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Abstract

Auto-Encoder (AE) based neural generative frame-
works model the joint-distribution between the data
and the latent space using an Encoder-Decoder
pair, with regularization imposed in terms of a
prior over the latent space. Despite their advan-
tages, such as stability in training, efficient infer-
ence, the performance of AE based models has
not reached the superior standards of the other
generative models such as Generative Adversarial
Networks (GANs). Motivated by this, we exam-
ine the effect of the latent prior on the generation
quality of deterministic AE models in this paper.
Specifically, we consider the class of Generative
AE models with deterministic Encoder-Decoder
pair (such as Wasserstein Auto-Encoder (WAE),
Adversarial Auto-Encoder (AAE)), and show that
having a fixed prior distribution, a priori, oblivi-
ous to the dimensionality of the ‘true’ latent space,
will lead to the infeasibility of the optimization
problem considered. As a remedy to the issue
mentioned above, we introduce an additional state
space in the form of flexibly learnable latent pri-
ors, in the optimization objective of WAE/AAE.
Additionally, we employ a latent-space interpola-
tion based smoothing scheme to address the non-
smoothness that may arise from highly flexible pri-
ors. We show the efficacy of our proposed models,
called FlexAE and FlexAE-SR, through several
experiments on multiple datasets, and demonstrate
that FlexAE-SR is the new state-of-the-art for the
AE based generative models in terms of genera-
tion quality as measured by several metrics such
as Fréchet Inception Distance, Precision/Recall
score. Code for our paper is available at: https:
//github.com/dair-iitd/FlexAE

1 INTRODUCTION

Auto-Encoder (AE) based latent variable generative models
implicitly define a joint distribution over the input data and
a lower-dimensional latent space, by approximating the true
latent posterior, with a variational distribution. This varia-
tional distibution is parameterized using a neural network
called the Encoder. The distribution induced by the Encoder
is regularized to follow a pre-defined latent prior distribu-
tion. Subsequently, a Decoder network is trained to condi-
tionally sample from the data distribution via optimizing a
data-reconstruction metric. The parameters of the Encoder
and the Decoder networks are learnt by optimizing either a
bound on the data likelihood [Kingma and Welling, 2014] or
a divergence measure between the true and generated data
distributions [Tolstikhin et al., 2018]. The framework of AE-
based generative models is attractive because of its ease and
stability in training, efficiency in sampling, and flexibility
in architectural choices. However, despite their advantages,
AE-based models have failed to reach the performance of
other State-of-The-Art (SoTA) generative models [Dai and
Wipf, 2019, Mondal et al., 2020].

Several aspects such as the loss function used for optimiza-
tion [Higgins et al., 2017, Larsen et al., 2016], presence of
conflicting terms in the optimization objective [Hoffman and
Johnson, 2016, Kim and Mnih, 2018], distributional choices
(e.g., Gaussianity) imposed on the Encoder and Decoder
[Zhao et al., 2019, Rezende and Viola, 2018], dimensional-
ity of the latent space used [Dai and Wipf, 2019, Mondal
et al., 2020], the mismatch between the learned and im-
posed prior [Shengjia Zhao and Ermon, 2017, Tomczak and
Welling, 2018] have been identified as possible causes for
the sub-optimal performance of the AE-based models. Many
remedial measures, including the modification of the objec-
tive function [Zhao et al., 2019, Higgins et al., 2017, Kim
and Mnih, 2018], use of non-Gaussian Encoder/Decoder
[Larsen et al., 2016, Nalisnick et al., 2016], masking of spu-
rious latent dimensions [Mondal et al., 2020], incorporating
a richer class of priors on the latent space [Tomczak and
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 Welling, 2018, Takahashi et al., 2019, Klushyn et al., 2019],
have been proposed in the literature to address some of
these issues. While these modifications have improved AE
models’ performance, they are still behind SoTA generative
models [Dai and Wipf, 2019, Mondal et al., 2020]. In this
work, we make the following contributions:

1. We theoretically establish that in a deterministic AE
based generative model (such Wasserstein AE), choos-
ing a latent prior distribution supported on the entire
space, leads to an infeasible optimization objective,
when the model’s latent space has dimensionality that
is other than that of the ‘true’ latent space.

2. As a remedy, we propose a new model called FlexAE,
that can impose flexible learnable priors on WAEs to
make the optimization problem feasible by introducing
an additional state space over the latent prior.

3. We employ an adversarial regularization technique to
smooth the latent space of our model with flexible pri-
ors to prevent memorization. Furthermore, We propose
two novel metrics, called, Pixel Memorization Score
and Inception Memorization Score, to quantitatively
evaluate whether the generative AE has memorized the
training samples.

4. We empirically demonstrate our claims through ex-
tensive experimentation on synthetic and real-world
datasets by achieving significant improvement in gen-
eration quality over the SoTA AE-based generative
models.

2 BACKGROUND

The general theme in majority of the AE based genera-
tive frameworks is to implicitly learn the joint distribution
between the observed data and a latent variable, via op-
timizing an objective function which consists of an auto-
encoding (conditional likelihood) and a latent regularization
term (divergence measure). Variational Autoencoder (VAE)
[Kingma and Welling, 2014] is the pioneering member of
this family, in which the variational latent posterior and
conditional data likelihood are respectively parameterized
by probabilistic (Gaussian) Encoder and Decoder networks,
while the latent prior is assumed to be an isotropic Gaussian
distribution. A related class of AE-models are the Adver-
sarial Auto-Encoders (AAEs) [Makhzani et al., 2016] and
Wasserstein Auto-Encoders (WAEs) [Tolstikhin et al., 2018]
where a pair of deterministic Encoder-Decoder is used with
Jensen-Shannon and Wasserstein distance respectively, be-
tween the aggregated latent posterior and the latent prior.

Although VAEs/WAEs provide solid frameworks for AE-
based generative models, several drawbacks are associated
with them, which prevents them to compete with the other
SoTA generative models. It is shown that there exists a con-
flict between the two terms of the objective, in the case of

VAEs [Higgins et al., 2017, Shengjia Zhao and Ermon, 2017,
Rezende and Viola, 2018]. A few remedial measures such as
introduction of a tunable parameter in the objective [Burgess
et al., 2017], use of additional penalties such as mutual infor-
mation [Zhao et al., 2019], total correlation [Kim and Mnih,
2018], and generalised optimization objective [Rezende and
Viola, 2018] have been proposed. Another often discussed
issue with AE-models with stochastic Encoder-Decoders
is that they adopt a simple unimodal Gaussian distribution
for parameterization [Rosca et al., 2018]. To address this,
[Nalisnick and Smyth, 2017] implements a Bayesian non-
parametric version of the variational autoencoder that has
a latent representation with stochastic dimensionality and
could represent richer class of distributions. Invertible flow-
based generative models [Kingma et al., 2016, Rezende and
Mohamed, 2015] capitalize on the idea of normalizing flow
for the Encoder and Decoder networks. VAE-GAN [Larsen
et al., 2016], VGH/VGH++ [Rosca et al., 2018] incorpo-
rates an adversarial learning at the Decoder so that it can
represent a rich class of distributions.

Further, it is observed that there is a mismatch between the
aggregated variational posterior and the latent prior, leading
to sub-optimality of the divergence term in the objective
and in turn poor generation [Tomczak and Welling, 2018,
Dai and Wipf, 2019]. Several methods try to alleviate this
problem, broadly in two ways (i) using a richer class of
parametric priors on the latent space [Tomczak and Welling,
2018, Klushyn et al., 2019, Kumar et al., 2020] and (ii)
using a post-hoc technique to minimize the divergence or
sample from the latent space without regularizing it [Bauer
and Mnih, 2019, Ghosh et al., 2020, Takahashi et al., 2019].
Among the first category of methods, VampPrior [Tomczak
and Welling, 2018] assumes the prior to be a mixture of the
conditional posteriors with a set of learnable pseudo-inputs.
Klushyn et al. [2019] adapt the constrained optimization set-
ting in [Rezende and Viola, 2018] and substitute the standard
normal prior with a hierarchical prior and use an importance-
weighted bound as the optimization objective. Huang et al.
[2017], Kumar et al. [2020] learn the latent priors using nor-
malizing flow based methods. Within the second category
of methods, Bauer and Mnih [2019] learn to sample from a
rich class of priors by multiplying a simplistic prior distri-
bution with a learned acceptance function. Takahashi et al.
[2019] used kernel density trick for matching the prior to
the aggregated posterior. RAE-GMM [Ghosh et al., 2020],
imposes an L2-norm penalty in the latent space and learns to
sample from it using a Gaussian Mixture Model (GMM) on
the latent space. While these methods report improvement
over the SoTA metrics, not many give a theoretical justifica-
tion for using richer-class of latent priors. Further, post-hoc
latent samplers such as RAE-GMM do not have control over
the amount of bias imposed (other than a simple objective
scaling factor), that might lead to over/under fitting.

However, it has been both theoretically and empirically ob-



 served that dimensionality of the latent space used has a
critical impact on the performance of these models [Mondal
et al., 2020, Dai and Wipf, 2019, Rubenstein et al., 2018].
Dai and Wipf [2019] study the implication of the mismatch
between the dimensionality of the data and the true latent
space and the role of Decoder variance, in the case of AEs
with stochastic Encoders. They argue a learnable variance
in the Decoder would make the objective reach negative in-
finity even when the aggregated posterior would not match
the standard Gaussian prior not because of simplistic mod-
elling assumption but because of mismatch between data
dimensionality and the true latent dimensionality. To re-
solve this issue they introduce a second-stage VAE, which
is used on the latent space of the first stage (which is a usual
VAE), where the data and the latent dimensions match. In
MaskAAE [Mondal et al., 2020], the authors noted that the
generation quality degrades when there is a mismatch be-
tween the dimensionality of the true and the assumed latent
space of a deterministic AE. They develop a procedure to
explicitly zero-out (mask) the spurious latent dimensions
via a learnable masking layer. In this backdrop, to the best
of our knowledge, ours is the first study to propose a flexibly
learnable prior scheme on deterministic AEs as a solution
to the problem of infeasibility of the objective function.

3 PROPOSED METHOD

3.1 OPTIMALITY OF THE LATENT SPACE OF
WASSERSTEIN AE

We start by assuming that the true data is generated in na-
ture via a two-step process. First, the true latent variables
are sampled from an n-dimensional space, Z̃ according
to some continuous distribution in Rn. Next, a non-linear
function, f : Z̃ → X maps the true latent space, Z̃ to
the observed data space, X ⊆ Rd, with d >> n, in most
practical cases. In other words, observed data x lies on
X , an n-dimensional manifold embedded in Rd. We make
a benign assumption on f that it can be represented us-
ing neural networks with sigmoidal (or hyperbolic tangent,
ReLU, Leaky ReLU etc.) activations to arbitrary closeness.
Under this model, the data could be seen as lying in an n-
dimensional manifold within Rd, with an underlying ground
truth distribution Pd(x). The objective of a Generative AE
such as WAE [Tolstikhin et al., 2018] or AAE1 [Makhzani
et al., 2016] is to estimate (or learn to sample from) the
distribution Pd(x), given some i.i.d. samples drawn from it.
The distribution learned by the model, denoted by Pθ(x) is
given by Pθ(x) =

∫
Z Pθ(x|z)dPz , where Pθ(x|z) is the

distribution parameterized by a deterministic Decoder neu-
ral network Dθ(z) and PZ(z) is the latent prior defined on
anm-dimensional space, Z . WAEs learn to sample from the
distribution Pθ(x) by solving the following optimization

1AAE is a special case of WAE [Bousquet et al., 2017].

problem:

inf
φ,θ

(
E

Pd(x)
E

Qφ(z|x)

[
c
(
x, Dθ

(
Eφ(x)

))])
such that Qφ(z) = PZ(z)

(1)

HereQφ(z|x) is the variational conditional posterior, which
is also parameterized by a neural network called the En-
coder, Eφ : X → Z . When Eφ is deterministic, Qφ(z|x)
is dirac-delta for every x. Qφ(z) =

∫
Rd Qφ(z|x) dPd(x)

is the aggregated posterior distribution imposed by the En-
coder, c : X × X → R+ is any measurable cost function
(such as Mean Square Error (MSE), Mean Absolute Error
(MAE) or adversarial loss and so on) and φ ∈ Φ, θ ∈ Θ
are the learnable parameters of Encoder and Decoder, re-
spectively. The constrained optimization problem in Eq. 1
translates to auto-encoding the input data with a constraint
(regularizer) that the aggregated distribution imposed by
the Encoder matches with a predefined latent prior distribu-
tion. The constrained optimization objective of WAE (Eq.
1) can be equivalently written as an unconstrained problem
by introducing a Lagrangian:

DWAE = inf
φ,θ

(
E

Pd(x)
E

Qφ(z|x)

[
c
(
x, Dθ

(
Eφ(x)

))]
︸ ︷︷ ︸

a

+

λ ·DZ

(
Qφ(z), PZ(z)

)︸ ︷︷ ︸
b

)
(2)

Where λ is the Lagrange multiplier, DZ(.) is any diver-
gence measure such as Kullaback-Leibler, Jenson-Shannon
or Wasserstein distance, between two distributions.

Note that objective in Eq. 1 becomes feasible only when
DZ

(
Qφ(z), PZ(z)

)
becomes zero. Equipped with these,

in Theorem 1, we show that when m > n (most common
practical case), the optimization objective (Eq. 1) does not
have a feasible solution when the prior is fixed a priori to
be any distribution which is supported outside of a set of
countable union of all possible n-dimensional manifolds in
an m-dimensional space, denoted by Qnm. An example for
such a prior is the isotropic Gaussian distribution in Rm,
which is the usual choice in most models.

Theorem 1 If m > n, then the regularization term in the
objective function of an AE-based generative model (Eq.
2), cannot be driven to zero. That is DZ(Qφ(z), PZ(z)) >
0, ∀φ and for any distributional divergence DZ when the
support of PZ(z) 6∈ Qnm.

The above theorem (cf. supp. for proof) asserts that it is
impossible to match the aggregated latent posterior to the
prior when the assumed latent dimension is more than the
true latent dimension and the assumed prior has full-support.



 Even though a stochastic Encoder can fill the ‘extra’ di-
mensions with external noise, we only consider the case of
deterministic AE in this work, since stochasticity can lead
to problems such as conflicting objectives [Burgess et al.,
2017] and non-unique solutions [Dai and Wipf, 2019].

3.2 FLEXIBLY LEARNING PRIOR: FLEXAE

Based on the discussion so far, fixing a prior makes the
optimization objective infeasible and no prior leads to over-
fitting. To alleviate these, we propose to flexibly learn the
latent prior jointly with the AE-training by introducing an
additional state-space in the original optimization objective
(Equation 2) as follows:

DFlexAE = inf
ψ,φ,θ

(
E

Pd(x)
E

Q(z|x)

[
c
(
x, Dθ

(
Eφ(x)

))]
︸ ︷︷ ︸

a

+

λ ·DZ

(
Qφ(z)||Pψ(z)

)
︸ ︷︷ ︸

b

)
(3)

where Pψ(z) is a learnable latent prior parmaterized us-
ing a neural network called the Prior-Generator (P-GEN),
Gψ, that takes an m′ ≥ n dimensional isotropic Gaussian
distribution as the input and generates sample from an m-
dimensional Pψ(z) (refer Fig. 1). In our model, referred to
as the Flexible AE or FlexAE, P-GEN is jointly trained with
the AE to alternatively minimize the divergence measure
and the reconstruction terms in Eq. 3. Consequently, the
output of the P-GEN forms the prior that is imposed on the
latent space. Please note that DFlexAE ≤ DWAE and thus
the new formulation does not harm the optimization. Next,
the Corollary 1.1 (proof in the supp.) below states that the
divergence measure can be brought to zero with FlexAE.

Corollary 1.1 ∀m′ ≥ n, DZ(Qφ(z)||Pψ(z)) (term (b) in
FlexAE objective (Eq. 3) becomes zero for optimum set of
parameters.

3.2.1 Smoothing the Latent Space

It is well known that, unlike in AE models with stochastic
Encoders (such as VAE), the latent space of a determinis-
tic AEs tend to be dirac-deltas since there is no source of
stochasticity beyond that is inherently present with the data
[Rezende and Viola, 2018]. Consequently, a parametric prior
generator network (as with FlexAE) may also ‘memorize’
the latent codes and eventually learn to generate samples
very similar to those present in the training data. This de-
feats the purpose of a generative AE. To address this issue,
we employ an adversarial smoothing regularization scheme
along with the flexibly learnable prior. We adapt the adver-
sarial regularizer proposed by Berthelot et al. [2019] to learn
a smooth latent space.

Specifically, while training, first a convex combination of
the encoded representations, z(j), z(k) of two randomly
sampled training examples, x(j),x(k) are taken and the re-
sulting vector is called interpolated latent, zinp, i.e. z(i)inp =

γz(j) + (1− γ)z(k), where γ ∼ U [0, 1]. Next, the decoder
is trained to generate a realistic image, xinp ∼ P cθ (xinp)
using zinp. Here, P cθ represents the distribution of images
generated by decoding interpolated latent codes. Mathemat-
ically, we propose to minimize a divergence metric between
the true data and the data generated by the decoder using the
interpolated latent space. This imposes a local smoothness
on the latent space since the decoder is forced to learn to
generate not only from encoded latent codes but also from
its random interpolations. We call the FlexAE model with
smoothing regularization as FlexAE-SR. The objective in
Equation 3 is modified as follows:

DFlexAE−SR = inf
ψ,φ,θ

(
E

Pd(x)
E

Q(z|x)

[
c
(
x, Dθ(z)

)]
︸ ︷︷ ︸

a

+λ1·

DZ

(
Qφ(z)||Pψ(z)

)
︸ ︷︷ ︸

b

+λ2 ·DX

(
P cθ (xinp)||Pd(x)

)
︸ ︷︷ ︸

c

)(4)

where, DX(.) is any divergence measure such as Kullaback-
Leibler, Jenson-Shannon or Wasserstein distance, between
the two distributions, Pθ(xinp) and Pd(x). Similar interpo-
lation technique is proven to be useful for learning better
representation [Verma et al., 2019] and for enhancing the
performance of generative model in unsupervised few-shot
image generation [Wertheimer et al., 2020].

Please note, good generation may happen even when the
divergence measure DZ is not exactly zero but Qφ(z) is
‘close’ enough to PZ(z). However, the closer Qφ(z) and
PZ(z) are, the better is the generation (see Figure 2 and 3),
which is our claim (Theorem 1 is a singularity towards this).

3.2.2 Implementation

For implementation, we use MSE for c in term (a) of Eq. 4.
DZ , in principle can be chosen to be any distributional
divergence such as Kullback-Leibler divergence (KLD),
Jensen–Shannon divergence (JSD), Wasserstein Distance
and so on. In this work, we propose to use Wasserstein
distance and utilize the principle laid in [Arjovsky et al.,
2017, Gulrajani et al., 2017], to optimize the divergence
measure (term (b) in Equation 4). The loss functions used
for different blocks of FlexAE are as follows:

1. Likelihood Loss - Realization of term a in Eq. 4:

LAE =
1

s

s∑
i=1

||x(i) −Dθ(Eφ(x(i)))||2 (5)
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Figure 1: Proposed Model, FlexAE: Nature first samples an n-dimensional latent code from the true latent space, Z̃ . Next,
the latent code is mapped to an n-dimensional manifold, X in Rd. The observed variables are encoded using a deterministic
Encoder, Eφ. The m-dimensional encoded representations lie in an n-dimensional manifold Z . The decoder network, Dθ,
learns an inverse projection from the learnt latent space, Z to the dataspace, X . The generator network, Gψ parameterizes
the learnable prior distribution, that maps an isotropic Gaussian distribution in Rm′

to any arbitrary prior Pψ(z) in Rm. The
critic network, Cκ measures the distributional divergence between Qφ and Pψ . The smoothness regulator, Cζ measures the
distributional divergence between P cθ (xinp) and Pd(x). The entire network is trained in an end-to-end fashion. The forward
path is shown using solid yellow arrows and the flow of gradients due to different terms in the objectives are also shown as
color coded dashed arrows.

2. Wasserstein Loss - We use Wasserstein distance [Ar-
jovsky et al., 2017] for DZ (term b Eq. 4):

LCritic =
1

s

s∑
i=1

Cκ(ẑ(i))− 1

s

s∑
i=1

Cκ(z(i))

+
β

s

s∑
i=1

(
||∇(i)

zavgCκ(z(i)
avg)||−1

)2 (6)

LGen = −1

s

s∑
i=1

Cκ(ẑ(i)) (7)

LEnc =
1

s

s∑
i=1

Cκ(z(i)) (8)

3. Smoothing Regularization - We use Wasserstein dis-
tance [Arjovsky et al., 2017] for DX (term c Eq. 4):

LReg =
1

s

s∑
i=1

Cζ(x
(i)
inp)−

1

s

s∑
i=1

Cζ(x
(i))

+
β

s

s∑
i=1

(
||∇(i)

xavgCζ(x
(i)
avg)||−1

)2 (9)

LAEReg = −1

s

s∑
i=1

Cζ(x
(i)
inp) (10)

Where, z(i) = Eφ(x(i)), ẑ(i) = Gψ(n(i)), n(i) ∼ N (0, I),
z
(i)
inp = γz(j) + (1 − γ)z(k), x(i)inp = Dθ(z

(i)
inp), z(i)

avg =

αz(i) +(1−α)ẑ(i), and x
(i)
avg = αx(i) +(1−α)x

(i)
inp. α ∼

U [0, 1], and β = 10 is a hyper-parameter as in [Gulrajani
et al., 2017]. γ ∼ U [0, 1]. Eφ, Dθ, Gψ, Cκ, and Cζ denote
the encoder, decoder, latent generator, critic, and adversarial
regularization network respectively.

Finally, during inference, data is generated using FlexAE as
follows:

1. Sample from a primitive (Gaussian) distribution and
pass it through the P-GEN to sample a point from the
latent space Pψ(z).

2. Input the latent sample through the Decoder to generate
a data sample.

Algorithm for training FlexAE can be found in the supple-
mentary material.

3.3 RELATION TO PRIOR WORKS

As discussed in section 2, a class of algorithms learn the
prior to improve generation quality. Hoffman and Johnson
[2016] proposed, learning the prior is one approach to op-
timize the ELBO in a stochastic VAE framework. Later,
Huang et al. [2017] applied Real NVP [Dinh et al., 2017]
to learn the prior. Tomczak and Welling [2018] proved the



 

(a) (b) (c) (d)
Figure 2: Comparison of WAE (fixed prior) and FlexAE (learnable prior) on a synthetic dataset. Wasserstein distance
between Pz and Qφ reduce faster in the case of FlexAE compared to a fixed prior WAE, leading to a better FD.

(a) (b) (c) (d) (e)
Figure 3: Visualization of (a) true latent space; (b) latent space learned by the VAE [Kingma and Welling, 2014]; (c) latent
space learned by the WAE [Tolstikhin et al., 2018] with Normal prior; (d) latent space learned by the WAE [Tolstikhin
et al., 2018] with GMM prior; and (e): latent space learned by the proposed FlexAE model, along with generation Fréchet
Distance (FD) in each case. For multimodal data, model with multimodal prior (WAE-GMM) and FlexAE perform better.

optimal prior is the aggregated posterior, which they approx-
imate by assembling a mixture of the posteriors with a set
of learned pseudo-inputs. Bauer and Mnih [2019] proposed
LARS prior, which is obtained by applying a rejection sam-
pler with learned acceptance function to the original prior
distribution. Takahashi et al. [2019] introduced the kernel
density trick to estimate the KL divergence in ELBO and
log-likelihood, without explicitly learning the aggregated
posterior. However, Dai and Wipf [2019] argue that, if the
data dimension, dmismatches with the model’s latent dimen-
sion, m, optimizing ELBO objective leads to non-unique
optimum solutions. To address this concern, they train a
second stage to successfully sample from the latent space
of the first stage. van den Oord et al. [2017] incorporate the
ideas from vector quantisation and learns a discrete latent
representation paired with a learnable autoregressive prior.
On the other hand, for a deterministic encoder-decoder pair,
Ghosh et al. [2020], claim that an explicit l2 regularization
in the latent space is equivalent to a Gaussian prior and leads
to a smooth and meaningful latent-space. For generation,
they introduce an ex-post density estimation step by fitting
a ten component GMM to the learned latent space.

In this work, we investigate the relation between the di-
mensionality of the assumed latent space and fixation of
a distribution as the latent prior in generative AE models
with deterministic Encoder-Decoder pair, such as WAE [Tol-
stikhin et al., 2018], AAE [Makhzani et al., 2016]. In this
perspective, we believe that ours is the first study to the-

oretically demonstrate the infeasibility of the objective of
Generative AE under a prior fixation oblivious to true latent
dimension, n.

4 EXPERIMENTS AND RESULTS

4.1 SYNTHETIC EXPERIMENTS

Our objective in the synthetic experiments is to study the
behaviour of loss terms, reconstruction and generation qual-
ity of FlexAE and compare them with other generative AE
models.

Figure 2 demonstrates the benefit of FlexAE over WAE
[Tolstikhin et al., 2018], where the performance of both the
models is shown on a synthetic data: Z̃ = R5 and f : R5 →
R128 is an multi-layer perceptron with randomly initialized
parameters (details in the supplementary material). It is seen
that, when m = 50, Wasserstein distance between Pz and
Qz reduce faster and reaches much lower values in the case
of FlexAE compared to a fixed prior WAE, leading to a
better Fréshet Distance for generation.

Further, to demonstrate the effect of having a learnable prior,
we plot the latent spaces learned using several AE models
in Figure 3 on a synthetic dataset (Z̃ = R2 and f : R2 →
R128, further details in the supplementary material) where
the true latent space is a mixture of Gaussian (MoG) . It
can be seen that the latent space learned by a FlexAE and



 

(a) (b) (c) (d) (e)
Figure 4: (a) Visualization of reconstruction quality of FlexAE-SR model on randomly selected data from the test split of
MNIST (first and second rows), Fashion-MNIST (third and fourth rows), CIFAR-10 (fifth and sixth rows), and CELEBA
(seventh and eights rows). The odd rows represent the real data and the even rows represent the reconstructed data. 64
Randomly generated samples (i.e. no cherry picking) of (b) MNIST, (c) Fashion MNIST, (d) CIFAR-10, and (e) CELEBA
datasets using FlexAE model shows the quality of generation of the proposed model FlexAE-SR.

Table 1: Comparison of FID scores [Heusel et al., 2017] on real datasets. Lower is better.

MNIST Fashion CIFAR10 CELEBA
Rec. Gen. Rec. Gen. Rec. Gen. Rec. Gen.

VAE [Kingma and Welling, 2014] 52.14 56.07 55.90 63.01 166.45 143.31 56.66 63.85
VAE + FLOW [Kingma et al., 2016] 28.12 33.27 34.87 49.32 90.98 123.25 39.21 45.89

VAE-VampPrior [Tomczak and Welling, 2018] 21.27 55.76 31.11 50.56 109.43 141.12 51.31 60.16
VAE-IOP [Takahashi et al., 2019] 28.01 40.16 30.20 45.39 88.17 134.72 46.51 59.35

VQ-VAE [van den Oord et al., 2017] 10.95 12.07 22.47 25.73 52.11 85.98 34.23 42.15
WAE-GAN [Tolstikhin et al., 2018] 10.48 13.60 25.93 30.21 51.36 92.30 32.49 45.58

2-S VAE [Dai and Wipf, 2019] 10.83 11.91 22.43 28.57 73.07 94.57 37.60 44.85
AE + GMM (L2) [Ghosh et al., 2020] 9.69 14.70 21.59 26.74 51.45 95.77 30.16 43.79

RAE + GMM (L2) [Ghosh et al., 2020] 9.25 10.80 19.71 25.50 50.84 90.40 34.35 44.72
MaskAAE [Mondal et al., 2020] 9.53 10.12 21.59 27.29 71.40 88.82 39.75 46.79
Pioneer [Heljakka et al., 2018] 8.17 7.30 15.91 17.25 51.07 59.12 25.35 27.94
ALAE [Pidhorskyi et al., 2020] 7.97 7.07 13.25 16.87 50.93 57.36 24.39 26.15

FlexAE (Proposed) 8.28 7.28 14.68 14.81 69.63 74.45 35.31 36.99
FlexAE-SR (Proposed) 7.63 6.75 14.17 14.41 50.36 54.61 23.94 25.78

Best GAN from Lucic et al. [2018] - ∼ 6 - ∼ 20 - ∼ 55 - ∼ 30

a WAE with a GMM prior results in better generation as
compared to the models with fixed uni-modal Gaussian
priors (Note that this figure is to show that a flexible prior
helps in learning but not to show impossibility).

4.2 REAL-WORLD DATASETS

We consider four real-world datasets: MNIST [Lecun, 2010],
Fashion-MNIST [Xiao et al., 2017], CIFAR-10 [Krizhevsky,
2009], and CelebA [Liu et al., 2015] for our three sets of
experiments. We have adopted the architecture as in 2S-VAE
[Dai and Wipf, 2019] (refer to the supp.) for the AE across
all the experiments for the proposed method and all baseline
models to ensure a fair comparison.

4.2.1 Baseline Experiments

Methodology: The first task is to evaluate the FlexAE as
a generative model. We use Fréchet Inception Distance,
(FID) [Heusel et al., 2017], one of the most commonly used
evaluation methods as it correlates well with human visual

perception [Lucic et al., 2018]. However, as observed in
[Sajjadi et al., 2018], FID, being uni-dimensional, fails to
distinguish between different cases of failure (poor sam-
ple quality and limited variation in the samples). Thus, we
also report the precision and recall metrics described in
[Sajjadi et al., 2018] along with FID, both of which are
computed between the generated and the real test images.
We compare FlexAE with a number of SoTA AE-based
generative models that cover a broad class namely, VAE
[Kingma and Welling, 2014], VAE+Flow [Kingma et al.,
2016], VAE-VampPrior [Tomczak and Welling, 2018], VAE-
IOP [Takahashi et al., 2019], VQ-VAE [van den Oord et al.,
2017], WAE [Tolstikhin et al., 2018], a plain with AE post-
hoc GMM, RAE+GMM [Ghosh et al., 2020], 2-stage VAE
[Dai and Wipf, 2019], MaskAAE [Mondal et al., 2020], Pi-
oneer [Heljakka et al., 2018], and ALAE [Pidhorskyi et al.,
2020] with same (or similar capacity) architectures (see
supplementary material). Note that a single data agnostic
setting for all the hyper-parameters have been chosen for all
the experiments related to FlexAE and FlexAE-SR (Refer
to supplementary material for details). The details of the
P-GEN and Smoothing Regularization networks can also be



 
Table 2: Comparison of Precision/Recall scores [Sajjadi et al., 2018] on real datasets. Higher is better.

MNIST Fashion CIFAR10 CELEBA
VAE [Kingma and Welling, 2014] 0.68/0.74 0.61/0.66 0.28/0.44 0.48/0.57

2S-VAE [Dai and Wipf, 2019] 0.95/0.98 0.80/0.78 0.44/0.61 0.72/0.78
RAE + GMM (L2) [Ghosh et al., 2020] 0.96/0.97 0.78/0.77 0.49/0.59 0.67/0.75

MaskAAE [Mondal et al., 2020] 0.94/0.96 0.71/0.83 0.45/0.62 0.65/0.62
ALAE [Pidhorskyi et al., 2020] 0.98/0.99 0.97/0.96 0.73/0.85 0.84/0.81

FlexAE (Proposed) 0.98/0.99 0.98/0.98 0.65/0.80 0.71/0.76
FlexAE-SR (Proposed) 0.98/0.99 0.98/0.99 0.79/0.87 0.85/0.88

found in the supplementary.

Results: Table 1 compares the average reconstruction and
generation FID scores (lower is better) of FlexAE with other
AE-based generative models and the best GAN’s generation
FID as reported in [Lucic et al., 2018]. It is seen that while
models with parametric learnable priors (VampPrior, IOP,
Flow) offer some improvement over the naive VAE, they
are non optimum. It is also seen that complex prior models
tend to over fit more (gap between the gen. and recon. FIDs).
Further, controlling the latent space dimensionality (2SVAE,
MaskAAE) have significant impact on the performance. A
relatively better performance of RAE+GMM shows that
while absence of prior imposition will reduce the bias, it
might lead to over fitting. Pioneer [Heljakka et al., 2018]
with progressively growing training procedure and adver-
sarial encoder-generator network shows significant boost in
performance2. ALAE [Pidhorskyi et al., 2020] with their
modified generator and discriminator architecture offers
slightly better performance as compared to Pioneer. Finally,
FlexAE-SR offers the best performance on three datasets as
compared to other AE based generative models and their per-
formance are comparable to that of the GANs [Lucic et al.,
2018]. A similar trend is observed with the Precision/Recall
scores in Table 2. FlexAE-SR achieves significantly better
numbers confirming its effectiveness in generating samples
that are of both high quality and variety.

Figure 4 presents reconstructed and generated samples using
FlexAE-SR for qualitative evaluation of its performance.
Supplementary material contains more examples.

4.2.2 Effect of Latent Space Dimensionality

Methodology: To study the effect of the latent dimension-
ality on the generation quality of the latent variable models,
we train FlexAE-SR and WAE models with varying m.

Results: As presented in Table 3, with increasing m, the
reconstruction FID decreases for both WAE and FlexAE.
However, the generation FID of WAE increases with m.
While generation FID of FlexAE remains almost constant.

2To ensure fairness in comparison, in this work all the methods
were trained for same number of iterations.

This shows that FlexAE can achieve better optimum irre-
spective of the latent dimensionality.

4.2.3 Smoothness of the Latent Space

Qualitative Comparison: To ascertain the smoothness of
the learned latent space and that FlexAE-SR doesn’t over
fit, we conduct a few qualitative experiments: (i) traversal
in the latent space between two real samples (MNIST and
FMNIST) (ii) Generation by transitions in the latent space
along the direction of a particular attribute (CELEBA) (iii)
plot of the Nearest neighbour samples for a given generated
image, from the training set, based on pixel values and
inception features (CELEBA).

The outcome of these experiments are shown in Figure 5.
Each row in 5a and 5b represents linear interpolation in
the latent space between two randomly selected samples
in the first and the last column. The central image in each
row is generated using the mid-point of the two latent repre-
sentations corresponding to the two real images. Each row
in 5c presents manipulation of a particular face attribute
(Big Nose, Heavy Makeup, Black Hair, Smiling, Male). The
middle image in each row of 5c corresponds to a training
sample with the attribute present. The interpolation results
presented in 5a, 5b, and 5c clearly depict the smoothness
of FlexAE-SR latent space as it provides smooth transition
between any two random images (5a, 5b) or smooth tran-
sition based on a feature (5c). The first image of each row
in 5d, and 5e shows a randomly generated sample using
FlexAE-SR and the next four entries are the four nearest
neighbours from the training split based on raw pixel val-
ues and inception features respectively. Visual dissimilarity
between a generated image and its nearest neighbours in
the training set confirms that FlexAE-SR has not merely
memorized the training set. (cf. supp. for more results).

Quantitative Comparison: To quantitatively understand,
if the proposed method is merely memorizing the training
examples, we propose two metrics: 1) Pixel Memorization
Score (PMS) and 2) Inception Memorization Score (IMS).
Given two sets of images A and B, PMS computes the aver-
age L2 distance in the pixel space of all 1-nearest neighbours
of images in the set A from those in the set B. IMS is a sim-



 
Table 3: Variation of FID w.r.t. bottleneck layer dimension, m. For MNIST and Fashion MNIST mb = 32 and for CIFAR-10
and CELEBA mb = 64. Unlike WAE [Tolstikhin et al., 2018], generation quality of FlexAE-SR remains unaltered even
when m increases.

m MNIST FASHION CIFAR10 CELEBA
Rec. Gen. Rec. Gen. Rec. Gen. Rec. Gen.

WAE FlexAE-SR WAE FlexAE-SR WAE FlexAE-SR WAE FlexAE-SR WAE FlexAE-SR WAE FlexAE-SR WAE FlexAE-SR WAE FlexAE-SR
mb 7.98 6.19 15.34 5.86 20.71 10.86 40.5 11.46 51.36 50.36 92.3 54.61 32.49 23.94 45.58 25.78
2mb 5.61 3.10 24.58 3.37 13.94 7.20 55.49 8.41 48.9 43.59 87.91 53.94 25.72 18.58 87.1 21.26
4mb 3.99 1.64 37.16 2.79 10.04 4.93 78.31 8.16 30.47 29.71 89.82 56.09 19.89 16.21 76.12 22.18

(a) (b) (c) (d) (e)

Figure 5: (a), (b) Each row in represents linear interpolation in the latent space between two randomly selected test samples
in the first and the last entry. (c) Each row presents manipulation of a particular face attribute (Big Nose, Heavy Makeup,
Black Hair, Smiling, Male). The central image of each row is a true image from the train split with the attribute. (d) The
first image in each row shows randomly generated samples using FlexAE-SR and the next four entries are the four nearest
neighbours from training data. (e) First entry in each row shows the same randomly generated samples as in (d) and the four
nearest neighbours based on features extracted by a pretrained Inception net.

ilar distance metric in the inception feature space. Table 4
shows the results. We can see that, PMS between two non-
overlapping sets of 10k training(Tr) / test(Te) images are
comparable to PMS between 10k generated samples and
10k training samples. It implies that the generated samples
are not replicas of the training samples seen by the model.
Otherwise, PMS(Gen, Tr) would be less than PMS(Tr, Tr).
Similar argument holds true for the proposed IMS metric.
This shows the model has not memorized the training sam-
ples.

Table 4: Pixel/Inception Memorization Score
Tr-Tr Gen-Tr Tr-Te Gen-Te

MNIST 4.72/7.11 4.66/7.10 4.77/7.12 4.66/7.12
Fashion 4.01/9.22 3.99/9.13 4.01/9.26 3.90/9.16

CIFAR-10 9.75/12.54 9.64/14.40 9.74/12.51 9.68/14.40
CELEBA 18.42/8.73 18.01/9.37 18.50/8.75 17.86/9.34

5 CONCLUSION

In this paper, we systematically studied the effect of the la-
tent prior on the deterministic AE-based generative models.
We demonstrated that fixing any kind of prior in a data-
agnostic way is detrimental to the performance. We pro-
posed a model called the FlexAE, where we have introduced
an additional state space to address the problem of infeasi-
bility that arises due to latent dimensionality mismatch and
prior fixation. We also employ a smoothing regularization
technique to learn a locally convex smooth latent space for
deterministic generative autoencoders. We have empirically
demonstrated the efficacy of the proposed models on several
real world datasets.
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