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Abstract

Convex clustering has drawn recent attention be-
cause of its competitive performance and nice
property to guarantee global optimality. However,
convex clustering is infeasible due to its high
computational cost for large-scale data sets. We
propose a novel method to solve the L1 fusion
convex clustering problem by dynamic program-
ming. We develop the Convex clustering Path Al-
gorithm In Near-linear Time (C-PAINT) to con-
struct the solution path efficiently. The proposed
C-PAINT yields the exact solution while other
general solvers for convex problems applied in
the convex clustering depend on tuning parame-
ters such as step size and threshold, and it usu-
ally takes many iterations to converge. Including
a sorting process that almost takes no time in prac-
tice, the main part of the algorithm takes only
linear time. Thus, C-PAINT has superior scala-
bility comparing to other state-of-art algorithms.
Moreover, C-PAINT enables the path visualiza-
tion of clustering solutions for large data. In partic-
ular, experiments show our proposed method can
solve the convex clustering with 107 data points in
R2 in two minutes. We demonstrate the proposed
method using both synthetic data and real data.
Our algorithms are implemented in the dpcc R
package.

1 INTRODUCTION

Clustering is one of the most popular unsupervised learning
tasks exploring data and seeking groups of similar objects.
Traditional clustering methods include hierarchical cluster-
ing, partitive clustering, and model-based clustering. Re-
cently, convex clustering has been studied [Hocking et al.,

*These authors contributed mainly to this work.

2011, Lindsten et al., 2011, Pelckmans et al., 2005], which
guarantees global optimality due to the convex formulation
of the problem. Different from the methods like k-means
that requires a given cluster number, convex clustering uses
a tuning parameter to control the number of output clusters.

Given n points x1, . . . ,xn in Rp, convex clustering mini-
mizes the following problem:

L(A) =
1
2

n

∑
i=1
∥xi−ai∥2

2 +λ ∑
i< j

ωi j||ai−a j||q (1)

where each ai ∈ Rp is the i-th row of the matrix A that pro-
vides an alternative vector to represent the point xi. || · ||q
denotes the Lq-norm, typically chosen 1, 2, or ∞. λ is a
positive tuning parameter, and ωi j are the given weights
that are generally chosen based on the given input data. Af-
ter solving the optimization problem, we obtain the optimal
solution Â = (â1, . . . , ân)

T . We assign the sample i and j to
a same cluster if and only if âi = â j.

The optimization problem also has a meaningfully visu-
alized interpretation called “clusterpath” (Figure 1) when
varying the tuning parameter λ . With λ = 0, each point oc-
cupies a unique cluster, as λ increases, the clusters begin
to coalesce. In the end all the points coalesce into a single
cluster for a sufficiently big λ . The clusterpath shows how
each point becomes merged along the path with different
λ s, and the visualization provides rich information about
the cluster structure of data.

In general, the computational cost to construct the clus-
terpath is very high. In order to solve (1), Hocking et al.
[2011] introduced three different algorithms for different
regularizers corresponding to L1,L2 and L∞. After that, gen-
eral solver for convex problem such as the alternating di-
rection method of multipliers (ADMM) and the alternating
minimization algorithm (AMA) [Chi and Lange, 2015] are
also applied to solve (1) with L1 and L2 penalties. In order
to obtain the clusterpath efficiently, Weylandt et al. [2020]
proposed CARP algorithm which uses an novel compu-
tational technique to approximate the path-wise visualiza-
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Figure 1: An example shows the clusterpath generated under L1
norm. The clusterpath shows individual cluster centers start to
merge and finish as a single cluster.

tions with sufficient precision. Radchenko and Mukherjee
[2017] considered two efficient algorithms for L1 penalty
case that successively merges the clusters in a bottom-up
fashion or splits the clusters in a top-down fashion to de-
tect all the fusion or split events. Moreover, Radchenko and
Mukherjee [2017] studied the sample behavior of convex
clustering with L1 penalty and identical weights and pro-
vided theoretical support. However, their methods cannot
estimate Â and thus cannot provide a clusterpath.

In this paper, we consider the same setting as Radchenko
and Mukherjee [2017]: L1 convex clustering with identi-
cal weights. We consider a completely different approach
and develop an efficient algorithm to handle the computa-
tional bottleneck in the convex clustering problem. Fortu-
nately, for the problem (1) with the L1 penalty, Hocking
et al. [2011] noted that the problem was separable on di-
mensions. In addition, for each dimension the problem can
be considered as a fused lasso problem [Tibshirani et al.,
2005]. The problem (1) is decomposed into p separate sub-
problems as follows:

min
a∈Rn

1
2

n

∑
i=1

(xi−ai)
2 +λ

n−1

∑
i=1

n

∑
j=i+1

|ai−a j| (2)

Hocking et al. [2011] adapted the FLSA algorithm [Hoe-
fling, 2010] to solve the problem (2). Nevertheless, based
on our experience, it still remains very challenging for large
scale problems. Thus we employ a way of dynamic pro-
gramming (DP) method to obtain the exact solution of the
problem (2). Johnson [2013] first proposed a DP method
for the chain graph fused lasso, or simply, 1d fused lasso
problem which penalizes the neighbor terms:

min
a∈Rn

1
2

n

∑
i=1

(xi−ai)
2 +λ

n−1

∑
i=1
|ai−ai+1| (3)

On the surface, (2) is not equivalent to (3). In this paper, we
first show the sub-problem of convex clustering (2) can be
reformulated into a weighted one-dimensional fused lasso
problem. The transformation allows us to apply a modi-
fied version of the DP method to solve the problem in lin-
ear time. The numerical experiments show the proposed
method yields superior performance. We summarize our
main contributions:

• We show that each sub-problem of convex clustering
can be reformulated into a weighted 1d fused lasso
problem based on an important observation result for
identical weights case.

• We employ an DP algorithm to solve the reformulated
problem. Furthermore, due to the special formulation
of the problem, we refine it to be more efficient.

• We propose an algorithm named C-PAINT based
on the DP algorithm to construct a full clusterpath.
The time complexity of C-PAINT is O(pn logn) +
O(pnK), where K is the length of λ sequence, n is
the sample size, and p is the feature dimension of
each sample. In practice, we show the C-PAINT takes
O(pnK) which is scalable to large dataset.

The remaining article is arranged as follows. Related work
is introduced in Section 2. Section 3 provides the prelimi-
naries and introduces some properties of the convex clus-
tering to be used to reformulate problem (2) later. In Sec-
tion 4, we present the DP method and C-PAINT algorithm
to draw a full clusterpath. The experimental results are re-
ported in Section 5, including both synthetic data and real
data. At last, Section 6 concludes the article. In addition,
we provide the details about the DP algorithm in the sup-
plementary material.

2 RELATED WORK

There are some variants of convex clustering. Chi et al.
[2017] considered the convex bi-clustering. Wang et al.
[2018] proposed the sparse convex clustering which can
perform clustering and feature selection simultaneously.
The robust convex clustering [Wang et al., 2016] was pro-
posed to detect the outlier features.

From the theoretical perspective, Tan and Witten [2015]
showed that when the identical weights are used, the con-
vex clustering has a close connection to the single-linkage
hierarchical clustering. Radchenko and Mukherjee [2017]
analysed the asymptotic properties of the solution path and
gave conditions for it to yield the true dendrogram under
L1 fusion penalty with identical weights. Zhu et al. [2014]
studied the condition for convex clustering to recover the
clusters correctly.

From the computational perspective, Lindsten et al. [2011]
proposed to use the off-the-shelf solver called CVX to



 generate the solution path. Hocking et al. [2011] intro-
duced three algorithms for three different penalty norms
(L1,L2,and L∞). Especially, they used the FLSA algorithm
for L1 penalties. Chi and Lange [2015] proposed the
ADMM and the AMA for the convex clustering problem.
However, the convergence rate is not fast enough during
the iterative process when the sample size n and the di-
mension of data p are large. Yuan et al. [2018] proposed
a semismooth Newton based algorithm to solve the convex
clustering problem. Radchenko and Mukherjee [2017] pro-
posed efficient methods that successively merge or split the
clusters, but these methods are unable to find the exact so-
lution of the estimated centroids Â, thus is impossible for
the visualization of the clusterpath.

Although convex clustering has many competitive features,
its computational burden remains to be challenging.

3 PRELIMINARIES

In this paper, we use bold small letters to represent vectors
like x, and ordinary one for scalar like x.

We first review the fact that the convex clustering problem
can be decomposed into sub-problems by dimension. Then
we go through some important facts about the clusterpath,
which prepares us to reformulate the problem in Section 4.

Each sample point has p features xi = (xi1, . . . ,xip)
T and its

corresponding parameter vectors ai = (ai1, . . . ,aip)
T .

Consider the convex clustering problem with L1 fusion
penalty and identical weights:

1
2

n

∑
i=1
∥xi−ai∥2

2 +λ ∑
i< j
∥ai−a j∥1

=
p

∑
k=1

[
1
2

n

∑
i=1

(xik−aik)
2 +λ

n−1

∑
i=1

n

∑
j=i+1

|aik−a jk|

]

Thus solving the minimization problem of (1) just amounts
to solving p separate sub-problems on each dimension. In
the following content, we consider the sub-problem (2).

We now introduce the following theorem and lemma that
prepare us for the reformulation in the next section. The
theorem 3.1 shows that in the L1 clusterpath, no split hap-
pens in the identical weights setting. Thus, we have lemma
3.2 that the order of the original input are preserved in esti-
mated centroids.

Theorem 3.1 (Hocking et al. [2011]). Taking ωi j = 1 for
all i and j is sufficient to ensure that the L1 clusterpath
contains no splits.

Lemma 3.2 (Chiquet et al. [2017]). The absence of splits
is equivalent to preservation of the order along the path for
problem (2).

4 PROPOSED METHODS

In this section, we first show how to reformulate the prob-
lem (2) by substituting with the penalty term in Section 4.1.
Next, after the reformulation of the objective function, we
can adapt the DP method to solve it. We explain the de-
tails about the modified DP algorithm in Section 4.2. Algo-
rithm 1 gives a high-level view of the DP algorithm, while
further details are presented in algorithm 2. The C-PAINT
algorithm is based on the DP algorithm and presented in
algorithm 3 in Section 4.3. Finally, we give some analysis
about the time complexity in Section 4.4.

4.1 IDEAS

On the theoretical side, a direct consequence of theorem 3.1
and lemma 3.2 is: for (2), the order of x are preserved, in
other words, the estimated centroids preserve the original
order of the input data.

x(1) ≤ x(2) ≤ ·· · ≤ x(n) −→ â(1) ≤ â(2) ≤ ·· · ≤ â(n)

where the x(i), i = 1, . . . ,n are the x that sorted in a non-
decreasing order. Thus the order of the centroids to be
estimated can be obtained directly from the input data.
Let us take a look at the penalty term in problem (2):
∑n−1

i=1 ∑n
j=i+1 |ai− a j|. Suppose the order of (a1, . . . ,an) is

known, then the absolute value can be removed. For ex-
ample for a(1) ≤ a(2) ≤ a(3) ≤ a(4), the absolute value of
|a(1)− a(3)| = a(3)− a(1) = a(3)− a(2)+ a(2)− a(1), which
can be written as |a(2)−a(3)|+ |a(1)−a(2)|. By decompos-
ing penalty terms, we can rewrite it into the absolute val-
ues of the differences between neighbor items. The Figure
2 shows an image of the transformation from a complete
graph into a weighted chain graph.

a(1) a(2) a(3) a(4)

a(1) a(2) a(3) a(4)

Figure 2: Transformation of the penalty graph. The edges are the
absolute values of the differences between nodes. The total sums
of the edges length are identical for two graphs, which inspires us
to reformulate the penalty term.

Lemma 4.1. Given the sequence (a1, . . . ,an), sort it in a
non-decreasing order a(1) ≤ ·· · ≤ a(n), then

n−1

∑
i=1

n

∑
j=i+1

|ai−a j|=
n−1

∑
i=1

i(n− i)|a(i)−a(i+1)|. (4)



 Lemma 4.1 suggests that it is possible to replace the penalty
term in (2) with the right side one in (4). This reformulation
turns the fused lasso problem into a weighted 1d fused lasso
problem as follows:

min
a∈Rn

1
2

n

∑
i=1

(xi−ai)
2 +λ

n−1

∑
i=1

i(n− i)|a(i)−a(i+1)| (5)

Now we can employ the DP [Johnson, 2013] to solve this
problem (5). In addition, we know â(i) ≤ â(i+1) always hold
for i, thus we only need to consider the cases â(i) = â(i+1)
and â(i) < â(i+1), which refines the DP algorithm to be more
efficient. Next, we introduce the modified DP algorithm in
further detail.

4.2 DP ALGORITHM

Given the data points x1 ≤ x2 ≤ ·· · ≤ xn, by lemma 3.2, the
order are preserved for the centroids â1 ≤ â2 ≤ ·· · ≤ ân, we
consider the following problem:

(â1, . . . , ân) := argmin
â

1
2

n

∑
i=1

(xi−ai)
2 +

n−1

∑
i=1

λi|ai−ai+1|

Before giving details about the DP algorithm, it is neces-
sary to prepare some notation here. Let

h1(b) :=
1
2
(x1−b)2

for k = 2,3, . . . ,n,

• ϕk(b) := arg min
b̃

hk(b̃)+λk|b̃−b|.

• hk(b) := 1
2 (xk−b)2 +hk−1(ϕk−1(b))+λk−1|ϕk−1(b)−b|1

Theorem 4.2 (Johnson [2013]). The function hk(b) is
strictly convex and differentiable. The function ϕk(b) is
piece-wise linear.

The b and b̃ in the definition of ϕk represent the former
centroid ak and the later centroid ak+1 respectively. Once
âk+1 is known, by the definition, âk can be expressed as

âk = ϕk(âk+1).

From the above theorem 4.2, we know hk(b) is differen-
tiable, hence we define some intermediate notation:

gk(b) :=
∂hk(b)

∂b
, Uk := arg min

b
hk(b)−λkb.

It is not straightforward to see but once we know the âk+1,
the âk can be written in a closed form. Because the former
centroid ak is always equal or smaller than ak+1, in other
words b̃ ≤ b, thus the |b̃− b| in ϕk takes either b− b̃ or 0.

Algorithm 1: DP algorithm
Input: sorted input x1 ≤ ·· · ≤ xn, λ .
Output: (â1, . . . , ân)

1 Initialize λi← i(n− i)λ , for i = 1, . . . ,n−1.
2 for k← 1 to n−1 do
3 Find the Uk
4 end
5 Solve ân such that hn(ân) = 0.
6 for k← n−1 to 1 do
7 âk = max(âk+1,Uk)
8 end

In the case of b̃ < b, which corresponds to the case that
âk < âk+1,

ân = arg min
b̃

hk(b̃)+λk(b− b̃)

= arg min
b

hk(b̃)−λkb̃ =Uk.

Otherwise b̃− b = 0, which corresponds to the case that
âk = âk+1. By the assumption we already know the âk+1,
we can simply assign the known âk+1 to âk. In short, we
take the maximum between âk+1 and Uk and assign it to âk.
It is clear that once we find ân and U1, . . . ,Un−1, we can
obtain all the centroids by tracking back from n− 1, . . . ,1.
This is summarized in algorithm 1, giving a high-level view
of the DP algorithm.

Next, we show how to find Uk for k = 1, . . . ,n− 1. The
details are explained in algorithm 2. By KKT condition, Uk
satisfies

gk(Uk)−λk = 0.

When k = 1, g1(U1)−λ1 =U1− x1−λ1 and U1 = x1 +λ1.
For k = 2, . . . ,n−1, by the definition of hk(b), we have the
derivative of hk(b) is:

gk(b) = gk−1(b)I[b≤Uk−1]+λk−1I[b >Uk−1]+ (b− xk),

where I is the indicator function. It is easy to see the func-
tion gk is a piecewise linear function connected by a knot
point Uk−1: when b > Uk−1, gk is a line with the slope 1
and the intercept λk−1− xk; when b ≤ Uk−1, again, it be-
comes piecewise linear with a new knot point Uk−2. Be-
cause gk−1(b) includes the (b− xk−1) term, so the slope
becomes steeper as b becomes smaller. Because gk is piece-
wise linear, the key to find the Uk that satisfies gk(Uk) = λk
is to decide which part of the line is Uk on. To do that, we
start to search from the right to left. If the Uk is not on the
current line, move left and update the intercept and slope
until we find the line where (Uk,λk) is. As for ân, it is the
same as finding the Un that satisfying gn(Un) = λn with
λn = 0.

In addition, while we search for each Uk, some care to
be taken to guarantee it has O(n) worst case performance,



 Algorithm 2: Finding U
Input: x1 ≤ ·· · ≤ xn, (λ1, . . . ,λn−1).
Output: (U1, . . . ,Un−1)

1 // Initialization;
2 U1← x1 +λ1.
3 U∗←U1, S∗← 1, I∗←−x1.
4 for k← 2 to n−1 do
5 Sk← 1, Ik←−xk.
6 β ← (λk−λk−1− Ik)/Sk.
7 // search from the right side.
8 // .end denotes the last item of a sequence.
9 while U∗.end > β do

10 update Sk← Sk +S∗.end, Ik← Ik + I∗.end
11 erase the last item of U∗, S∗, I∗.
12 // suppose the index of U∗.end is Um,
13 // then update the β as follows:
14 β ← (λk−λm− Ik)/Sk.
15 if U∗ is empty then
16 break
17 end
18 end
19 update Uk ← β .
20 update U∗ ← (U∗,Uk), S∗← (S∗,Sk),

I∗← (I∗, Ik).
21 end

which is the erase step in line 11 of the algorithm 2. In the
algorithm 2, the U∗, S∗ and I∗ can be viewed as three differ-
ent stacks, each time we enter the inner loop in line 9, we
pop the last items of U∗, S∗ and I∗ out, and after finding the
Uk, in line 20 we push the new Uk, Sk and Ik into each stack
respectively.

The technical details here is somehow difficult to under-
stand. In order not to interrupt with the flow of the paper,
we include an example of n = 3 in the supplementary ma-
terials, which we believe is helpful in understanding the
algorithm.

4.3 C-PAINT ALGORITHM

The DP algorithm is intended for a single tuning parame-
ter λ . However, sometimes it is of our interest to visualize
the full clusterpath. Using the proposition result, we first
find the λmax that yields non-trivial solution. In other words,
any tuning parameter bigger than λmax results in one cluster.
Next, we proposed the C-PAINT algorithm.

Proposition 4.3 (Radchenko and Mukherjee [2017]).
Given data x = (x1, . . . ,xn) ∈Rn. In the problem 2, the tun-
ing parameter λmax that yields non-trivial solution is:

λmax(x) = max
j=1,...,n−1

(
x̄− 1

j

j

∑
k=1

xk

)
/(n− j)

Algorithm 3: C-PAINT algorithm
Input: Data matrix X ∈ Rn×p, λ sequence length K.
Output: (Â1, . . . , ÂK), and Âk = (âk

1, . . . , â
k
n)

T ∈ Rn×p.
1 // find the λmax(X).
2 Initialize λk← λmax · k/K, k = 1, . . . ,K.
3 for i = 1 to p do
4 Sort xi ∈ Rn in a descending order as x(i) and save

the order of the xi.
5 for k = 1 to K do
6 // for each dimension i, use the DP algorithm.
7 âk

(i)← DP(x(i),λk).
8 end
9 rematch the âk

i [order]← âk
(i).

10 end

where the x̄ = 1
n ∑n

k=1 xk.

Similarly, for a given matrix X = (x1, . . . ,xp) ∈ Rn×p, we
can obtain the λmax by taking the maximum value of all
dimensions:

λmax(X) = max
i=1,...,p

λmax(xi).

This is useful to us that we only need to consider the λ
sequence that is smaller than the λmax in constructing the
solution path. In the algorithm 3, we choose a series of tun-
ing parameter λ s as an arithmetic sequence but it is also
possible to use a geometric sequence.

4.4 TIME COMPLEXITY

In order to analyse the time complexity, we take a look at
how many operations are involved.

In the algorithm 2, U1 can be founded in O(1). In finding
U2, . . . ,Un−1, line 2-3, line 5-6 and line 19-20 can be cal-
culated in O(1), and inside the while loop, line 10-16 also
takes O(1), so the key problem is how many times we en-
ter the inner while loop. Every time we enter the inner loop,
the last item of the sequence U∗ is deleted and never used,
and from line 19 we know every Uk will be added once and
deleted at most once, thus we can enter the inner loop at
most n− 2 times, and each time it takes O(1), so in total
the algorithm 2 is O(n).

Besides, in order to reformulate the problem, first we need
to sort (x1, . . . ,xn) in a ascending order, where the time
complexity depends on the choice of the sorting algorithm,
we adapt the quick sort algorithm which on average takes
O(n logn). For a single tuning parameter λ , the DP algo-
rithm takes O(n logn) +O(n). As for the C-PANT algo-
rithm, for each dimension we only need to sort it once
to construct the clusterpath, we solve each sub-problem K
times with different λ using the DP algorithm, and the time



 complexity of it is O(pnK). In total, the C-PAINT takes
O(pn logn)+O(pnK).

5 EXPERIMENTAL EVALUATION

In this section, we first provide the run times compari-
son. The C-PAINT is compared with several representative
methods: CARP, FLSA, ADMM, AMA and the FUSION
algorithm proposed by Radchenko and Mukherjee [2017].
Results show that our proposed method C-PAINT is sig-
nificantly faster than other methods in finding clusterpath.
Next, the numerical experiments results on both synthetic
and real data are provided. As the proposed method is a
novel optimization method that yields the exact solution,
we focus on showing the recovery of the clusterpath. In
the synthetic data example, we generated five clusters with
different shapes, the obtained clusterpath shows how each
cluster merged along the clusterpath. In the real data exam-
ples, we perform C-PAINT and other methods on relatively
small datasets and present the run times. We also apply C-
PAINT to obtain the clusterpaths on larger datasets which
are infeasible for the existing methods.

5.1 IMPLEMENTATION DETAILS

Our proposed DP algorithm and C-PAINT are implemented
in Rcpp, which are implemented in the dpcc R pack-
age. We compare with the CARP function which is imple-
mented in C++ in the clustRviz R package, and the tun-
ing parameters are set as recommended values. The FLSA
function is in the flsa R package, which is implemented
in C++. To make a fair comparison, we run the FLSA func-
tion without checking the splits based on theorem 3.1. The
ADMM and AMA are implemented in the cvxclustr
R package using R and C. For ADMM and AMA, we set
the step size to be 1/n, and the convergence tolerance to
be 10−5. The FUSION algorithm is implemented in R in
the fusionclust R package. To make a fair compari-
son, we implemented the code in Rcpp by ourselves and
made some modifications to accelerate the algorithm. Be-
cause Radchenko and Mukherjee [2017] proposed two sim-
ilar methods, we only consider the one that successively
merges in a bottom-up fashion. As for the modifications,
specifically, instead of storing most of the fusion events,
we stored the clustering results for only K times, which is
equivalent to the length of the λ sequence used in C-PAINT,
ADMM and AMA. This modification makes the algorithm
much more efficient. Even that, FUSION is still slower than
the C-PAINT for large sample size cases.

Our experiments are performed on a MacBook Air with M1
CPU with 8 GB memory. The elapsed times (wall clock
times) are taken as the run times.
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Figure 3: Comparison of the run times in computing clustering
solution path in logarithmic scale. Each line represents the run
times of different methods.

5.2 TIME COMPARISON

The simulated data consists of 100, 500, 1000, 5000, 10000
and 50000 points in R2 from a gaussian mixture model
with three components. The length of the λ sequence is
K = 10, which means we equally separate the λ sequence
to be (λmax/10,2λmax/10, . . . ,λmax). All the run times are
the means on 30 replications. We let the CARP only run
up to 500 and the FLSA, ADMM and AMA only run up to
1000 points because it took much more time for bigger sam-
ple sizes. However, for the FUSION algorithm and the pro-
posed method, we run over large data sets of 5000,10000
and 50000. Although for L1 case, each sub-problems can
be solved in parallel for C-PAINT, FLSA and FUSION al-
gorithm, we do not pursue it here.

The time comparison results are shown in the Figure 3. In
the figure 3, the x-axis shows the sample size n, and the
y-axis shows the run times in second in logarithmic scale.

We notice for the identical weights and L1 penalty setting,
CARP is slower than other methods when the length K is
small. FLSA, ADMM and AMA show quite close perfor-
mance, and is generally slower than C-PAINT and FUSION
algorithm. FUSIOIN algorithm is fast but unable to create
a clusterpath visualization because it does not estimate the
centroids with a given tuning parameter λ . In terms of visu-
alize the clusterpath and do clustering, C-PAINT is efficient
and fast. In particular, C-PAINT can find the full solution
path of 107 samples in R2 within two minutes. Moreover,
simulation shows the run times of C-PAINT grow linearly,
which coincides with the time complexity analysis in Sec-
tion 4. We can see C-PAINT is generally faster than FU-



 

Figure 4: Visualization of the clusterpath generated with a λ se-
quence with length K = 10. The colors show the clustering results
with the biggest tuning parameter of the lambda sequence. The
threshold γ are set to be 10−6.

SION. The possible reason is that even though we save it
from storing most of the events, it still needs to go through
every fusion events, which makes it less efficient as the sam-
ple size grows. Meanwhile, the proposed method performs
the DP algorithm independently with a single λ . In conclu-
sion, in terms of finding clusterpath, C-PAINT outperforms
the CARP, FLSA, ADMM and AMA and is capable of solv-
ing large scale problems. The details are in the Appendix.

5.3 SYNTHETIC DATA

We generate the synthetic data into five clusters with differ-
ent shapes, each includes 200 data points. For a better inter-
pretability of the clustering results, we set a small threshold
γ = 10−6 that for all the estimated centroids within the eu-
clidean distance of γ , we put them into a same cluster.

In the Figure 4, both clustering results and clusterpath are
presented in the same plots. The colors represent clusters
obtained by the DP algorithm with a certain parameter λ .
Instead of drawing the full clusterpath, we stop it halfway
before all the points collapse into one final cluster. By dis-
tinguishing the merged centers, the convex clustering suc-
cessfully separated different clusters.

5.4 SMALL DATASET

We use two small real datasets to investigate the perfor-
mance of our proposed algorithm and other methods.

• Lymphoma [Alizadeh et al., 2000] dataset includes
62 samples categorized into three lymphoma types.

• Gene expression [Weinstein et al., 2013] dataset in-
cludes the gene expression features of 801 samples
with four different types of tumor as labels.

Lymphoma Gene expression
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Sample size : n = 62 n = 801
Run time (second)

CARP: 6.6×10−2 223
ADMM: 1.1×10−2 8.6
C-PAINT: 4.7×10−4 0.012

Table 1: Visualization of the clusterpath generated with a λ se-
quence with length K = 10. The colors show the original labels of
the samples. Run times are the means over 30 replications.

To better visualize the high-dimensional datasets, we first
use the UMAP [McInnes et al., 2018] to reduce the dimen-
sions into two. We use the umap function in the uwot R
package. Next, we perform the C-PAINT on the projected
coordinates. The colors show the original labels of the data.

Both the full clusterpaths and run times are reported in
the table 1. We only report the ADMM since the ADMM,
AMA, FLSA have similar run times. From the result, we
can see C-PAINT is much faster than other methods.

5.5 LARGE DATASET

Now we use relatively large datasets to investigate the per-
formance of the proposed algorithm. In particular, we use:

• Frey faces dataset includes 1965 images of Brendan
Frey’s face, taken from sequential frames of a small
video. This is included in the snedata R package.

• RNA sequence [Stuart et al., 2019] multi-dataset in-
cludes 5683 cells consisting of 11 cell types and dif-
ferentially expressed genes as their features.

• Anuran (frog) calls [Han and Zhang, 2016] dataset
includes the extracted features from 7195 frog calls
records, and each frog has family, genus and species
labels, among which we choose the family.

• Fashion-MNIST [Xiao et al., 2017] dataset consists
of 70000 grayscale images of items such as T-shirt,
Trouser and Bag.

• Kuzushiji-MNIST [Clanuwat et al., 2018] dataset
consists of 70000 grayscale images of hiragana char-
acters in Japanese.

Here we focus on showing the recovery of the clusterpaths
on large datasets. The table 2 shows the results of the first



 Frey faces RNA sequence Anuran (frog) calls Fashion-MNIST

Sample size : n = 1965 n = 5683 n = 7195 n = 70000
Run time (s) : 8.4×10−3 2.6×10−2 5.6×10−2 15.8

Table 2: Visualization of the clusterpaths of real datasets. The clusterpaths are drawn by C-PAINT using the coordinates obtained by
UMAP. The length of the λ sequence is set to be K = 5. The run times of each real datasets are the means over 10 replications.
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Figure 5: Visualization of the clusterpath of kuzushiji-MNIST is shown on the left. Some representative variants of kuzushiji and the
legend are shown on the right. The length of the λ sequence is set to be K = 5. The mean run time is 11.578s over ten replications.

four datasets, both the sample sizes and the run times of
the C-PAINT are presented. Next, We choose the kuzushiji
dataset to explain in further details.

Kuzushiji-MNIST is a drop-in replacement for the MNIST
dataset, consisting of ten rows of Japanese Hiragana. Differ-
ent from the ordinary Hiragana used in Japanese nowadays,
the kuzushiji came from ancient Chinese characters vari-
ants thus each has several variants. For example, we can
see in the Figure 5 that except for the Hiragana Ha, others
has two or more variants that looks quite unlike. To be more
specific, we can see on the right side of the clusterpath, Ha
and Tsu merge along the clusterpath at an early stage be-
cause the projection of the images share great similarity.

6 CONCLUSIONS

We proposed a novel algorithm for L1 convex clustering. To
the best of our knowledge, it is the first time that dynamic

programming is applied to the convex clustering problem.
We reformulated the sub-problems for each dimension into
weighted one-dimensional fused lasso problems, which can
be solved with a dynamic programming algorithm.

In order to visualize the clusterpath, we proposed the C-
PAINT based on the DP algorithm. The time complexity of
C-PAINT is O(pn logn)+O(pnK), but in practice it grows
linearly with respect to sample size n and dimension p. The
proposed algorithm is highly efficient and outperforms the
existing algorithms.

For L1 convex clustering with identical weights, the sim-
ulation results show our proposed method overcomes the
computational bottleneck of the convex clustering, mak-
ing it possible to recover the full clusterpath for large
datasets. Our methods are implemented in the R pack-
age dpcc, which is also available at https://github.
com/bingyuan-zhang/dpcc.

https://github.com/bingyuan-zhang/dpcc
https://github.com/bingyuan-zhang/dpcc
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