Appendix

A Proof for Theorem 1

A.1 Notations

We start by defining some notations. For each time ¢, we define a random permutation (af’t, . 7afK’t) of A* based on
A; as follows: forany k = 1,..., K, if al € A*, then we set a;’* = af. The remaining optimal items are positioned
arbitrarily. Notice that under this random permutation, we have:

w(ay’) > w(al) and Uy(al) > Uia)’) Vk=1,2,...,K
Moreover, we use H; to denote the “history” (rigorously speaking, o-algebra) by the end of time ¢. Then both
A; = (a},...,a%) and the permutation (a}",...,a%") of A* are H, j-adaptive. In other words, they are condition-

ally deterministic at the beginning of time ¢. To simplify the notation, in this paper, we use E;[-] to denote E[-|#;_1] when
appropriate.

When appropriate, we also use (-, -) to denote the inner product of two vectors. Specifically, for two vectors u and v with
the same dimension, we use (u, v) to denote u"v.

A.2 Regret Decomposition

We first prove the following technical lemma:
Lemma 1. Forany B = (b1,...,bx) € RE and C = (c1,...,ck) € RE, we have

Hszl Hk 16k = Zk 1 [Hz 1 bi] X [br — cx] % [H]K:k-s-l CJ} .

Proof. Notice that
PO [Hz 1 bz} X [br — cx] % {Hf:kJrl CJ}
=z£&ﬁﬁwﬁxmﬁmw4—MzﬂﬁxM£wJ}
*Hk b Hk 1 k-

Thus we have
R(A¢, we) =f(A", wy) — f(Ag, We)
= Hk (1T —wy (a})) — Hk 1 (1 - Wt(azt))

= Zk 1 [Hz L (1 —wy(aj ))} [Wt(aZ’ ) — Wt(a@] [Hﬁikﬂ (1 - wt(a;’t))}

®) *,1
< S0 [T (= we(a))] [wilap) = wila))] 5)

where equality (a) is based on Lemma | and inequality (b) is based on the fact that H k1 (1 wt( )) < 1. Recall

that At and the permutation (a1 yee AR ) of A* are deterministic conditioning on H,_1, and a;’ 7é al forall i < k,
thus we have



For any ¢t < n and any e € E, we define event
Gt = {item aj, is examined in episode ¢ } ,
notice that 1{G; .} = [T/} (1 — w,(a’)). Thus, we have
B[R] < Y00 Be[1{Gen} ] [@(ay) - w(a})] .
Hence, from the tower property, we have
R(n) < B[S0, S0, MG} [oay") - afah)]] ©

We further define event £ as

E = {|<x€,0t_1 - 9*>| < c\/szt__llxe, Ve € B, Vt < n} , @)

and £ as the complement of £. Then we have
R(n) € PEE[TI, T, 100} [0(ay) - w(a)]¢]
POE[TI, TI, 1{Ges) [0(ar") — m(a))][€]
S, T 14004 [0(a)) - a(al)][¢] +nK P(E). ®

where inequality (a) is based on the law of total probability, and the inequality (b) is based on the naive bounds (1) P(£) < 1
and (2) 1{G: 1} [w(a}") — w(al)] < 1. Notice that from the definition of event £, we have

w(e) = (Te,0F) < (we,0; 1) + /2T Mz, Yec€ E,Vt<n

under event £. Moreover, since w(e) < 1 by definition, we have w(e) < Uy(e) forall e € F and all ¢ < n under event £.
Hence under event £, we have

w(ah) < w(ay’) < Uga)’) < Ugal) < (xaz,ét_ﬁ + ¢y /xE}CMt__llva vt < n.

Thus we have
Y oy @ ) * [T ar—1
w(ay’ ) —w(ay,) < <$afk>9t71 —0") +c .’L’a,;;Mt_lva
() —
<2c, /Jiag M, xqy
where inequality (a) follows from the fact that u*)(a,*c’t) < (zar, 1) +c\/al, Mt__lla:azk and inequality (b) follows from
\/ Tat :
the fact that <xa£ 0,1 — 0*) <c :raTt M;ll Tat under event £. Thus, we have
\ “at :

R(n) < 2B [0 5000, M{Guw} fol, Mz

e| +nKkP@).

Define K; = min{Cy, K}, notice that

K T —1 _ K T —1

> 1 H{Guw} vaMt—1$a; =D k1 \/xa;«th—ﬂap
n K T -1

R(n) < 2cE [thl P /xai M=y zar

. . . n K, T —1 o
In the next two subsections, we will provide a worst-case bound on D, | > ™", | [Zat M, "z, and a bound on P(&).

Thus, we have

5] +nKP(é). )



n K, T -1
A.3 Worst-Case Bound on >, | > )™, J oy My a

dn log
A/ M <K dnlogl1t 5]
I t— 1xat log 1—‘,—$2

Lemma2. >} ,

Proof. To simplify the exposition, we define z; = , /xi}c Mt_—ll‘xaz for all (¢, k) s.t. k < K;. Recall that

K,
1 T
Mt = Mt,1 + 3 Z(Eazlﬂaz
k=1
Thus, for all (¢, k) s.t. £ < K;, we have that
1 1 1 _1 1
det [M;] > det [Mt_l + = 3 %al® t:| = det [Mf ) <I + OthﬁxazxzthZJ Mfl]
1 _1
=det [Mt_1] det |:I + ;Mt 1£Cat Jfat M 21:|
1 ZtQk
=det [M;_4] 1+ — tM 1x ¢ | = det [M;_1] 1—1——
Thus, we have
K K = ZtQk

(det [M;])™" > (det [Me o)™ ] {1+ =5 -

. o

Since det [M;] > det [M;_1] and K; < K, we have

K 2,2
(det [M))® > (det [M,_1]) (1 + tf) .

k=1 g

So we have
K KT < Zt2k U Zt2k
(det [1,)) > (et M) TTTT (1+ 22 ) =TT TI (1 + 25 )

t=1k=1 t=1k=1

since My = I. On the other hand, we have that
n K 1 n
trace(Mn):trace<I+ZZx X t>: +§Z tlla <
t=1 k=1 t=1 k=1
K. From the trace-determinant inequality, we

where the last inequality follows from the fact that ||z, [|2 < 1 and K

have Ltrace (M,) > [det(Mn)]%, thus we have

nK dK 1 dK K n K ng
[1 + daQ} {trace(Mn)} > [det(M,)]" > H H 1+ 0772 )
t=1k=1
Taking the logarithm, we have
nk n XK 2,
dKlog[HdUQ} > > log {1+ 75 ). (10)
t=1 k=1
z2
log<1+;7zk .
2 Hence we have

_ T -1 T a1, _ 2
Notice that 27, = @ M2, < mazMO Tat = [[zar |3 < 1, thus we have 27 < T

n K n Ky K
Y 2 c— 1 Y S b 1+f7k o dKlog [1+ 5]
bk = log L ) & log (1 + i) '
t=1 k=1 o2
*Notice that for any y € [0, 1], we have y < s (1t h(y). To see it, notice that h(y) is a strictly concave function, and
og

h(0) =0and h(1) =



Finally, from Cauchy-Schwarz inequality, we have that

n K nKkK
SOS0 < ay [l B
=1 k1 log (1+ )

n K
Zzzt,k <VnK

t=1 k=1

A4 Boundon P(€)

Lemma 3. Forany o >0, any d € (0, 1), and any
1 nkK 1
> —4/dl 1+-— 21 = 0*
c_g\/ og (14 53 ) + 2108 () + 19"

Proof. We start by defining some useful notations. Forany ¢t = 1,2,...,any k = 1,2, ..., K}, we define

we have P(E) < 6.

N = wi(ay,) — w(ay,).

One key observation is that 7 ;,’s form a Martingale difference sequence (MDS).® Moreover, since 7,5 s are bounded in
[—1, 1] and hence they are conditionally sub-Gaussian with constant R = 1. We further define that

t K-
— 2 — 2 § E : T
Vt =0 Mt =01 + xa;maz

T=1k=1
t K, t K, t K,
_ ¢ T *
S = E E Tarfik = B — E E Tazw(ay) = By — E E TapTar | 0
T=1k=1 r=1k=1 r=1k=1

As we will see later, we define V; and S; to use the “self normalized bound” developed in [1] (see Algorithm 1 of [1]).

Notice that
t K, 1
3 aaly| 0 = s +tas -
T=1k=1 g
where the last equality is based on the definition of M;. Hence we have

- 1 1 1
Mtet - ;Bt = ﬁst + ?

_ 1
O, — 0" =M | =S, —0|.
! K |:0-2 ! :|
Thus, for any e € E, we have

1
< ||336HM;1 ||§St - O*HM;1

|<$e,ét - 9*>| =

a1 .
X M, 1{028,5—9}

1
Sl IS 10712

where the first inequality follows from the Cauchy-Schwarz inequality and the second inequality follows from the triangle
inequality. Notice that [0\, < [|6*]|5,—1 = [|*]|2, and I5Stlla—1 = 5 lIStlly-1 (since Mt = 0?Vh), so we
have

n * 1 *
(b= )] < ol | 2181l + 1671 (an

Notice that the above inequality always holds. We now provide a high-probability bound on ||St||V;1 based on “self
normalized bound” proposed in [1]. From Theorem 1 of [1], we know that for any 6 € (0, 1), with probability at least

1 — 4, we have
det(V;)1/2 det(Vy)—1/2
IStvt—IS\/Nog( et(Vy) 66( o) ) Vt=0,1,...

SNotice that the notion of “time” is indexed by the pair (¢, k), and follows the lexicographical order.



Notice that det(V() = det(c21) = o>?. Moreover, from the trace-determinant inequality, we have

tK nk
\xatH2<o— +7< 24—

trace (V) 1 i
es(v s N g2 ] 2 a’

d

ﬁmx

where the second inequality follows from the assumption that ||:vaz l2 < 1and K, < K, and the last inequality follows
from ¢ < n. Thus, with probability at least 1 — §, we have

nK 1
||St||V;1 < \/dlog <1+d> +210g<6> Vt=0,1,...,n—1.

That is, with probability at least 1 — d, we have

n * 1 K *
(e, Be = 6%)] < el L\/dlog( # o)+ 2o (5) + 1 ||2]

forallt =0,1,...,n — 1 and Ve € E. Recall that by definition of event £, the above inequality implies that, if

c> \/dlog (1-1— dK> + 2log (;) + 11072,

then P(€) > 1 — 6. Thatis, P(§) < 6. m

A.5 Conclude the Proof

Putting it together, for any o > 0, any § € (0, 1), and any

c> — \/dlog (1 + dK> +2log (;) + 1107 |2,

1 K¢

/ T
a’ Mt 13?at

t=1 k=1

we have that

3

) <2cE +nKP(€)

K
<%K’i£”]+nK& (12)

d
+57)

Choose § = we have the following result: for any ¢ > 0 and any

nK’

nk
c> \/dlog( da2> + 2log (nK) + |62,

we have
dnlog [1 + dUZ]

1.
log (14 Z) +

R(n) < 2cK



