
 
Symmetric Wasserstein Autoencoders

Sun Sun1 Hongyu Guo2

1,2National Research Council Canada,
Ottawa, ON., K1A 0R6, Canada,

{sun.sun,hongyu.guo}@nrc-cnrc.gc.ca

Abstract

Leveraging the framework of Optimal Transport,
we introduce a new family of generative autoen-
coders with a learnable prior, called Symmetric
Wasserstein Autoencoders (SWAEs). We propose
to symmetrically match the joint distributions of
the observed data and the latent representation
induced by the encoder and the decoder. The re-
sulting algorithm jointly optimizes the modelling
losses in both the data and the latent spaces with
the loss in the data space leading to the denois-
ing effect. With the symmetric treatment of the
data and the latent representation, the algorithm
implicitly preserves the local structure of the data
in the latent space. To further improve the quality
of the latent representation, we incorporate a recon-
struction loss into the objective, which significantly
benefits both the generation and reconstruction.
We empirically show the superior performance of
SWAEs over the state-of-the-art generative autoen-
coders in terms of classification, reconstruction,
and generation.

1 INTRODUCTION

Deep generative models have emerged as powerful frame-
works for modelling complex data. Widely used families
of such models include Generative Adversarial Networks
(GANs) [Goodfellow et al., 2014], Variational Autoencoders
(VAEs) [Rezende et al., 2014, Kingma and Welling, 2014],
and autoregressive models [Uria et al., 2013, Van Oord et al.,
2016]. The VAE-based framework has been popular as it
yields a bidirectional mapping, i.e., it consists of both an
inference model (from data to latent space) and a generative
model (from latent to data space). With an inference mecha-
nism VAEs can provide a useful latent representation that
captures salient information about the observed data. Such

latent representation can in turn benefit downstream tasks
such as clustering, classification, and data generation. In par-
ticular, the VAE-based approaches have achieved impressive
performance results on challenging real-world applications,
including image synthesizing [Razavi et al., 2019], natu-
ral text generation [Hu et al., 2017], and neural machine
translation [Sutskever et al., 2014].

VAEs aim to maximize a tractable variational lower bound
on the log-likelihood of the observed data, commonly called
the ELBO. Since VAEs focus on modelling the marginal
likelihood of the data instead of the joint likelihood of the
data and the latent representation, the quality of the latent
is not well assessed [Alemi et al., 2017, Zhao et al., 2019],
which is undesirable for learning useful representation. Be-
sides the perspective of maximum-likelihood learning of the
data, the objective of VAEs is equivalent to minimizing the
KL divergence between the encoding and the decoding dis-
tributions, with the former modelling the joint distribution
of the observed data and the latent representation induced by
the encoder and the latter modelling the corresponding joint
distribution induced by the decoder. Such connection has
been revealed in several recent work [Livne et al., 2019, Es-
maeili et al., 2019, Pu et al., 2017b, Chen et al., 2018]. Due
to the asymmetry of the KL divergence, it is highly likely
that the generated samples are of a low probability in the
data distribution, which often leads to unrealistic generated
samples [Li et al., 2017b, Alemi et al., 2017].

A lot of work has proposed to improve VAEs from different
perspectives. For example, to enhance the latent expressive
power VampPrior [Tomczak and Welling, 2018], normaliz-
ing flow [Rezende and Mohamed, 2015], and Stein VAEs
[Pu et al., 2017a] replace the Gaussian distribution imposed
on the latent variables with a more sophisticated and flexible
distribution. However, these methods are all based on the ob-
jective of VAEs, which therefore are unable to alleviate the
limitation of VAEs induced by the objective. To improve the
latent representation Zhao et al. [2019] explicitly includes
the mutual information between the data and the latent into
the objective. Moreover, to address the asymmetry of the KL
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 divergence in VAEs Livne et al. [2019], Chen et al. [2018],
Pu et al. [2017b] leverage a symmetric divergence measure
between the encoding and the decoding distributions. Nev-
ertheless, these methods typically involve a sophisticated
objective function that either depends on unstable adver-
sarial training or challenging approximation of the mutual
information.

In this paper, we leverage Optimal Transport (OT) [Villani,
2008, Peyré et al., 2019] to symmetrically match the encod-
ing and the decoding distributions. The OT optimization is
generally challenging particularly in high dimension, and
we address this difficulty by transforming the OT cost into a
simpler form amenable to efficient numerical implementa-
tion. Owing to the symmetric treatment of the observed data
and the latent representation, the local structure of the data
can be implicitly preserved in the latent space. However,
we found that with the symmetric treatment only the per-
formance of the generative model may not be satisfactory.
To improve the generative model we additionally include
a reconstruction loss into the objective, which is shown to
significantly benefit the quality of the generation and recon-
struction.

Our contributions can be summarized as follows. Firstly,
we propose a new family of generative autoencoders, called
Symmetric Wasserstein Autoencoders (SWAEs). Secondly,
we adopt a learnable latent prior, parameterized as a mixture
of the conditional priors given the learnable pseudo-inputs,
which prevents SWAEs from over-regularizing the latent
variables. Thirdly, we empirically perform an ablation study
of SWAEs in terms of the KNN classification, denoising,
reconstruction, and sample generation. Finally, we empir-
ically verify, using benchmark tasks, the superior perfor-
mance of SWAEs over several state-of-the-art generative
autoencoders.

2 SYMMETRIC WASSERSTEIN
AUTOENCODERS

In this section we introduce a new family of generative
autoencoders, called Symmetric Wasserstein Autoencoders
(SWAEs).

2.1 OT FORMULATION

Denote the random vector at the encoder as e , (xe,ze) ∈
X× Z, which contains both the observed data xe ∈ X

and the latent representation ze ∈ Z. We call the distribu-
tion p(e) = p(xe)p(ze|xe) the encoding distribution, where
p(xe) represents the data distribution and p(ze|xe) charac-
terizes an inference model. Similarly, denote the random
vector at the decoder as d, (xd ,zd)∈X×Z, which consists
of both the latent prior zd ∈Z and the generated data xd ∈X.
We call the distribution p(d) = p(zd)p(xd |zd) the decoding

distribution, where p(zd) represents the prior distribution
and p(xd |zd) characterizes a generative model.

Particularly, the objective of VAEs is to maximize a tractable
variational lower bound on the data log-likelihood, called
the Evidence Lower Bound (ELBO):

Ep(xe)

[
Ep(ze|xe)[log p(xd |z)]−DKL(p(ze|xe)||p(zd))

]
.

(1)

It can also be shown that the objective of VAEs is equivalent
to minimizing the KL divergence (or maximizing the nega-
tive KL divergence) between the encoding and the decoding
distributions [Livne et al., 2019, Esmaeili et al., 2019, Pu
et al., 2017b, Chen et al., 2018]:

−DKL(p(xe,ze)||p(xd ,zd))

= Ep(xe,ze)

[
log

p(xd ,zd)

p(ze|xe)

]
−Ep(xe)[log p(xe)]. (2)

The right hand side of equation 2 is only different from
equation 1 in terms of a constant, which is the entropy of
the observed data.

To address the limitation in VAEs, first we propose to treat
the data and the latent representation symmetrically instead
of asymmetrically by minimizing the p-th Wasserstein dis-
tance between p(e) and p(d) leveraging Optimal Transport
(OT) [Villani, 2008, Peyré et al., 2019].

OT provides a framework for comparing two distributions
in a Lagrangian framework, which seeks the minimum cost
for transporting one distribution to another. We focus on
the primal problem of OT, and Kantorovich’s formulation
[Peyré et al., 2019] is given by:

Wc(p(e), p(d)), inf
Γ∈P(e∼p(e),d∼p(d))

E(e,d)∼Γ c(e,d),

(3)

where P(e∼ p(e),d∼ p(d)), called the coupling between
e and d, denotes the set of the joint distributions of e
and d with the marginals p(e) and p(d), respectively, and
c(e,d) : (X,Z)× (X,Z)→ [0,+∞] denotes the cost func-
tion. When ((X,Z)× (X,Z),d) is a metric space and the
cost function c(e,d) = dp(e,d) for p≥ 1, Wp, the p-th root
of Wc is defined as the p-th Wasserstein distance. In particu-
lar, it can be proved that the p-th Wasserstein distance is a
metric hence symmetric, and metrizes the weak convergence
(see, e.g., [Santambrogio, 2015]).

Optimization of equation 3 is computationally prohibitive
especially in high dimension [Peyré et al., 2019]. To provide
an efficient solution, we restrict to the deterministic encoder
and decoder. Specifically, at the encoder we have the latent
representation ze = E(xe) with the function E : X→ Z, and
at the decoder we have the generated data xd = D(zd) with
the function D : Z→ X. It turns out that with the determin-
istic condition instead of searching for an optimal coupling



 in high dimension, we can find a proper conditional distri-
bution p(zd |xe) with the marginal p(zd).

Theorem 1. Given the deterministic encoder E : X→ Z

and the deterministic decoder D : Z→ X, the OT problem
in equation 3 can be transformed to the following:

Wc(p(e), p(d)) = inf
p(zd |xe)

Ep(xe)Ep(zd |xe) c(e,d), (4)

where the observed data follows the distribution p(xe) and
the prior follows the distribution p(zd).

Proof. The proof extends that of Theorem 1 in [Tolstikhin
et al., 2018]. In particular, [Tolstikhin et al., 2018] aims to
minimize the OT cost of the marginal distributions p(xe)
and p(xd), and the proof there is based on the joint prob-
ability of three random variables: the observed data, the
generated data, and the latent representation. In contrast, we
propose to minimize the OT cost of the joint distributions
of the observed data and the latent representation induced
by the encoder and the decoder. As a result our proof is
based on the joint distribution of four random variables
(xe,ze,xd ,zd) ∈ X×Z×X×Z. We assume that the joint
distribution p(xe,ze,xd ,zd) satisfies the following three con-
ditions:

1. e , (xe,ze)∼ p(xe)p(ze|xe);

2. d , (xd ,zd)∼ p(zd)p(xd |zd); and

3. xd ⊥⊥ xe|zd (conditional independence).

The first two conditions specify the encoder and the decoder
respectively, and the last condition indicates that given the
latent prior the generated data and the observed data are
independent.

Denote the set of the above joint distributions as
P(xe,ze,xd ,zd). Obviously, we have P(xe,ze,xd ,zd) ⊆
P(e∼ p(e),d∼ p(d)) due to the third condition. If the de-
coder is deterministic, p(xd |zd) is a Dirac distribution thus
P(xe,ze,xd ,zd) = P(e ∼ p(e),d∼ p(d)). With this result,
we can rewrite the objective of the underlying OT problem
as follows:

Wc(p(e), p(d))
= inf

Γ∈P(xe,ze,xd ,zd)
E(e,d)∼Γ c(e,d)

= inf
Γ∈P(xe,ze,zd)

E(xe,ze,zd)∼Γ c(e,d) (5)

= inf
p(ze|xe), p(zd |xe,ze)

Ep(xe)Ep(ze|xe)Ep(zd |xe,ze) c(e,d) (6)

= inf
p(zd |xe)

Ep(xe)Ep(zd |xe) c(e,d), (7)

where in equation 5 P(xe,ze,zd) denotes the set of the joint
distributions of (xe,ze,zd) induced by P(xe,ze,xd ,zd) and
it holds due to the deterministic decoder, and equation 7
holds due to the deterministic encoder.

If X×Z is the Euclidean space endowed with the Lp norm,
then the expression in equation 4 equals the following:

Wc(p(e), p(d))
= inf

p(zd |xe)
Ep(xe)Ep(zd |xe) ‖xe−D(zd)‖p

p +‖E(xe)− zd‖p
p,

(8)

where in the objective we call the first term the x-loss and the
second term the z-loss. With the above transformation, we
decompose the loss in the joint space into the losses in both
the data and the latent spaces. Such decomposition is crucial
and allows us to treat the data and the latent representation
symmetrically.

The x-loss, i.e., ‖xe−D(zd)‖p
p, represents the discrepancy

in the data space, and can be interpreted from two different
perspectives. Firstly, since D(zd) represents the generated
data, the x-loss essentially minimizes the dissimilarity be-
tween the observed data and the generated data. Secondly,
the x-loss is closely related to the objective of Denoising Au-
toencoders (DAs) [Vincent et al., 2008, 2010]. In particular,
DAs aim to minimize the discrepancy between the observed
data and a partially destroyed version of the observed data.
The corrupted data can be obtained by means of a stochastic
mapping from the original data (e.g., via adding noises).
By contrast, the x-loss can be explained in the same way
with the generated data being interpreted as the corrupted
data. This is because the prior zd in D(zd) is sampled from
the conditional distribution p(zd |xe), which depends on the
observed data xe. Consequently, the generated data D(zd),
obtained by feeding zd to the decoder, is stochastically re-
lated to the observed data xe. With this insight, the same as
the objective of DAs, the x-loss can lead to the denoising
effect.

The z-loss, i.e., ‖E(xe)−zd‖p
p, represents the discrepancy in

the latent space. The whole objective in equation 8 hence si-
multaneously minimizes the discrepancy in the data and the
latent spaces. Observe that in equation 8 E(xe) is the latent
representation of xe at the encoder, while zd can be thought
of as the latent representation of D(zd) at the decoder. With
such connection, the optimization of equation 8 can preserve
the local data structure in the latent space. More specifically,
since xe and D(zd) are stochastically dependent, roughly
speaking, if two data samples are close to each other in
the data space, their corresponding latent representations
are also expected to be close. This is due to the symmetric
treatment of the data and the latent representation. In Figure
1 we illustrate this effect and compare SWAE with VAE.

Comparison with WAEs [Tolstikhin et al., 2018] The
objective in equation 8 minimizes the OT cost between
the joint distributions of the data and the latent, i.e.,
Wc(p(e), p(d)), while the objective of WAEs [Tolstikhin
et al., 2018] minimizes the OT cost between the marginal
distributions of the data, i.e., Wc(p(xe), p(xd)), where p(xd)
is the marginal data distribution induced by the decoding



 

(a) SWAE

(b) VAE

Figure 1: Latent representations of 100 GMM samples
(mode 5 and dimension 10) with dim-z = 2. The indexes of
these latent representations are sorted based on the distance
to a target sample in the data space, i.e., Index 0 is asso-
ciated with the target sample and Index 100 is associated
with the furthest sample to the target in the data space. With
SWAE (top) data samples that are close in the data space are
also close in the latent space, while VAE (bottom) cannot
preserve such correspondence.

distribution p(d). The problem of WAEs is first formulated
as an optimization with the constraint p(ze) = p(zd), where
p(ze) is the marginal distribution induced by the encoding
distribution p(e), and then relaxed by adding a regularizer.
With the deterministic decoder, the final optimization prob-
lem of WAEs is as follows:

inf
p(ze|xe)

Ep(xe)Ep(ze|xe) c(xe,D(ze))+λD(p(ze), p(zd)),

(9)

where D(,) denotes some divergence measure. Comparing
equation 9 to equation 8, we can see that both methods de-
compose the loss into the losses in the data and the latent
spaces. Differently, in equation 9 the first term reflects the
reconstruction loss in the data space and the second term
represents the distribution-based dissimilarity in the latent
space; while in equation 8 the x-loss is closely related to

the denoising and the generation quality, and the z-loss mea-
sures the sample-based dissimilarity. Moreover, equation 9
is optimized over the posterior p(ze|xe) with a fixed prior
p(zd), while equation 8 is optimized over the conditional
prior p(zd |xe) with a potentially learnable prior.

2.2 IMPROVEMENT OF LATENT
REPRESENTATION

The objective in equation 8 only seeks to match the encod-
ing and the decoding distributions. Besides the encoder and
the decoder structures, there is no explicit constraint on the
correlation between the data and the latent representation
within each joint distribution. Lacking of such constraint typ-
ically results in a low quality of reconstruction [Dumoulin
et al., 2017, Li et al., 2017a]. Therefore, we incorporate a
reconstruction-based loss into the objective associated with
a controllable coefficient. Additionally, since the dimension
of the latent space is usually much smaller than that of the
data space, we associate a weighting parameter to balance
these two types of losses. Overall, the objective function
can be represented as follows:

inf
p(zd |xe)

Ep(xe)Ep(zd |xe) β‖xe−D(zd)‖p
p

+(1−β )‖xe−D(ze)‖p
p +α‖E(xe)− zd‖p

p, (10)

where ‖xe−D(ze)‖p
p denotes the reconstruction loss, and

β (0 < β < 1) and α(α > 0) are the weighting parameters.
The weighting parameter β controls the trade-off between
the x-loss and the reconstruction loss, and a smaller value
of β generally leads to better reconstruction. To achieve a
better trade-off between the generation and reconstruction
β needs to be carefully chosen. We will perform an ablation
study of SWAEs and show the importance of including
the reconstruction loss into the objective for the generative
model in Section 3.

2.3 ALGORITHM

Similar to many VAE-based generative models, we as-
sume that the encoder, the decoder, and the conditional
prior are parameterized by deep neural networks. Unlike
the canonical VAEs, where the prior distribution is sim-
ple and given in advance, the proposed method adopts a
learnable prior. The benefits of a learnable prior, e.g., avoid-
ing over-regularization and hence improving the quality
of the latent representation, have been revealed in several
recent works [Hoffman and Johnson, 2016, Tomczak and
Welling, 2018, Atanov et al., 2019, Klushyn et al., 2019].
Obviously, the conditional prior is related to the marginal
prior via Exe p(zd |xe) = p(zd). This indicates a way to de-
sign the prior as a mixture of the conditional distributions,
i.e., p∗(zd) =

1
N ∑

N
n=1 p(zd |xe,n), where xe,1, · · · ,xe,N are the

training samples. To avoid over-fitting, similar to [Tomczak



 

Figure 2: Network architecture of SWAEs. To generate new data latent samples are first drawn from the marginal prior p(zd)
based on the conditional priors p(zd |uk), and are then fed to the decoder.

Algorithm 1: Symmetric Wasserstein Autoencoders
(SWAEs)
Require: The number of the pseudo-inputs K. The
weighting parameters β and α . Initialize the
parameters φ ,θ , and γ of the encoder network, the
decoder network, and the conditional prior network,
respectively.

while (φ ,θ ,γ,{uk}) not converged do
1. Sample {xe,1, · · · ,xe,N} from the training dataset.
2. Find the closest pseudo-input u(n) of each training

sample from the set {u1, · · · ,uK}.
3. Sample zd,n from the conditional prior pγ(zd |u(n)) for

n = 1, · · · ,N.
4. Update (φ ,θ ,γ,{uk}) by descending the cost function

1
N ∑

N
n=1 β‖xe,n−D(zd,n)‖2

2 +(1−β )‖xe,n−
D(E(xe,n))‖2

2 +α‖E(xe,n)− zd,n‖2
2.

and Welling, 2018], we replace the training samples with
learnable pseudo-inputs and parameterize the prior distribu-
tion p(zd) as pγ(zd) =

1
K ∑

K
k=1 pγ(zd |uk), where γ denotes

the parameters of the conditional prior network, uk ∈ X

are the learnable pseudo-inputs, and K is the number of
the pseudo-inputs. We emphasize that the conditional prior
p(zd |xe) (or approximated p(zd |uk)) is used to obtain the
marginal prior p(zd); while the posterior p(ze|xe) is used
for inference. In the experiment, we parameterize the condi-
tional prior as a Gaussian distribution.

We call the proposed generative model Symmetric Wasser-
stein Autoencoders (SWAEs) as we treat the observed data
and the latent representation symmetrically. We summarize
the training algorithm in Algorithm 1 and show the network
architecture in Figure 2. As an example, we define the cost
function c(,) as the squared L2 norm.

Since we use the pseudo-inputs instead of the training sam-
ples in the conditional prior, given each training sample we
need to find the closest pseudo-input in Step 2. To measure
the similarity, we can use, e.g., the L2 norm or the cosine

similarity. Since the dimension of the latent space is usu-
ally much smaller than that of the data space, to reduce
the searching time we can alternatively perform Step 2 in
the latent space as an approximation. Specifically, we can
find the closest latent representation of E(xe,n) from the set
{E(u1), · · · ,E(uK)} so as to obtain the corresponding clos-
est pseudo-input. From the experiment we found that such
approximation results in little performance degradation, and
we attribute it to the preservation of the local structure as
explained before.

3 EXPERIMENTAL RESULTS

In this section, we compare the performance of the pro-
posed SWAE with several contemporary generative autoen-
coders, namely VAE [Kingma and Welling, 2014], WAE-
GAN [Tolstikhin et al., 2018], WAE-MMD [Tolstikhin et al.,
2018], VampPrior [Tomczak and Welling, 2018], and MIM
[Livne et al., 2019], using four benchmark datasets: MNIST,
Fashion-MNIST, Coil20, and CIFAR10 with a subset of
classes (denoted as CIFAR10-sub).

3.1 EXPERIMENTAL SETUP

The design of neural network architectures is orthogonal
to that of the algorithm objective, and can greatly affect
the algorithm performance [Vahdat and Kautz, 2020]. Since
MIM has the same network architecture as that of Vamp-
Prior, for fair comparison we also build SWAE as well as
VAE based on the VampPrior network architecture. In partic-
ular, VampPrior adopts the hierarchical latent structure with
the convolutional layers (i.e., convHVAE (L = 2)), where
the gating mechanism is utilized as an element-wise non-
linearity. The building block of the network structure of VAE
and SWAE is the same as that of VampPior except that the
latent structure is non-hierarchical. Different from SWAE,
the prior of VampPrior and MIM is designed as a mixture of
the posteriors (instead of a mixture of the conditional priors
as in SWAE) conditioned on the learnable pseudo-inputs.



 
Table 1: Classification accuracy of 5-NN (averaged over 5 trials). The standard deviation is generally less than 0.01 and is
omitted in the table.

Dataset dim-z SWAE SWAE SWAE VAE WAE-GAN WAE-MMD VampPrior MIM
(β = 1) (β = 0.5) (β = 0)

MNIST
8 0.96 0.97 0.97 0.96 0.87 0.97 0.97 0.97

40 0.97 0.97 0.97 0.80 0.68 0.96 0.93 0.97
80 0.97 0.97 0.97 0.60 0.90 0.94 0.86 0.96

Fashion-
MNIST

8 0.82 0.81 0.83 0.80 0.71 0.80 0.81 0.82
40 0.84 0.83 0.84 0.54 0.62 0.82 0.81 0.82
80 0.84 0.83 0.83 0.37 0.54 0.76 0.74 0.81

Coil20
8 0.95 0.97 0.97 0.95 0.98 0.78 0.91 0.89

40 0.97 0.98 0.97 0.90 0.99 0.99 0.96 0.96
80 0.97 0.98 0.98 0.97 0.98 0.98 0.96 0.98

CIFAR10-
sub

80 0.69 0.67 0.65 0.67 0.61 0.68 0.68 0.66
256 0.70 0.66 0.61 0.62 0.61 0.68 0.65 0.65
512 0.70 0.66 0.62 0.55 0.60 0.68 0.64 0.66

(a) SWAE (β = 1) (b) SWAE (β = 0.5) (c) VAE (d) WAE-GAN

(e) WAE-MMD (f) VampPrior (g) MIM

Figure 3: Projection of the latent representation to 2D via t-SNE on MNIST. dim-z = 80 for all methods.

The pseudo-inputs in SWAE, VampPrior, and MIM are ini-
tialized with the training samples. For VampPrior and MIM,
the number of the pseudo-inputs K is carefully chosen via
the validation set. As suggested in [Tomczak and Welling,
2018, Livne et al., 2019] we set the value of K in Vamp-
Prior and MIM on MNIST and Fashion-MNIST to 500. We
found that K = 500 is also suitable for VampPrior and MIM
on Coil20 and CIFAR10-sub. Unlike VampPrior and MIM,
for SWAE we found that increasing K improves the perfor-
mance and we set K to 4000 on MNIST, Fashion-MNIST,
and CIFAR10-sub. Coil20 is a relatively small dataset and
we set K to 500 for SWAE, VampPrior, and MIM.

WAE-GAN and WAE-MMD are the WAE-based models,
where the divergence measure in the latent space is based
on GAN and the maximum mean discrepancy (MMD), re-

spectively. The network structure of WAE-GAN and WAE-
MMD is the same as that used in [Tolstikhin et al., 2018].
The prior of VAE, WAE-GAN, and WAE-MMD is set as an
isotropic Gaussian.

For SWAE, we set the weighting parameter α to 1 in all
cases; and in Step 2 we use the L2 norm as the similarity
measure in the data space. The algorithm is trained by Adam
with the learning rate = 0.001, β1 = 0.9, and β2 = 0.999. A
detailed description of the datasets and the applied network
architectures can be found in our supplementary file.

The code is available at https://github.com/
sunsunyyl/SWAE.

https://github.com/sunsunyyl/SWAE
https://github.com/sunsunyyl/SWAE


 
Table 2: Fréchet Inception Distance (FID) on generated images (smaller is better).

Dataset dim-z SWAE SWAE SWAE SWAE VAE WAE-GAN WAE-MMD VampPrior MIM
(β = 1) (β = 0.5) (β = 0) (β ∗)

MNIST 8 50 40 24 21 24 17 34 24 74
Fashion-MNIST 8 65 57 48 47 60 41 100 51 83
Coil20 80 97 89 102 89 278 278 320 97 113
CIFAR10-sub 512 105 44 183 44 242 114 341 68 59

Table 3: Reconstruction loss (averaged over 5 trials).

Dataset dim-z SWAE SWAE VAE WAE-GAN WAE-MMD VampPrior MIM
(β = 1) (β = 0.5)

MNIST
8 30.11 ± 0.14 23.20 ± 0.04 24.34 ± 0.07 26.86 ± 0.37 24.76 ± 0.31 24.05 ± 0.10 24.04 ± 0.10
40 26.29 ± 0.13 6.93 ± 0.05 18.40 ± 0.08 16.06 ± 0.15 13.78 ± 0.77 17.32 ± 0.09 18.14 ± 0.33
80 26.10 ± 0.09 1.25 ± 0.02 18.50 ± 0.11 10.78 ± 0.11 9.63 ± 0.05 17.42 ± 0.06 17.29 ± 0.20

Fashion-
MNIST

8 74.74 ± 0.04 71.03 ± 0.06 72.56 ± 0.02 78.17 ± 1.41 74.50 ± 0.60 72.20 ± 0.04 72.34 ± 0.03
40 73.39 ± 0.08 57.90 ± 0.25 69.85 ± 0.04 74.84 ± 0.23 75.86 ± 0.41 68.67 ± 0.07 70.22 ± 0.87
80 73.35 ± 0.08 44.30 ± 0.71 69.90 ± 0.08 70.74 ± 1.16 71.28 ± 3.80 68.54 ± 0.10 69.10 ± 0.13

Coil20
8 7.07 ± 0.64 5.69 ± 0.51 7.90 ± 0.36 8.14 ± 0.34 21.20 ± 15.30 8.17 ± 1.02 13.84 ± 3.82
40 5.52 ± 0.40 4.27 ± 0.66 5.67 ± 0.42 5.82 ± 0.84 8.07 ± 7.80 6.31 ± 0.62 5.75 ± 0.77
80 5.56 ± 0.30 4.33 ± 0.40 5.71 ± 0.67 5.62 ± 1.26 5.83 ± 1.92 6.32 ± 0.37 5.87 ± 0.69

CIFAR10-sub 512 50.82±3.78 6.50±0.08 9.41±0.27 13.37±1.62 13.09±1.92 12.06 ±0.91 10.02 ±0.37

3.2 LATENT REPRESENTATION

The latent representation is expected to capture salient fea-
tures of the observed data and be useful for the downstream
applications. The considered datasets are all associated with
the labels. In the experiment we use the latent representa-
tion for the K-Nearest Neighbor (KNN) classification and
compare the classification accuracy of 5-NN in Table 1,
where dim-z denotes the dimension of the latent space. The
results of 3-NN and 10-NN are similar to those of 5-NN
and thus are omitted. We found that the classification results
of all algorithms on CIFAR10 are unsatisfactory based on
the current networks (accuracy was around 0.3−0.4; and
this may due to the limited expressive power of the shallow
network architectures used), so instead we create a subset
of CIFAR10 (CIFAR10-sub) which contains 3 classes: bird,
cat, and ship.

Since the prior of VAE, WAE-GAN, and WAE-MMD is an
isotropic Gaussian, setting dim-z greater than the intrinsic
dimensionality of the observed data would force p(ze) to
be in a manifold in the latent space [Tolstikhin et al., 2018].
This makes it impossible to match the marginal p(ze) with
the prior p(zd) and thus leads to unsatisfactory latent rep-
resentation. Such concern can be verified particularly on
Fashion-MNIST where the classification accuracy of VAE
and WAE-GAN drops dramatically when dim-z is increased.
For SWAE, we consider two cases: β = 1 (i.e., without the
reconstruction loss) and β = 0.5. The classification accu-
racy of SWAE (β = 1) is comparable to SWAE (β = 0.5)
and is generally superior for different values of dim-z to the

benchmarks.

To further show the structure of the latent representation, we
project the latent representation to 2D using t-SNE [Maaten
and Hinton, 2008] as the visualization tool. As an exam-
ple, we show the projection of the latent representation on
MNIST in Figure 3. We can see that SWAEs keep the local
structure of the observed data in the latent space and lead
to tight clusters, which is consistent to our expectation as
explained in Section 2.1.

3.3 GENERATION AND RECONSTRUCTION

To generate new data, latent samples are first drawn from the
marginal prior distribution p(zd) based on the conditional
priors p(zd |uk), and are then fed to the decoder. We display
the generated new samples of all methods on CIFAR10-
sub in Figure 4 and put the generated images on the other
datasets in the supplementary file. We show the Fréchet In-
ception Distance (FID) [Heusel et al., 2017], which is com-
monly used for evaluating the quality of generated images,
in Table 2. For SWAEs, we observe that the reconstruction
loss term is crucial for improving the generation quality as
SWAE (β = 1) generally cannot lead to the lowest FID. On
MNIST and Fashion-MNIST, the FID of the best SWAE
(indicated as β ∗) is slightly higher than that of WAE-GAN,
but lower than all the other benchmarks. The visual dif-
ference between SWAE (β ∗) and WAE-GAN on MNIST
and Fashion-MNIST is however negligible. In Section 2.1,
we compare the formulation of SWAEs (β = 1) with WAE.
In particular, the objective of WAE includes a distribution-



 

(a) SWAE (β ∗ = 0.5) (b) SWAE (β = 1)

(c) SWAE (β = 0) (d) VAE

(e) WAE-GAN (f) WAE-MMD

(g) VampPrior (h) MIM

Figure 4: Generated new samples on CIFAR10-sub. dim-
z = 512 for all methods.

based dissimilarity in the latent space while the z-loss in
SWAEs measures the sample-based dissimilarity. On Coil20
and CIFAR10-sub, SWAE (β ∗) achieves the lowest FID and
generates new images that are visually much better than
those generated by the benchmarks.

In Table 3, we compare the reconstruction loss, defined as
‖xe−D(ze)‖2

2, on the four datasets. As expected, increas-
ing the value of dim-z can reduce the reconstruction loss
but the reduction becomes marginal when dim-z is large
enough. Additionally, since a smaller value of β leads to
more emphasis on the reconstruction-based loss the quality
of reconstruction is generally better. We observe that SWAE
(β = 0.5) results in the lowest reconstruction loss in all cases.
The reconstructed images of all methods on CIFAR10-sub
are shown in Figure 5. Results on other datasets are provided
in the supplementary file for reference. Without including
the reconstruction loss into the objective, the reconstruction
quality of SWAE (β = 1) can be unsatisfactory (e.g., on
CIFAR10-sub).

(a) Real images (b) SWAE (β = 1)

(c) SWAE (β = 0.5) (d) VAE

(e) WAE-GAN (f) WAE-MMD

(g) VampPrior (h) MIM

Figure 5: Reconstructed images on CIFAR10-sub. dim-z =
512 for all methods. Excluding the reconstruction loss in
the objective, the reconstruction of SWAE (β = 1) is blurry.

3.4 DENOISING EFFECT WITH SWAE (β = 1)

As discussed in Section 2.1, the x-loss has a close rela-
tionship to the objective of Denoising Autoencoders (DAs).
After training, we feed the noisy images, which are obtained
by adding the Gaussian random samples with mean zero and
standard deviation 0.3 to the clean test samples, to the en-
coder. In Figure 6, as an example, we show the reconstructed
images on Fashion-MNIST. Since the reconstruction loss is
highly related to the dimension of the latent space, for fair
comparison we set dim-z to 80 for all methods. We observe
that only SWAE (β = 1) can recover clean images. This
observation confirms the denoising effect induced by the
x-loss, and thus the resultant latent representation is robust
to partial destruction of the observed data.

4 RELATED WORK
The objective of VAEs uses the asymmetric KL divergence
between the encoding and the decoding distributions. To im-
prove VAEs [Livne et al., 2019, Chen et al., 2018, Pu et al.,
2017b] propose symmetric divergence measures instead of
the asymmetric KL divergence in VAE-based generative
models. For example, MIM [Livne et al., 2019] adopts the



 

(a) Noisy real images (b) SWAE (β = 1)

(c) SWAE (β = 0.5) (d) VAE

(e) WAE-GAN (f) WAE-MMD

(g) VampPrior (h) MIM

Figure 6: Denoising effect: reconstructed images on Fashion-
MNIST. dim-z = 80 for all methods.

Jensen-Shannon (JS) divergence between the encoding and
the decoding distributions together with a regularizer max-
imizing the mutual information between the data and the
latent representation. Due to the difficulty of estimating the
mutual information and the unavailability of the data dis-
tribution, an upper bound of the desired loss is proposed.
AS-VAE [Pu et al., 2017b] and the following work [Chen
et al., 2018] propose a symmetric form of the KL diver-
gence optimized with adversarial training. These methods
typically involve a difficult objective either depending on
(unstable) adversarial training or containing the mutual in-
formation that requires further approximation. In contrast,
the proposed SWAEs yield a simple expression of objective
and do not involve adversarial training.

Compared to VAEs, GANs lack an efficient inference model
thus are incapable of providing the corresponding latent
representation given the observed data. To bridge the gap
between VAEs and GANs, recent works attempt to integrate
an inference mechanism into GANs by symmetrically treat-
ing the observed data and the latent representation, i.e., the
discriminator is trained to discriminate the joint samples in
both the data and the latent spaces. In particular, the JS diver-
gence between the encoding and the decoding distributions
is deployed in ALI [Dumoulin et al., 2017] and BiGANs
[Donahue et al., 2017]. To address the non-identifiability is-

sue in ALI (e.g., unfaithful reconstruction), later ALICE [Li
et al., 2017a] proposes to regularize ALI using conditional
entropy.

Generative modelling is closely related to minimizing a dis-
similarity measure between two distributions. As opposed
to many other commonly adopted dissimilarity measures,
e.g., the JS and the KL divergences, the Wasserstein dis-
tances that arise from the OT problem provide a weaker
distance between probability distributions (see [Santambro-
gio, 2015, Peyré et al., 2019, Kolouri et al., 2017] for more
background on OT). This is crucial as in many applications
the observed data are essentially supported on a low di-
mensional manifold. In such cases, common dissimilarity
measures may fail to provide a useful gradient for training.
Consequently, the Wasserstein distances have received a
surge of attention for learning generative models [Arjovsky
et al., 2017, Balaji et al., 2019, Sanjabi et al., 2018, Kolouri
et al., 2019, Patrini et al., 2019, Tolstikhin et al., 2018, Desh-
pande et al., 2019, Nguyen et al., 2020]. Particularly, the
VAE-based models [Tolstikhin et al., 2018, Kolouri et al.,
2019, Patrini et al., 2019] are all based on minimizing the
OT cost of the marginal distributions in the data space with
the difference of how to measure the divergence in the latent
space: [Tolstikhin et al., 2018] proposes the GAN-based and
the MMD-based divergences, [Kolouri et al., 2019] adopts
the sliced-Wasserstein distance, and [Patrini et al., 2019]
exploits the Sinkhorn divergence. Unlike these works, our
proposed SWAEs directly minimize the OT cost of the joint
distributions of the observed data and the latent representa-
tion with the inclusion of a reconstruction loss for further
improving the generative model.

5 CONCLUSION AND FUTURE WORK

We contributed a novel family of generative autoencoders,
termed Symmetric Wasserstein Autoencoders (SWAEs) un-
der the framework of OT. We proposed to symmetrically
match the encoding and the decoding distributions with the
inclusion of a reconstruction loss for further improving the
generative model. We conducted empirical studies on bench-
mark tasks to confirm the superior performance of SWAEs
over state-of-the-art generative autoencoders.

We believe that symmetrically aligning the encoding and the
decoding distributions with a proper regularizer is crucial to
improving the performance of generative models. To further
enhance the performance of SWAEs, it is worthwhile to
exploit other methods for the prior design, e.g., the flow-
based approaches [Rezende and Mohamed, 2015, Dinh et al.,
2014, 2016], and other forms of the reconstruction loss, e.g.,
the cross entropy.
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