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I. Supplementary
The proof of Lemma 1

Proof. From
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it follows that VG(W) = 2ArW — 2By, V2G(W) =
2Ap. Thus G(W) is convex and it is minimal if
VG(W) = ArW — By = 0 with W = A,'By. This
shows that with W = A_lBT, we obtain
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Corollary 1. Given that Ay = vI + >, mum/, for all
t>1: .
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The proof of Lemma 2

Proof. Given that
ly: — £:l|% + inf Gy (U) — inf Go(U)
D 2y £+ 83— tr
©y,. (Bl A 'mym/ A" B, 1) — tr (B, A Bi1)
+tr ((Bt_l + mtytT)T A7 (B + mtytT)>
=2y - B;lA;lmt
=tr (B,_; (4; 'mym, A;
+ tr (ytmtTAt_lmtytT)

= —tr (Bt—zl(m:A:lmt)A;lmtmz—A;lBt,l)

Tt
t
o ()

tr (yeyy ) —retr (B A 'mym A7 B, )

VAL + AN B

)

—~

27’f
= AP
1+ 7 el £l

Online Learning in Binary and Multi-class Setting

Binary-class setting reduces a multi-class problem into
many binary-class sub-problems (i.e., given a dataset of N
classes, N binary-class problems are generated via 1-vs-
rest schema: for each binary-class problem, we assign the
label of one class samples with +1 and other N —1 class
samples with —1), while CMOG in this paper is directly a
multi-class setting. We compare the two settings in terms
of loss function, margin, model-update and performance
evaluation.

Generally, a binary classification model is to differentiate
binary-class samples with label ”4+1”. And binary clas-
sifier (f) predicts the sample label with a boundary 0,
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is predicted to class +1; If f(z) < 0, it is predicted to
class —1. We update a binary classifier based on a hinge
loss function in binary setting, L(z) = [1 —y - f(z)]4,
where y € {£1}, [.]+ = max{.,0}. In addition, we define
absolute value | f(z)| as “margin”: the higher the “margin”
(distance to boundary 0), the more confident the predicted
result is. However, binary classifier under 1-vs-rest schema
can only answer whether a sample belongs to one class
or not. Given three classes (a, b, ¢) where we set class ”a”
as label +1 and the other two classes ”b” and ”c” as —1,
then the model f(x) trained on above binary labels can tell
whether x belongs to ’a” or not. If not ”a”, the model can-
not identify whether x belongs to ”b” or ’c”. To address
the above issue, we present a multi-class setting, where we
give each class a linear model, i.e., f, (), fo(x) and f.(z).
We predict the label of = via argmax;efqp,c} fi(T).
And the loss function for multi-class setting is L(z) =
[1— (fy(z) — max;eqap.c}/(yy fi(x))], . where y is the
true class of x and max;ciab,c}/{y} fz-ELx) is the highest
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score among “wrong” classes, e.g., if x belongs to 7a”,
then L(z) = [1 — (fu(a) — max{fy(x), fu(x)})]. Dif-
ferent from “margin” (|f(z)|) in binary setting, “margin”
in multi-class schema is fy, (z) — fyr (x), defined as §
in def 2. In addition, when updating the model, multi-
class model can update two linear models simultaneously
at each around, since the y is a vector with true class
coordinate y; to +1 and a wrong class with the highest
score y;/ to —1. In binary setting, the y is only a binary
variable (i.e., 1), thus only one linear model is updated.

For the evaluation metrics, although the cumulative error
rate and number of queried labels are applied into both
binary-class and multi-class setting, the two groups of
results are unable to be compared. Given a dataset with
N classes, the binary-setting (1-vs-rest schema) generates
a set of N independent binary-class classifiers while each
classifier is built on all data samples. After running N
times of experiments independently to evaluate the N
binary-classifiers, the error rate and queried number are
averaged over the outputs of N experiments. Note that
the average result can only tell the model effectiveness in
binary classification. On the other hand, in the multiple-
class setting, we run only 1 time of experiment to train the
multiple class models simultaneously. This performance
can tell the learner accuracy for multi-class classification.
Due to the different experimental setting, a few binary-
setting algorithms unable to be adapted into multi-class
setting would not be included in baselines of this work,
while the GPA adapted into multi-class setting would
achieve a different result from binary-setting and the two
groups of results are incomparable.



