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Here we derive the result (14), the weighted KL divergence. Consider two

sparse Gaussian processes, GP ∼ GP(α, C), ĜP ∼ GP(α̂, Ĉ), which share a
covariance function K. We can therefore write

GP ∼ N (Φα, IF + ΦCΦ>) ≡ N (µ,Σ) , (1)

and likewise for ĜP , where Φ is again the feature space representation of the
inducing variables, which are shared. This assumption is made without loss of
generality, since the inducing variables of each GP can simply be concatenated
into a combined representation. In such a representation, if an inducing variable
is only used by one of the GPs, the other will have zeros in the corresponding
entries of α and C. This is seen for example in online selection of inducing
variables, in which one GP has m + 1 inducing variables and the other uses a
subset of m of these.

We restate Equation 10 for convenience:

Df
KL(P‖Q) =

∫
F
P (x) log

(P (x)

Q(x)

)f(x)
dx =

∫
F
f(x)P (x) log

P (x)

Q(x)
dx .

(2)
As before, we define f∗(x) to be the prediction of GP at a point x in feature
space:

f∗(x) =
x>Φα

|y∗|
=
µ>x

|y∗|
.

Note that the weighting function f∗ uses the full GP prediction rather than the

reduced GP, and is therefore constant through the optimization of Df∗

KL(GP‖ĜP )

with respect to ĜP .
Abusing notation slightly, we write GP (x) to denote the evaluation of the

normal distribution corresponding to GP at a point x in the feature space, and
likewise for ĜP . Our goal is then to find

Df∗

KL(GP‖ĜP ) =

∫
F
f(x)GP (x) log

GP (x)

ĜP (x)
dx . (3)

In the following, we will use Df∗

KL as a shorthand for Df∗

KL(GP‖ĜP ).
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Evaluating the log term based on the normal distributions of GP and ĜP ,
this becomes

Df∗

KL =

∫
F
f(x)GP (x)

[1
2

(x− µ̂)>Σ̂−1(x− µ̂)−

1

2
(x− µ)>Σ−1(x− µ)− 1

2
log(|ΣΣ̂−1|)

]
dx . (4)

Taking expectations over GP ∼ N (µ,Σ), we have

2Df∗

KL = E[f∗(x)(x− µ̂)>Σ̂−1(x− µ̂)]−
E[f∗(x)(x− µ)>Σ−1(x− µ)]− log(|ΣΣ̂−1|)E[f∗(x)]

⇒ 2|y∗|Df∗

KL = E[µ>x(x− µ̂)>Σ̂−1(x− µ̂)]−
E[µ>x(x− µ)>Σ−1(x− µ)]− log(|ΣΣ̂−1|)‖µ‖2 . (5)

We use the following formula for Gaussian expectation:

E[x(x−m)>M(x−m)] = ΣM(µ−m) + ΣM>(µ−m)

+ Tr[ΣM>]µ+ µ(µ−m)>M(µ−m) . (6)

Since Σ̂ is symmetric, this allows us to reduce (5) to

2|y∗|Df∗

KL = 2µ>ΣΣ̂−1(µ− µ̂) + Tr[ΣΣ̂−1 − IF ]‖µ‖2

+ (µ− µ̂)>Σ̂−1(µ− µ̂)‖µ‖2 − log(|ΣΣ̂−1|)‖µ‖2 . (7)

We now use the matrix inversion lemma to write

Σ̂−1 = (IF + ΦĈΦ>)−1 = IF − Φ(Ĉ−1 + K)−1Φ> , (8)

recalling that K = Φ>Φ. Then we can compute

Φ>ΣΣ̂−1Φ =

Φ>(IF + ΦCΦ>)(IF − Φ(Ĉ−1 + K)−1Φ>)Φ

= K −K(Ĉ−1 + K)−1K + KCK −KCK(Ĉ−1 + K)−1K

= (I + KC)(Ĉ + K−1)−1 , (9)

where in the last line we have used the matrix inversion lemma again in the
reverse direction. Likewise, we have

Φ>Σ̂−1Φ = K −K(Ĉ−1 + K)−1K = (Ĉ + K−1)−1 ≡ V̂ , (10)

In the same way, we can then compute

Tr[ΣΣ̂−1 − IF ] = Tr[(C − Ĉ)V̂ ] , log |ΣΣ̂−1| = log |(C + K−1)V̂ | , (11)
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as shown in Csato (2002). Note that Ĉ = V̂ −1 −Q; substituting then gives us
w as defined previously:

w ≡ Tr[ΣΣ̂−1− IF ]− log(|ΣΣ̂−1|) = Tr[(C +Q)V̂ − I]− log(|(C +Q)V̂ |) . (12)

We can simplify (7) by substituting for µ, Σ, µ̂, and Σ̂:

2|y∗|Df∗

KL = 2α>Φ>ΣΣ̂Φ(α− α̂)+

(α− α̂)>Φ>(IF − Φ(Ĉ−1 + K)−1Φ>)Φ(α− α̂)α>Φ>Φα

+ wα>Φ>Φα

= 2α>(I + KC)V̂ (α− α̂) + (α− α̂)>V̂ (α− α̂)α>Kα+ wα>Kα . (13)

We define

Γ = I +
(I + KC)>

α>Kα
,

and can then write

2|y∗|Df∗

KL

α>Kα
= 2α>(Γ> − I)V̂ (α− α̂)+

(α− α̂)>V̂ (α− α̂) + w

=
[
2α>(Γ> − I) + (α− α̂)>

]
V̂ (α− α̂) + w

= (2Γα− (α+ α̂))>V̂ (α− α̂) + w . (14)

This is precisely Equation (14), and so we are done.
Similarly, we can compute the weighted KL divergence with arguments re-

versed:

2|y∗|Df∗

KL(ĜP‖GP )

α>Kα̂
= (2Γ̂α+ (α̂− 3α))>V (α̂−α) + ŵ , (15)

where

V = (C + K−1)−1, Γ̂ = I +
(I + KĈ)>

α>Kα̂
,

ŵ = Tr[(Ĉ + K−1)V − I]− log |(Ĉ + K−1)V | . (16)
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