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Abstract

Adaptive gradient methods have achieved remark-
able success in training deep neural networks on a
wide variety of tasks. However, not much is known
about the mathematical and statistical properties of
this family of methods. This work aims at provid-
ing a series of theoretical analyses of its statistical
properties justified by experiments. In particular,
we show that when the underlying gradient obeys
a normal distribution, the variance of the magni-
tude of the update is an increasing and bounded
function of time and does not diverge. This work
suggests that the divergence of variance is not the
cause of the need for warm-up of the Adam opti-
mizer, contrary to what is believed in the current
literature.

1 INTRODUCTION

In the last ten years, the optimization of deep neural net-
works has become an important research topic [Zhang et al.,
2018, Jiwoong Im et al., 2016, Le et al., 2011, Choi et al.,
2020, Sun, 2019, Barakat and Bianchi, 2018, 2020, Mori
et al., 2021]. Designing larger and larger neural networks
puts an increasing demand for developing an efficient neural
network training algorithm. Traditionally, stochastic gradi-
ent descent is deployed to train neural networks. In the last
ten years, the adaptive gradient family, including but not
limited to RMSProp [Tieleman and Hinton, 2012], Adam
[Kingma and Ba, 2014], AdaGrad [Duchi et al., 2011], has
emerged as the major tool for training deep neural networks.
Many variants in the adaptive gradient family have been
proposed, but none of these methods has shown dominating
advantage or popularity over the other [Reddi et al., 2018,
Liu et al., 2019, Loshchilov and Hutter, 2017, Luo et al.,
2019]. Two notable works that advanced mathematical un-
derstanding of the adaptive gradients include the work by
[Reddi et al., 2018], which shows that, when hyperparame-

ter does not match the setting of the problem, the adaptive
gradient method might not converge at all, and the work by
[Liu et al., 2019], which proposes a new algorithm based
on the argument that, at initialization steps, the adaptive
gradient method has a divergent variance.

In this work, we take the first step for studying a rather
fundamental problem in the study of adaptive gradients; we
propose to study the distributional properties of the update
in the adaptive gradient method. The most closely related
previous work is [Liu et al., 2019]. The difference is that this
work goes much deeper into the detail in the theoretical anal-
ysis and contradicts the results in [Liu et al., 2019]. The main
contributions of this work are the following: (1) We prove
that the variance of the adaptive gradient method is always fi-
nite (Proposition 1), which contradicts the result in Liu et al.
[2019]; this proof does not make any assumption regarding
the distribution of the gradient. (2) Under the assumption
that the gradient is time-independent isotropic Gaussian and
that the preconditioner nt is obtained by merely averaging
(same as in previous work Liu et al. [2019]), we derive the
exact distribution of the update for every time-step t. While
the derivation is simple, the exact formula is not known
previously (Section 3-4). (3) The predicted distribution is
shown to agree well with experiments, even on modern ar-
chitectures, including the transformers, with state-of-the-art
performance and a single training trajectory level (Section
5 and Supplementary); (4) We experimentally study and
discuss when and why experiments could deviate from our
theoretical prediction (Section 6).

2 RELATED WORKS

Adaptive learning rate methods. The adaptive gradient
methods have emerged as the most popular tool for train-
ing deep neural networks over the last few years, and they
have been of great use both industrially and academically.
The adaptive gradient family makes an update by dividing
the gradient by the running root mean square (RMS) of the
gradients [Duchi et al., 2011, Tieleman and Hinton, 2012,
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Figure 1: Predicted distribution of the update ∆θ of the
Adam algorithm at a given time step t = m. It has the fol-
lowing interesting property: (1) the distribution is bounded
for any finite m; (2) the variance equals 1 for all m; (3) it
transitions from a bi-modal to unimodal distribution as m
increases; (4) as m → ∞, the distribution converges to a
Gaussian distribution.

Kingma and Ba, 2014], which speeds up training by effec-
tively rescaling the update to the order of O(1) throughout
the training trajectory. The most popular method among
this family is the Adam algorithm [Kingma and Ba, 2014],
which computes the momentum and the preconditioner as
exponential averages with decay hyperparameter µ, β (also
referred to as β1, β2 in literature), where bias correction
terms cn(t),cm(t) correct the bias in the initialization. The
Adam algorithm can be written as:

gt = ∇θ ℓ(θt−1), (1)

nt = βnt−1 +(1−β )g2
t , (2)

mt = µmt−1 +(1−µ)
gt√

nt/cn + ε
, (3)

θt = θt−1 −λ
mt

cm
; (4)

gt is the gradient at time step t; Adam sets cn(t) = 1−β t

and cm(t) = 1−µ t ; in the literature, 1/
√

nt/cn is called
the preconditioner; and ε is a very small numerical bias to
prevent divergence. This work focuses on the study of the
distribution of the update, defined as ∆θ := (θt −θt−1)/λ .
Several variants of Adam also exist [Reddi et al., 2018, Liu
et al., 2019, Loshchilov and Hutter, 2017, Luo et al., 2019].
However, it remains inconclusive as to which method is the
best and the various “fixes" of Adam do not show consistent
better performance. Therefore, we focus on studying the
original Adam algorithm, and we believe that qualitatively
similar results will carry over to other algorithms as well.
Theoretically, we also work in the limit when µ = 0 to
avoid notational overload, but we note that its effect can be
incorporated in a rather straightforward way.

The need for warmup in recent adaptive gradient
method. While simpler models can be trained with the
adaptive gradient methods with ease without paying particu-
lar care to the learning rate, larger and modern models tend
to need special tuning of the learning rate λ . One notable

example is the transformer architecture, which is the current
state-of-the-art model for language tasks, and, what is more,
it is empirically found that transformer can only be trained
with a scheme that makes λ = λt an explicit function of time
[Vaswani et al., 2017, Young et al., 2018, Devlin et al., 2018,
Lan et al., 2019]. In particular, one often increases λ from
a minimal value to a maximum value with linear or other
power-law monotonic functions through the beginning time
steps [Popel and Bojar, 2018]. This learning rate scheduling
technique is called warmup. However, the cause of the need
for warmup is not yet understood; it is imaginable that a
correct understanding of the adaptive gradient’s problem
will advance our understanding of deep neural network op-
timization and benefit the industry. In [Liu et al., 2019], it
is argued that the necessity of warmup may be due to the
divergence of Adam’s variance at initialization. However,
the result of this work suggests that it is not the case and that
the understanding of the reason for the need for warmup
remains open.

3 NOTATION AND PRELIMINARIES

While our theory focuses on deriving distributions of the
functions of a simple Gaussian variable X , it is helpful to
keep in mind that, for application, X will be linked to the
gradient, and its estimated second momentum U will be
linked to the preconditioner that is commonly in use in the
adaptive gradient methods, and the number of samples m
will be linked to the time step t of an optimization trajectory.

Let Xi be i.i.d. random variables (RV) drawn from a Gaus-
sian distribution N (µ,σ). We may want to estimate its
mean by taking average of n many samples X̄ = 1

n ∑
n
i Xi.

X̄ is also Gaussian with variance scaled by 1/n. We also
want to estimate the variance of X , through m many samples.
When µ = 0, the maximum likelihood estimator (MLE) is
S = 1

m Q := 1
m ∑

m
i X2

i . The RV Q/σ2 obeys a χ2 distribution
with degree of freedom m, whose density is

fm(χ
2) =

1
2m/2Γ(m/2)

(χ2)m/2−1e−χ2/2 (5)

Here Γ(x) is the gamma function. The properties of the χ2

distribution is well-known, including (1) sum of χ2 RVs
is again a χ2 RV with its degree of freedom added; (2)
when m = 2, we obtain the exponential distribution; (3)
when m → ∞, the density converges to a Gaussian with
mean m. The empirical variance S follows the reduced χ2

distribution, whose density we can obtain by performing a
change of variable χ2 → χ2/m:

fm(s) = m fm(χ
2) =

m
2m/2Γ(m/2)

(ms)m/2−1e−ms/2 (6)

when m is very large, this converges to a Gaussian with
mean 1 and variance 2/m. Also, one might use the unbiased
estimator U := 1

n−1 Q instead of S in many cases.



 Now consider the RV X : we can transform it into a standard
Gaussian by dividing by its standard deviation, X → X/σ .
However, when the true variance is not known, we have to
divide by the estimated variance

√
U , and it can be fruitful

to find the distribution for RV T := X/
√

U . Assuming that
U and X are independent, the well-known result is that t
obeys the well-known student-t distribution with the degree
of freedom m. When m= 1, we obtain a Cauchy distribution,
whose second moment diverges. The variance for this distri-
bution is m

m−2 . This means that we would like to estimate the
denominator with > 2 samples to avoid variance explosion.
As m → ∞, we see that the above distribution converges to
a standard Gaussian, as expected. To be more general, we
define

T :=
X̄ −µ√

U/m

and T obeys a t-distribution with degree of freedom m−1.

One might also consider a more general random variable.
Let X2, Y 2 be χ2 distributions with degree of freedom
m1,m2 respectively, then we can define Z := X2/m1

Y 2/m2
, and

this follows the F-distribution. We are interested in estimat-
ing the variable (X̄−µ)2

U2/m . This obeys the F1,m−1 distribution

f1,m−1(z) =
(m−1)m−1/2Γ(m

2 )

Γ( 1
2 )Γ(

m−1
2 )

z−1/2

(m−1+ z)m/2 . (7)

Notice that if we consider the variable
√

z, then we recover
the student’s t-distribution. The F1,m−1 distribution has mean
m−1
m−3 , and variance 2(m−1)2(m−2)

(m−2)2(m−4) , which is a decreasing func-

tion of time (and is divergent when M ≤ 41). In the Theorem
1 of [Liu et al., 2019], the gradient X is assumed to be from
a normal distribution, and the variable Z is used to model
the distribution of ∆θ , and it is shown that its variance de-
creases through time and diverges at the initial time steps.
However, it is not hard to see that the update of Adam will
not diverge when 0 ≤ β < 1 because the numerator gt and
denominator

√
nt/cn in the update are correlated, and this

correlation suppresses the divergence, even if the bias factor
ε = 0. One can show the following result.

Proposition 1. When µ = 0, 0 ≤ β < 1, ε = 0, and when
gt are i.i.d. gaussian variables, then ∆θ is a sub-gaussian
variable, whose higher moments exist and are bounded.

Proof sketch. By the proposition 1 of [Ziyin et al., 2020],
we have that when µ = 0, 0 ≤ β < 1, the update of Adam is
bounded by a constant c = c(β , t) that only dependent on β

and t. This means that ∆θ is a bounded variable and, there-
fore, subgaussian. The boundedness of the higher moments

1Similar problem of the RAdam algorithm proposed in [Liu
et al., 2019] has been noticed in [Ma and Yarats, 2019], where it
is shown that, in most of the problems, the RAdam algorithm is
equivalent to running 4 steps of SGD and then switching to Adam.
These two facts seem to be related.

follows from the established properties of a subgaussian
variable. □

This means that trying to separately understand the dis-
tribution of gt and

√
nt/cn will lead to incorrect results,

predicting divergence even if there is none. In the following
discussion, we work out the actual distribution of ∆θ using
similar assumptions as in [Liu et al., 2019]. Contrary to the
previous result, we show that the actual variance of ∆θ is
a constant in time while that of |∆θ | increasing function of
time (instead of decreasing), and its distribution asymptoti-
cally converges to a gaussian as m → ∞.

3.1 EFFECT OF EXPONENTIAL AVERAGING

In practice, we often resort to a form of exponential aver-
aging in the deep learning optimization literature. Here the
averaging of an RV Z is defined as

Z̄β = (1−β )
m

∑
i=1

β
m−iZi

Often 0 ≤ β < 1 to make the sum convergent, but the sum
may be extrapolated to regions outside [0,1). By the addi-
tivity of Gaussian variables, the distribution is

Z̄β ∼ N

(
µ(1−β

m−1),σ2(1−β )2 1−β 2(m−1)

1−β 2

)
. (8)

We first note that, if β → 0, then the distribution converges
to N (µ,σ2). If β → 1, then using L’Hopital’s rule we find
that its variance goes to 0, i.e., converging to a delta distribu-
tion. To convert this distribution to an unbiased estimator of
Z̄, we may divide Z by 1−β m−1. Converting the distribution
to

N

(
µ,σ2 (1−β )2

(1−β m−1)2
1−β 2(m−1)

1−β 2

)
=N

(
µ,σ2 ∑

m−1
i=0 β 2i

(∑m−1
i=0 β i)2

)
(9)

or, equivalently,

N

(
µ,σ2 1−β

1+β

1+β m−1

1−β m−1

)
(10)

and by the Cauchy-Schwarz inequality, we see that the new
variance is always smaller than σ2, i.e. showing some sign
of convergence. For example, when β = 0.9 the variance
converges to σ2/21; when β = 0.99 the variance converges
to σ2/199. Yet, unless β = 1, the distribution has non-zero
variance at infinite m. As β → 1 (and keeping m ≫ 1/β ),
we obtain

lim
β→∞

lim
m→∞

N

(
µ,σ2 1−β

1+β

1+β m−1

1−β m−1

)
= N

(
µ,

σ2

m−1

)
(11)

which agrees with the result using simple averaging. We
may also use this relation to define a relation to approximate
the exponentially averaged RVs:

m =
2

1−β
, β =

m−2
m

(12)



 When we cannot solve for the exponentially averaged RVs,
we rely on this approximation to give qualitative understand-
ing. Also notice the relation β = m−2

m , which is reminiscent
of the optimal momentum rate m−3

m derived by Nesterov
[Nesterov, 1983, da Silva and Gazeau, 2018].

Now we also would like to compute our estimated variance
in this way. Similarly, we define

Ūβ := (1−β )
m

∑
i=1

β
m−iX2

i ; (13)

and the distribution of ∆θ is given by the distribution of

the variable T :=
X̄β1−µ√

Uβ2
. However, this distribution cannot

be solved for analytically due to the effect of exponential
averaging, and, as in [Liu et al., 2019], we approximate
the effect of exponential averaging by simple averaging.
This approximation is good when β is close to 1, which
is indeed the case in practice. The default value of β for
Adam is 0.999 [Kingma and Ba, 2014], and this is the choice
of the majority of works that uses Adam as optimizer, for
RMSProp, the default value is 0.99 [Tieleman and Hinton,
2012]. This means that the simple-average approximation
should apply to most of the practical situations we are aware
of2.

4 DEPENDENT X −U DISTRIBUTIONS
We have shown in proposition 1 that the distribution of ∆θ

cannot be understood unless the correlation is taken into
account. The estimated mean X̄ and U are correlated since
they are often estimated using the same samples. This turns
out to have important implication for the distribution of the
variable T = X̄√

U
. To start, we consider the distribution of a

random variable G (which approximates Uβ ),

G =
X2

m
1
c ∑

m
i=1 X2

i
; (14)

where c = m or m− 1 depending on which normalization
condition we use; notice that the expected value of G gives
the variance of ∆θ .Once we obtain the distribution of G, we
may then take the square root and perform a transformation
of RV to obtain the other related distributions. Note that G
can be written as

K :=
X2

m

X2
m +H

:=
G
c
, (15)

where H, according to the discussion before, is a RV obeying
the χ2 distribution with degree of freedom m−1, and X2

m is
a χ2 distribution with degree of freedom 1. H and X2

m are
uncorrelated by definition. For convenience, we also define
the special case m = 1.

2The smallest value of β in use that the authors are aware of is
0.98 in [Lan et al., 2019]

G =
X2

1
|X1|

= sgn(X1) (16)

We now derive the distribution for G. Write X2
m as Z, and we

know that Z and H are independent, and the joint distribution
is then

f (z,h)= f (z) f (h)=
1√
2πz

e−z/2× 1

2
m−1

2 Γ(m−1
2 )

h
m−1

2 −1e−h/2

(17)
we transform the variable from (Z,H) to (Z,K) and then
integrate out Z to obtain the distribution for K. The Jacobian
for this transformation is

det
∂ (z,h)
∂ (z,k)

=
z
k2 . (18)

The joint distribution for (z,k) is then (noticing h = z(1−
k)/k)

f (z,k) =
1

2
m
2
√

πΓ(m−1
2 )

1
k2

(
1− k

k

)m−1
2 −1

× z
m−2

2 e−z/k

(19)

we now integrate over z to obtain

f (k) =
Γ(m

2 )

Γ(m−1
2 )Γ( 1

2 )
× k−

1
2

1− k
(1− k)

m−1
2 (20)

or, equivalently,

fm(k) =
1

B(m−1
2 , 1

2 )
k−

1
2 (1− k)

m−1
2 −1 (21)

This is the Beta( 1
2 ,

m−1
2 ) distribution. The expected value of

k is:

E fm [K] =
1
m

(22)

The mode for this distribution is 1
m−2 .

Now we transform k → g to get (k = g
c ) to obtain the distri-

bution for g. First, we let c = m

fm(g) =
Γ(m

2 )

Γ(m−1
2 )Γ( 1

2 )
×

( g
m )

− 1
2

1− g
m

(
1− g

m

)m−1
2

× 1
m

(23)

and, by definition, 0 ≤ g ≤ m. From the result on the Beta
distribution, we have

E fm [G] = 1 (24)

and the mode is simply m
m−2 . This shows that the variance

of ∆θ is a constant in time. On the other hand, had we
chosen c = m− 1, then the expected value would then be
m−1

m , while the mode be m−1
m−2 . This agrees with experiment.

See section 5 for detail.



 This is the distribution we want to find. This can be ana-
lytically integrated over to find its moments, which are the
quantities we care about. For now, we focus on the inter-
esting special cases for m. We first consider the limiting
distribution as m > ∞, we obtain

f∞(g) = lim
m→∞

fm(g) =
1√
2π

g−
1
2 e−

g
2 (25)

which is simply a χ2 distribution with degree of freedom
1, with expected value 1 and variance 2, which is expected.
The more interesting limit is when m is small. For m = 3,
we have

f (g) =
1

2
√

3
g−

1
2 (26)

For m = 2. We have

f2(g) =
1
π

1√
g
2

(
1− g

2

) (27)

which is a (shifted and rescaled) sinusoidal distribution.
This means that, when m = 2, g is either very close to 0 or
very close to 1. We might even go one step further to see
what happens if m→ 1+. For 0< g< 1, limm→1+ fm(g) = 0,
while for g = 1 and g = 0, the limit is not well-defined. This
is a signature that the distribution is tending to a mixed
delta-distribution proportional to δ (g−1)+δ (g). The fact
that this is not a well-defined limit suggests that there is a
singularity in the variable g when m → 1, and some qualita-
tive transition has happened as we approach the limit. For
m = 1, by definition we should obtain a delta distribution
δ (x−1), which is what one expects.

Now we are ready to obtain the distribution for Xk =
√

K.
Applying the transformation rule to Equation 21 (and extend
the distribution from [0,

√
m] to [−

√
m,

√
m]), we obtain

fm(xk) =
Γ(m

2 )

Γ(m−1
2 )Γ( 1

2 )
(1− x2

k)
m−1

2 −1; (28)

this is the predicted distribution of ∆θ . We plot the theoreti-
cal p.d.f. in Figure 1. We may perform another transforma-
tion of variable to see that this is still Beta distribution. As
expected in Proposition 1, this distribution is bounded and
sub-gaussian. Let zk =

1+xk
2 , we see

fm(zk) = c(1− zk)
m−1

2 −1z
m−1

2 −1
k (29)

where c is the normalizing constant. This is a
Beta(m−1

2 , m−1
2 ) distribution, centered, and with a Gaussian

asymptotic distribution.

Now we proceed to define Xg =
√

G and extend the support
from R+ to R; we obtain

fm(xg) =
1√
m

Γ(m
2 )

Γ(m−1
2 )Γ( 1

2 )

1

1− x2
g

m

(
1−

x2
g

m

)m−1
2

(30)

Again, when m → ∞,

f∞(xg) =
1√
2π

e−
x2
g
2 (31)

which is the Gaussian distribution. The more interesting
case is also the non-asymptotic case. When m = 2, we have
that

f2(xg) =
1
π

1√
1− x2

g

(32)

which is the sinusoidal distribution. When m = 3,

f3(xg) =
1

2
√

2
(33)

which is a uniform distribution supported on [−
√

2,
√

2].

To summarize, we have derived the major theoretical result
of this work.

Theorem 1. Let {gi}t
i=1 be i.i.d. sampled from

Normal(0,1), µ = 0, and nt = ∑
t
i=1 g2

i , cn = 1
t , then

the p.d.f. of ∆θ is given by Equation 30.

It is interesting to compare this with the t-distribution. While
the t-distribution is unbounded, this distribution is bounded
for any finite m. As m → ∞, the two distributions converge
to the same limiting Gaussian distribution with variance 1.
The variance for T at finite m is m

m−2 , while that of the |Xg|
has variance m−1

m , and we obtain the relation

Var[T ]> 1 >Var[|Xg|] (34)

and the inequality becomes equality when m → ∞. This
shows that approximating Xm√

∑
m Xi

by neglecting the corre-
lation between the numerator and denominator overesti-
mates the variance; it also predicts to have the wrong trend:
while the actual distribution has decreasing variance as m
decreases, the t-distribution predicts increasing variance,
with its variance diverging at m = 2.

Besides the p.d.f. for ∆θ , the following two corollaries
summarizes the most important predictions of this work.
Agreement with the experiment would suggest that the as-
sumptions made in this work are valid and applicable to
real situations. The limitation is that these results hinge on
the assumption that the gradient’s underlying distribution is
a zero-mean Gaussian with a constant variance; the devia-
tion between the theoretical distribution and the measured
distribution can be used to probe the skewed-ness of the
gradient, the existence of a correlation between the different
parameters, and the time evolution of the variance.

Corollary 1. The variance of ∆θ is 1.

Corollary 2. The variance of |∆θ | is

1− 4mΓ(m/2)2

(m−1)2πΓ(m−1
2 )2

,

an increasing function of time and converges to a finite value
as m → ∞.



 

Figure 2: Distribution of the update distribution of a non-hand-picked layer of a RegNetX-200MF trained on CIFAR-10.
We see excellent agreement between our theory and experiments in the following sense: (1) the theoretical lines and the
experimental histogram agree well visually and no outstanding disagreement exists; (2) the transition from a unimodal
distribution to a bi-modal distribution occurs precisely at the same time step (m = 2) as predicted (m = 2).

5 EXPERIMENTS

In this section, we conduct experiments to test our theory.
Notice that the experiments and plots are obtained from a
single training trajectory instead of obtained by averaging
over an ensemble of training trajectories with different ini-
tializations of the networks. We expect the agreement for
all experiments to get even better when such ensembling
is used. The fact that the agreement is right on a single
trajectory level makes our theory more applicable to real
problems (so that the practitioners only have to run once
and check what went wrong). The agreement is expected to
become better if we average over multiple runs.

5.1 DISTRIBUTION THE UPDATE

We measure the probability density function of the update
of the adaptive gradient when we train on RegNetX-200MF
[Radosavovic et al., 2020] on the CIFAR-10 dataset3. See
Figure 2. We see that the agreement between our prediction
and experiment is good both quantitatively and qualitatively.
Qualitatively, the following two predictions are confirmed:
(1) the distribution transitions from a bi-modal distribution

3RegNetX is the newest generation of modern CNN architec-
tures with state-of-the-art performance in computer vision. It is
based on the residual structure [He et al., 2016]

to a uni-modal distribution at m increases; for this task, it
is even more surprising that the transition to a uni-modal
distribution occurs exactly at the predicted time step m = 3;
(2) the distribution converges to a gaussian distribution. A
similar level of agreement is observed for all other layers
of the network (see appendix); this suggests our assump-
tions’ general applicability and, therefore, our theory. One
interesting point is that the empirical data seems slightly
right-skewed. We hypothesize that this is because the under-
lying distribution of gt has a non-vanishing mean (also see
our experiments in Section 6 for why this is the case). In the
appendix, we also plot the single-trajectory update distri-
bution for VGG [Simonyan and Zisserman, 2014], ResNet-
18 [He et al., 2016], ShuffleNet-V2 [Zhang et al., 2018],
ResNeXt-29 [Xie et al., 2017], MobileNet [Howard et al.,
2017], EfficientNet-B0 [Tan and Le, 2019], and DenseNet-
121 [Huang et al., 2017], which we show to also agree well
with the prediction4.

We also plot compare the distribution over different random
initializations in Figure 1. We plot the overlap of three dif-
ferent random seed in dark red, which also agrees well with
the prediction. We see that the variance of the distribution

4Some deviation is also observed, but such deviations seem to
appear in a consistent way for a fixed architecture, suggesting that
the actual distribution has some sensitivity to the model.



 

Figure 3: Left: variance of ∆θ . Middle: variance of |∆θ |. Right: variance of the transformer. We see that for both datasets,
the agreement between our theory and experiment is excellent. There are two points worth noticing: (1) for both dataset, the
agreement is very good for m ≤ 10, suggesting that a constant Gaussian distribution well approximates the distribution of
the gradient before this point; (2) the agreement of RegNetX on CIFAR-10 continues to hold much later, while the smaller
network on MNIST starts to deviate after m > 10. (3) The transformer also agrees well with the predictiong, showing
well-behaving and bounded variance in the update.

across different seeds is relatively small, and all agree well
with the theoretical prediction.

5.2 INCREASING AND BOUNDED VARIANCE

One of the key predictions of this work is that the adaptive
gradients’ variance is an increasing function of time when
the training is not far from initialization, and we verify this
prediction in this section. We plot the variance of the update
versus the time step m on CIFAR-10, for different model
architectures: RegNetX, MobileNet [Howard et al., 2017],
and ShuffleNet [Zhang et al., 2018]. See Figure 3. The agree-
ment between our theory and experiment is excellent. There
are two points worth noticing: (1) the agreement is very
good for m ≤ 20, suggesting that a constant Gaussian dis-
tribution well approximates the distribution of the gradient
before this point; (2) there is no occasion when the variance
of the update becomes anomalously large. This agreement
suggests that (1) the distribution of gradient at initialization
can be well-approximated by a time-independent gaussian
at the initialization; (2) how far this approximation con-
tinues to hold as m increases depends on the architecture
of the model and the nature of the task. In the appendix,
we show that there are also architectures that deviate from
the predicted value from smaller values of m, but they all
have smaller variances than the predicted value, which fur-
ther corroborates with the intended message that there is no
problem with the variance of the adaptive gradients.

5.3 DISTRIBUTION OF THE TRANSFORMER

In this section, we study the distribution of the original trans-
former architecture [Vaswani et al., 2017], since this is the
situation where the distribution of the adaptive gradients is
pathological. As in [Liu et al., 2019], we run transformer
on the IWLST14 Ger-Eng dataset, using the default imple-
mentation in the Fairseq package [Ott et al., 2019]. See

Figure 3-Right. We see that the transformer also has a very
regular variance in the update, as expected by the theory.
This suggests that the attribution of the pathological train-
ing behavior of transformers to the variance of Adam [Liu
et al., 2019] is incorrect. We now show the empirical dis-
tribution of the updates in a single layer of the transformer
architecture in Figure 4. We see that the distribution of the
transformer is pathological and does not seem to obey a
simple distribution. For example, at step 5 (m = 5), there
seem to be five prominent peaks in a single layer, which is
a sign that the distribution is a composite one. Comparing
with the experiment in Figure 5.LEFT and Figure 7, we
hypothesize that there are at least two different underlying
distributions: (1) a heavy-tail-like distribution feature the
first, third, and fifth peak, and (2) a distribution with increas-
ing variance featuring the second and the fourth peak. One
essential future work is to investigate the cause of each of
these peaks, which we believe, will shed new and important
light on this poorly understood problem.

6 WHAT AFFECTS THE DISTRIBUTION
OF THE UPDATE?

During training, it is often the case that the practitioners
have to continually check the distribution of the gradient
to infer what might be wrong with the training. For exam-
ple, when the training of a model does not proceed well;
one might suspect that it is due to (1) update too small; (2)
update too large; or (3) update fluctuates too much, and
these can only be known once one inspects the distribu-
tion of the update. Therefore, it is worth studying what
might affect the distribution of the update. In our frame-
work, this effect can incorporated by setting the variance of
the underlying gradient distribution to be a function of time:
gt ∼ Normal(0,σ2(t)). The distribution of the correspond-
ing update ∆θ no longer takes a simple analytic form now;
therefore, we resort to simulations to answer this problem.



 

Figure 4: Distribution of the update distribution of transformer on IWSLT14 Ger-Eng. We see that the distribution of the
updates of a transformer is quite pathological, defying any simple characterization; for example, there seems to be at least 5
prominent peaks from step 1 to 20.

Figure 5: Left: gt ∼ Normal(0, t2). Right: gt ∼
Normal(0, 1

t2 ). We see that, when the expected mag-
nitude of the gradient is decreasing, the distribution of the
update quickly becomes uni-model; when the magnitude of
gt is increasing, the bi-modal structure is retained for much
longer.

6.1 WHEN IS THE UPDATE DISTRIBUTION
BI-MODAL?

It is identified in [Liu et al., 2019] that the number of modes
in the update distribution might affect ease of optimization,
and the authors incorrectly attributed the cause to the diver-
gence of the variance of the update. In this section, we show
that the cause of bi-modality is the sudden increase of the
variance of the gradient. See Figure 5. We experiment with
the following two kinds of time-dependent gradient distri-
bution: (1) gt ∼ Normal(0, t2); (2) gt ∼ Normal(0, 1

t2 ). We
see that, in an increasing variance, the bi-modal structure
remains for a relatively long time, while, in a decreasing
variance, the bi-modal structure disappears very fast, and
the distribution becomes thinner and sharper through time.

Figure 6: Left: gt ∼ Normal(−1,1). Right: gt ∼
Normal(−t,1). We see that if gt obeys a non-zero mean
distribution, the resulting distribution of ∆θ is skewed, with
initial steps more skewed than the asymptotic steps.

This deformity can be compared with some real-task update
distributions we encounter. For example, we plot the distri-
bution of training a simple 4-layer CNN on MNIST in the
appendix, where the bi-modal structure is shown to remain
for a relatively long time; this suggests that, in this task, the
variance of the gradient is increasing as time proceeds.

6.2 WHEN IS THE DISTRIBUTION SKEWED?

Intuitively, the answer is simple: when the underlying dis-
tribution of gt has non zero-mean. Here, we do some
numerical simulation to check what that will affect the
distribution quantitatively. Here, we experiment with fol-
lowing two kinds of noise; since the distribution simply
flips if we change the sign of the mean, we only simu-
late with negative mean value: (1) gt ∼ Normal(−1,1); (2)



 

Figure 7: gt is drawn from a standard Cauchy distribution.
Interestingly, the distribution takes a trimodal structure.

gt ∼ Normal(−t,1). See Figure 6 for the result. We see
that the resulting distribution is left-skewed but moves back
towards the center as m increases. It is also interesting to no-
tice that the distribution gets thinner and less skewed when
the magnitude of the mean increases with time.

6.3 HEAVY-TAILED GRADIENT DISTRIBUTION

The gradient may take a heavy-tailed distribution5. We simu-
late this by sampling gt from a standard Cauchy distribution.
See Figure 7. Interestingly, the distribution takes a trimodal
structure. This trimodality suggests that the update distribu-
tion’s trimodal structure may suggest (1) the existence of a
large-norm but sparse gradient or (2) the training has very
strong or even divergent noise. In fact, the update distribu-
tion for ResNet-18 and VGG21 are observed to be clearly
bimodal at the initial step while the other studied models do
not; see the appendix.

7 CONCLUDING REMARK

In this work, we studied the distribution of the update of
the adaptive gradient methods. We showed that the variance
of (any higher moment of, in fact) of the adaptive gradient
method does not diverge. The variance of the update is a
constant, and the variance of its magnitude is an increas-
ing function of time; this, in turn, means that the adaptive
gradient methods are surprisingly stable, especially at the
beginning of training. Adam’s unexpected stability at initial-
ization also implies that the previous understanding that the
need for the warmup of Adam [Liu et al., 2019] is still an
open problem. We believe that identifying the correct cause
of Adam’s incapability to train transformers will ultimately
benefit the community.

Implications. There are a few important implications of this
work. Correlation of the gradient. Our analysis’s limitation
is obvious, the most important one being that the gradient is
assumed to be uncorrelated for different parameters; this as-

5There is increasing research interest in studying the case when
the underlying gradient is heavy-tailed [Gurbuzbalaban et al., 2020,
Simsekli et al., 2019]. It is not rare that the update distribution
of real tasks shows a trimodal structure. Many figures in [Liu
et al., 2019] suggest the existence of a trimodal structure when a
transformer is trained on a machine learning task.

sumption leads to the analytical formula we derived, which,
intuitively, is unlikely to be the case for a non-linear system.
What is surprising here is that a theory based on such limited
theory agrees excellently with the experiments; this, in turn,
implies that the gradient noises of minibatch SGD are likely
well-approximated by a diagonal matrix. The reason be-
hind this anomalous suppression of off-diagonal covariance
should be a crucial topic to study in the future. Gaussianity
of the gradient. We rely on another assumption that the
gradient obeys a Gaussian distribution, and we have shown
that if the gradient is non-Gaussian, the distribution will be
quite different from the predicted distribution. This suggests
that assuming that the gradient is Gaussian may apply well
to many kinds of neural models. Intuitively, this is the case
because the gradient is the result of summing over many
(≥ 104 for modern nets) randomly initialized parameters,
and such averaging behavior is likely to cause the gradient
to be Gaussian-like even if these parameters are weakly
correlated [Serfling et al., 1968]. This Gaussianisty assump-
tion also holds when the batchs size one uses is large; for
example, see [Ziyin et al., 2021]. Approximate Bayesian
Inference. Knowing the posterior distribution of the itera-
tion of the optimization algorithm has important application
to approximate Bayesian inference, where SGD and Adam
are used as MCMC algorithms for approximating the poste-
rior distribution of the model parameters [Mandt et al., 2017,
Liu et al., 2021, Ziyin et al., 2021], which are often useful
for assessing the uncertainty in the model parameters.
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Martin Popel and Ondřej Bojar. Training tips for the trans-
former model. The Prague Bulletin of Mathematical
Linguistics, 110(1):43–70, 2018.

Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10428–
10436, 2020.

Sashank Reddi, Satyen Kale, and Sanjiv Kumar. On the
convergence of adam and beyond. In International Con-
ference on Learning Representations, 2018.

Robert J Serfling et al. Contributions to central limit theory
for dependent variables. The Annals of Mathematical
Statistics, 39(4):1158–1175, 1968.

Karen Simonyan and Andrew Zisserman. Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556, 2014.

Umut Simsekli, Levent Sagun, and Mert Gurbuzbalaban. A
tail-index analysis of stochastic gradient noise in deep
neural networks. arXiv preprint arXiv:1901.06053, 2019.

Ruoyu Sun. Optimization for deep learning: theory and
algorithms. arXiv preprint arXiv:1912.08957, 2019.

http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dl.acm.org/citation.cfm?id=1953048.2021068
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14
http://dblp.uni-trier.de/db/journals/corr/corr1412.html#KingmaB14


 Mingxing Tan and Quoc V Le. Efficientnet: Rethinking
model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019.

T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide
the gradient by a running average of its recent magnitude.
COURSERA: Neural Networks for Machine Learning,
2012.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkor-
eit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In Advances in
neural information processing systems, pages 5998–6008,
2017.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and
Kaiming He. Aggregated residual transformations for
deep neural networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages
1492–1500, 2017.

Tom Young, Devamanyu Hazarika, Soujanya Poria, and Erik
Cambria. Recent trends in deep learning based natural
language processing. ieee Computational intelligenCe
magazine, 13(3):55–75, 2018.

C. Zhang, Q. Liao, A. Rakhlin, B. Miranda, N. Golowich,
and T. Poggio. Theory of Deep Learning IIb: Optimiza-
tion Properties of SGD. ArXiv e-prints, January 2018.

Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural
network for mobile devices. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 6848–6856, 2018.

Liu Ziyin, Zhikang T Wang, and Masahito Ueda. Laprop: a
better way to combine momentum with adaptive gradient.
arXiv preprint arXiv:2002.04839, 2020.

Liu Ziyin, Kangqiao Liu, Takashi Mori, and Masahito Ueda.
Strength of minibatch noise in sgd, 2021.


	Introduction
	Related works
	Notation and Preliminaries
	Effect of Exponential Averaging

	Dependent X-U distributions
	Experiments
	Distribution the Update
	Increasing and Bounded variance
	Distribution of the Transformer

	What affects the distribution of the update?
	When is the update distribution bi-modal?
	When is the distribution skewed?
	Heavy-tailed gradient distribution

	Concluding Remark

