relatively insensitive to the
precise choice of ε [De Ath et al., 2021]. As we show in sec-
tion 4.4, the performance of AEGiS is relatively insensitive
to the ratio of εT : εP . For simplicity, we therefore initially
set εT = εP = ε/2 and ε = min(2/

√
d, 1). This allows

for more exploitation to occur as the dimensionality of the
problem increases. As shown empirically in section 4.4, this
rate of decay in the amount of exploration carried out with
respect to the problem dimensionality is more effective than
faster or slower rates.

The dominant contributor to computational cost of finding
the approximate Pareto set, carried out by NSGA-II [Deb
et al., 2002], is the non-dominated sort of the population
of solutions and their offspring. With two objectives, as
is the case in AEGiS, this has complexity O(GN logN)
[Jensen, 2003], where N is the total population size and
G is the number of generations for which the evolutionary
algorithm runs. Empirically we find that this cost is similar
to that of TS, whose computational cost is dominated by the
gradient descent method used to optimise the sample path
g; e.g. O(Ld2) for BFGS [Byrd et al., 1995], where L is
the maximum number of steps taken in the search. However,
we note that both of these costs are negligible compared to
fitting the GP.

4 EXPERIMENTAL EVALUATION

We compare AEGiS with four well-known asynchronous
BO algorithms: two acquisition function-based penalisation
methods, Local Penalisation (LP) [González et al., 2016]
and the more recent PLAyBOOK [Alvi et al., 2019], as well
as the Kriging Believer (KB) [Ginsbourger et al., 2010], all
of which are based on the expected improvement acquisi-
tion function (3). We also include the standard Thompson
sampling (TS) approach of Kandasamy et al. [2018] and a
purely random approach using Latin hypercube sampling
(Random). The optimisation pipeline was constructed using
GPyTorch [Gardner et al., 2018] and BoTorch [Balandat
et al., 2020], and we have made this available online1.

A zero-mean Gaussian process surrogate model with an iso-
tropic Matérn 5/2 kernel, as recommended by Snoek et al.
[2012] for modelling realistic functions, was used in all
the experiments. Input variables were rescaled to reside in
[0, 1]d and observations were rescaled to have zero-mean
and unit variance. The models were initially trained on
M = 2d observations generated by maximin Latin hyper-
cube sampling and then optimised for a further 200 − 2d
function evaluations. Each optimisation run was repeated
51 times from a different set of Latin hypercube samples.

1http://www.github.com/georgedeath/aegis

Table 1: Benchmark Functions and Dimensionality.

Name d Name d

Branin 2 Ackley 5, 10
Eggholder 2 Michalewicz 5, 10
GoldsteinPrice 2 StyblinskiTang 5, 7, 10
SixHumpCamel 2 Hartmann6 6
Hartmann3 3 Rosenbrock 7, 10

Sets of initial locations were common across all methods
to enable statistical comparison. At each iteration, before
new locations were selected, the hyperparameters of the GP
were optimised by maximising the log likelihood using a
multi-restart strategy [Shahriari et al., 2016] with L-BFGS-
B [Byrd et al., 1995] and 10 restarts (Algorithm 1, line 3).

All experiments were repeated for q ∈ {4, 8, 16} asynchron-
ous workers. We followed the procedure of Kandasamy et al.
[2018] to sample an evaluation time for each task, thereby
simulating the asynchronous setting. A half-normal distri-
bution was used for this with a scale parameter of

√
π/2,

giving a mean runtime of 1 [Alvi et al., 2019].

The KB, LP and PLAyBOOK methods all used the EI acquis-
ition function, which was selected because of its popularity.
The expected improvement, the sampled function from the
GP posterior in both TS and AEGiS, and the posterior mean
in AEGiS were all optimised using the typical strategy [Bal-
andat et al., 2020] of uniformly sampling 1000d locations
in X , optimising the best 10 of these using L-BFGS-B, and
selecting the best as the optimal location. In AEGiS and TS,
2000 Fourier features were used for the decoupled sampling
method of Wilson et al. [2020]. The approximate Pareto set
P̃ in AEGiS was found using NSGA-II [Deb et al., 2002];
see supplementary material.

Here, we report performance in terms of the logarithm of the
simple regret Rt, which is the difference between the true
minimum value f(x∗) and the best seen function evaluation
up to iteration t: log(Rt) = log(min{f1, . . . , ft}− f(x∗)).

4.1 SYNTHETIC EXPERIMENTS

The methods were evaluated on the 15 synthetic benchmark
functions listed in Table 1.2 Figure 1 shows four illustrative
convergence plots for the Branin, SixHumpCamel, Ackley,
and StyblinskiTang benchmark functions for q ∈ {4, 8, 16}
asynchronous workers. Convergence plots and tabulated
results for all functions are available in the supplementary
material. As can be seen from the four sets of convergence
plots, AEGiS (pink) is almost always better than TS (or-
ange) on all four problems and values of q. Contrastingly,
TS is sometimes worse than random search (blue); this is

2Formulae for all functions can be found at: http://www.
sfu.ca/~ssurjano/optimization.html.

http://www.github.com/georgedeath/aegis
http://www.sfu.ca/~ssurjano/optimization.html
http://www.sfu.ca/~ssurjano/optimization.html
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Figure 1: Illustrative convergence plots for four benchmark problems with q ∈ {4, 8, 16} asynchronous workers. Each plot
shows the median log simple regret, with shading representing the interquartile range over 51 runs.

particularly evident on the StyblinskiTang problem. This
highlights the efficacy of both additional exploration and
exploitation in AEGiS relative to the TS algorithm. The Six-
HumpCamel convergence plots show an interesting trend
with respect to the penalisation-based methods, namely that
they deteriorate at an accelerated rate in comparison to the
TS-based methods. We suspect that this is because errors
in estimating the correct degree of penalisation accumulate
more noticeably as q increases and therefore more function
evaluations are placed in unpromising regions.

Figure 2 summarises the performance of each of the evalu-
ated methods for different numbers of workers (q). It shows
the number of times each method is the best, i.e. has the
lowest median regret over the 51 optimisation runs, or is stat-
istically indistinguishable from the best method, according
to a one-sided, paired Wilcoxon signed-rank test [Knowles
et al., 2006] with Holm-Bonferroni correction [Holm, 1979]
(p ≥ 0.05). As is clear from the figure, AEGiS achieves
a strong level of performance, and is the best (or equival-
ent to the best) on 10 out of the 15 functions. AEGiS-RS,
which samples exploratory locations from the entire feas-
ible space, is at best equivalent to AEGIS and generally
worse. This indicates that using a more informative ran-
dom sampling scheme, such as selecting from approximate
Pareto set of the trade-off between exploitation (µ(x)) and
exploration (σ2(x)), provides a meaningful improvement
to performance. In contrast to both AEGiS and TS, which
barely decrease in performance as the batch size q increases,
the EI-based methods (PLAyBOOK, LP and KB) show a
much larger reduction in relative performance.

4.2 HYPERPARAMETER OPTIMISATION

Like Souza et al. [2020], we optimise the hyperparameters
of three meta-surrogate optimisation tasks corresponding
to a SVM, a fully connected neural network (FC-NET) and
XGBoost. These are part of the Profet benchmark [Klein

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Proportion of functions

Random

TS

KB

LP

PLAyBOOK

AEGiS-RS
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Figure 2: Synthetic function optimisation summary. Bar
lengths correspond to the proportion of times that a method
is best or statistically equivalent to the best method across
the 15 synthetic functions, for q ∈ {4, 8, 16} workers.

et al., 2019, Paleyes et al., 2019] and are drawn from gen-
erative models built using performance data on multiple
datasets. They aim to mimic the landscape of expensive hy-
perparameter optimisation tasks, preserving the global land-
scape characteristics of the modelled methods and giving
local variation between function draws from the generative
model. This allows far more evaluations to be carried out
than would be possible with the modelled problems.

Here, we optimise 51 instances of each meta-surrogate, re-
peating the optimisation N = 20 times per instance with
different paired training data for each of the N runs. Details
of the construction of each problem are given in the supple-
mentary material. The SVM problem had 2 parameters; the
FC-NET problem 6; and the XGBoost problem 8.

We compare each evaluated method by computing the av-
erage ranking score in every iteration for each problem
instance. We follow Feurer et al. [2015] and compute this
by, for each problem instance, drawing a bootstrap sample
of 1000 runs out of the 7N possible combinations and calcu-
lating the fractional ranking after each of the 200 iterations.
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Figure 3: Average ranking scores for the three meta-
surrogate benchmarks for q ∈ {4, 8, 16}.

The ranks are then averaged over all 51 problem instances.

Figure 3 shows the average ranks of the methods on all three
problems for q ∈ {4, 8, 16}. Similarly to the synthetic func-
tions, all three penalisation methods (KB, LB and PLAy-
BOOK) perform comparably and AEGiS is consistently
superior to them after roughly 50 function evaluations. On
the FC-NET and XGBoost problems TS performs similarly
to AEGiS, and indeed is better on the XGBoost problem.
However, AEGiS-RS performs consistently worse, support-
ing the contention that choosing random locations that lie
in the Pareto set is beneficial.

4.3 ACTIVE LEARNING FOR ROBOT PUSHING

Following Wang and Jegelka [2017] and De Ath et al.
[2021], we optimise the control parameters for two instance-
based active learning robot pushing problems [Wang et al.,
2018]. In push4, a robot pushes an object towards an un-
known target location. It receives the object-target distance
once it has finished pushing. The location of the robot, the
orientation of its pushing hand and for how long it pushes
are the parameters to be optimised with the goal of min-
imising this distance. The push8 problem has two robots
that receive the distance between their respective objects
and targets after pushing — we minimise the sum of these
distances. In both problems the target location(s) are chosen
randomly, with the constraint that they cannot overlap. We
note that the push8 problem is much more difficult because
the robots can block each other, and so each problem in-
stance may not be completely solvable. Further details of
the problems are provided in the supplementary material.
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Figure 4: Average ranking scores for the two robot pushing
problems for q ∈ {4, 8, 16}.
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Figure 5: Ablation study summary. The bars correspond to
the proportion of times that a method is best or statistic-
ally equivalent to the best method across the 15 synthetic
functions, for q ∈ {4, 8, 16}.

Average rank score plots, calculated in the same way as
described in Section 4.2, are shown in Figure 4. The EI-
based methods continue to have very similar performance to
one another, and are the best methods on push4, and, even
though it is not the best method, AEGiS still out-performs
TS consistently. On push8, the EI-based methods initially
improve on AEGiS in terms of average rank but then stag-
nate and are overtaken by AEGiS after roughly 75 function
evaluations.

4.4 ADDITIONAL EXPERIMENTS

Lastly, we describe an ablation study, experiments on set-
ting the degree of deliberate exploration (ε = εT + εP ),
together with the optimal ratio εT : εP . Finally, we compare
AEGiS, EI and TS in the sequential BO setting (q = 1). See
supplementary material for full results.

Ablation Study Here, we conduct an ablation study on
AEGiS using the 15 synthetic benchmark functions used in
Section 4.1. Since AEGiS-RS is consistently outperformed
by AEGiS, we omit it from this study. We compare to
AEGiS in the following ways: No Exploit, without the ex-
ploitation (εT = εP = 1/2); No TS, with no Thompson
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Figure 6: Selecting ε: faster and slower correspond to
quicker and slower rates of ε decay than AEGiS, resulting
in more or less exploitation respectively.

sampling (εT = 0; εP = ε); No PF, without Pareto set
selection (εT = ε, εP = 0). In all cases ε = min(2/

√
d, 1).

Figure 5 shows that all three components combine to give
the best results and that removing any of the three results
in an inferior algorithm. As can be seen, the removal of
either TS or Pareto set selection considerably reduces the
performance of the algorithm. Note that the results for No
Exploit are inflated because the method is equivalent to
AEGiS on the 5 out of the 15 benchmark functions that have
d ≤ 4 dimensions.

Setting ε We investigate the rate at which the degree of
deliberate exploitation of the surrogate model’s posterior
mean function should increase with problem dimensional-
ity d. In AEGiS, exploitation is carried out 1 − (εT + εP )
proportion of the time. As above we chose εT = εP =
ε/2 and ε was chosen a priori to decay like 1/

√
d, i.e.

ε = min(2/
√
d, 1). Here, we bracket this decay rate with a

quicker decay (more exploitation) and a slower decay (more
exploration). Specifically, we evaluate AEGiS on the 15
synthetic test functions using ε = min(2/(d − 2), 1) and
ε = min(2/ log(d + 3), 1) labelled slower and faster re-
spectively. These decay functions were chosen because they
match AEGiS and provide no exploitation when d ≤ 4, i.e.
ε = 0.5. See the supplementary material for a visual com-
parison of the rates. Figure 6 summarises the results on the
15 test functions. When using a smaller number of workers
(q ∈ {4, 8}) the 2/

√
d decay gives superior performance.

However, when q = 16 there is little to differentiate between
the three rates. We note that when d is large the faster rate
of the decay (more exploitation for a given d) is superior;
see the supplementary material for full details.

Proportion of TS to PF selection In the above eval-
uations TS and PF were selected with equal probability
εT = εP . Here, we investigate the proportion of times
that TS should be chosen over Pareto set selection. Spe-
cifically we evaluate AEGiS on the synthetic benchmark
functions for q ∈ {4, 8, 16} with the split between exploit-
ation, TS and Pareto set selection being 1 − ε, εT = γε
and εP = (1 − γ)ε respectively and γ ∈ {0, 0.1, . . . , 1}.
Note that two of the methods evaluated in the earlier ab-
lation study, No TS and No PF, correspond to γ = 0 and
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Figure 7: Proportion of TS to Pareto set selection for propor-
tions γ ∈ {0, 0.1, . . . , 1} (vertical axis). Note that the label
AEGiS corresponds to γ = 0.5.
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Figure 8: Synthetic function optimisation summary for the
sequential setting (q = 1). Bar lengths correspond to the
proportion of times that a method is best or statistically equi-
valent to the best method across the 15 synthetic functions.

γ = 1 respectively. Figure 7 summarises the results on
the 15 synthetic benchmark functions. It shows that using
more TS than Pareto set selection appears detrimental to
AEGiS, whereas using less TS, i.e. a smaller value of γ
leads to slightly improved average performance over 0.5.
Interestingly, while AEGiS generally performed better with
a smaller value of γ, for some test functions, e.g. Rosen-
brock, larger values were preferred – see the supplementary
material for all convergence plots and tabulated results. In
general we recommend the standard setting εT = εP = ε/2.

Sequential BO Finally, we evaluate AEGiS in the sequen-
tial setting, i.e. with q = 1. In this setting KB, LP, and
PLAyBOOK are equivalent because they all select the next
(and only) location to be evaluated using EI. Therefore, we
compare AEGiS and AEGiS-RS to TS, EI, and Latin hy-
percube sampling. As shown in Figure 8, AEGiS and EI
had approximately equivalent performance, and they were
both superior to AEGiS-RS and TS. This again emphas-
ises the importance of sampling from P̃ . An ablation study
was also carried out with similar findings: removing the
sampling from P̃ led to a large reduction in performance.
This was a larger drop in performance in comparison to the
ablation study using larger values of q. We suspect that this
is because the model will naturally be of a higher quality at



 any iteration for q = 1 and thus selection from P̃ will be
even more informative to the optimisation process. Different
rates of ε decay were also investigated as before, and sim-
ilar results were found: both decreasing and increasing the
rate of decay led to worse performance, with the largest de-
crease coming from increasing the rate and thus increasing
exploitation further.

5 CONCLUSION

Practical optimisation of expensive functions can often
make use of parallel hardware to rapidly obtain results.
The AEGiS method makes best use of hardware resources
through asynchronous Bayesian optimisation by combining
greedy exploitation of the surrogate mean prediction with
Thompson sampling and exploratory moves from the ap-
proximate Pareto set that maximally trades off exploration
and exploitation. The ablation study verifies the importance
of each of these components. With only a single worker
this simple algorithm is no worse than BO using expected
improvement. As the problem dimension increases delib-
erate exploratory moves are less necessary because of the
inadvertent exploration due to modelling inaccuracies. We
showed empirically on a wide range of problems that setting
ε ∝ 2/

√
d is more efficient than faster or slower rates of re-

ducing the amount of exploration carried out as the problem
dimensionality d increases.

Unlike other methods, such as PLAyBOOK and Thompson
sampling, AEGiS cannot be trivially transformed into a
synchronous batch BO method, and therefore it cannot be
directly compared to a synchronous version of itself. The
closest method in spirit is the ε-shotgun method of De Ath
et al. [2020]. It scatters q − 1 samples around a central
location, where the samples are distributed according the
properties of the surrogate model’s landscape. The central
location is chosen to be either the most exploitative location
or a randomly selected location from the Pareto set. Inter-
estingly the authors of both PLAyBOOK and Thompson
sampling empirically found that, even though there is less
information available for the selection of each asynchron-
ous location, their methods outperformed their synchronous
counterparts. We note that AEGiS is more effective than
both PLAyBOOK and Thompson sampling and, therefore,
also their synchronous equivalents.

Although AEGiS is robust to both the amount of exploration
(εT + εP ) and the ratio εT : εP , the combination of greedy
exploitation, Thompson sampling and selection from the
exploration-exploitation Pareto set is a challenge to obtain-
ing non-trivial bounds on the convergence rate. While future
work will concentrate on providing such theoretical guaran-
tees, our extensive empirical evaluation shows that AEGiS
is a simple, practical and robust method for asynchronous
batch Bayesian optimisation.
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