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Abstract

This document presents supplementary material to complement the manuscript entitled “Scalable Non-
parametric Bayesian Multilevel Clustering”. The two first sections provide details on generalized Dirich-
let distributions and some properties of exponential family. The following section presents derivations
for variational and stochastic variational Bayes updates for the models.



1 Generalized Dirichlet distribution

Generalized Dirichlet distribution were originally introduce by (Connor & Mosiman, 1969)) and later developed
with Bayesian analysis by (Wong, 1998). In this section, we introduce formal definition for this distribution and
conjugate property which is useful for our derivation in the following sections.

Definition 1. (Original definition (Connor & Mosiman, 1969)) The generalized Dirichlet distribution (GD) is a

generalization of the Dirichlet distribution with a more general covariance structure and almost twice the number
of parameters. The density probability function with random vector 8 = (61,...,0k) and 0 =1 — Zf;l 0;
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The above distribution can be constructed as follows. If z;’s are i.i.d. random variables from Beta distributions,
ie. z; ~ Beta(a;,b;) and 21 = x1,...,2; = 0;/ (1 — Zlfl Hj). We denote 6 ~ GD (ay,...,ak-1,b1,...,bk—1).
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Lemma 2. (Conjugate prior) Suppose x ~ GD (aq,...,a5-1,b1,...,bx_1) andy | x ~ Mult (z) then the posterior
distribution is

€T | Yy~ GD(dh---,%-1,517---,5/9—1)
where @; = a; +y; and b; = b; + Z?:'Hrl Yi-

Proof. See Wong (1998, Lemma 1). O

2 Some properties of Exponential family

Proposition 3. (Ezpectation of log likelihood) Let p (0 | n) be a distribution which we call likelihood function
and q (8 | A) be a variational distribution used to approximate p (0 | n). Both distributions are supposed belong to
the same exponential family form (but different (hyper)parameters), i.e.

p(0[n) ocexp((n,T(0))=B(m) ¢ ocexp((AT(0)—-B(A)

Then
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Proof. We have

Eqeo1) Inp (0 [ n)] = Eqeopn) [0, T (6)) — B ()]

However, recall the fact that E [T (0)] is the derivative of log partition function of ¢ (6 | A) , i.e. E[T (0)] = agf\’\),

we have
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Proposition 4. (Partial derivative of entropy) Let q (6 | \) be a distribution belong to exponential family , i.e.
q (0 [ A) ocexp ((A, T (0)) — B (X)), then
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Proof. We have

S By g (0] V)] =~ By (AT (0)) ~ B ()

However, recall the fact that E [T (0)] is the derivative of log partition function of ¢ (8 | A) , i.e. E[T (0)] = 8(’;(;‘) ,
we have
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Proposition 5. (Partial derivative of log likelihood) Let p (0 | ) be a distribution which we call likelihood function
and q (0 | A) be a variational distribution used to approximate p (0 | n). Both distributions are supposed belong to
the same exponential family form (but different (hyper)parameters), i.e.

p(0|n) occexp((n,T(0))—B(n)  q(@]A) xexp({A\T(0)—B(\)
Then
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Proof. We have

By I (0| )] = 5 By (00,7 (0)) — B (1)

However, recall the fact that E [T (0)] is the derivative of log partition function of ¢ (6 | A) , i.e. E[T (0)] = agy‘),
we have
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3 Variational for MC2

The objective of inference problem with the model is to estimate the posterior distribution p (© | z, w) where ©
is the collection of parameter variable of the model, © = {3, ¢,7, ¢, z,t,1, ¢}. However, since this posterior is
intractable, in variational Bayes inference, this will be approximated with tractable distribution called variational
distribution, ¢ (©). In order to ensure that ¢ (©), one usually use mean-field assumption which assumes all
variational variables in © independent. However, because of the nature of the model, two group of variables
zi and tj1,...,t5,; can not be totally factorized. We will maintain the joint distribution of these variables in
variational inference.

The variational distribution is



where (in truncation setting with K level in 8 and T level in 7, and M level in €). It is noticed that ¢ (z,t) is

joint distribution in which ¢;; conditional dependent on z;.
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Figure 1: Variational distribution dependency.

The variational distributions is depicted in Fig. 1
o N = (/\11, N e N AQ(K_l)) is a 2K — 2 dimension vector;
o )\ = ()\il, e )\i(Mfl), ASqs ey )\E(Mil)) is a 2M — 2 dimension vector;
o \T = ()\Il, RN )\I(T_l), Aoy ey )\g(T_l)) is a 21" — 2 dimension vector;
e 45 is a K—dimension vector; puj, is a M —dimension vector; M§ik is a T'—dimension vector.
3.1 Stick-breaking variable updates

Now we compute the updates for stick-breaking variables
Update equations for 3, we have

q(B) < exp (E[Inp (z,w, ©)])
where

Ellnp (z,w,0)] =Inp(8) + Ellnp(z1.s | 5)] + const

K J
=Inp(B) + Zz,ujk In 3, + const

k=1 j=1



Hence,
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Since p(f|n) has the form of generalized Dirichlet distribution with parameters (K — 2
dimension)[l,...,1,%...,7]1-. Therefore, using result from Lemma 2 with the prior p(5|v) and obser-

T
vations ijl K3y .723-121 qu} , we obtain the updated distribution ¢ (3) with new hyperparameter \°
where
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Update equations for €, The updates for ¢ (¢) can be similarly computed as follows

q(€) o exp (E [Inp (z, w, ©)])
ocexp (Inp (€) +Eflnp(c | e)])
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Hence, we obtain the updates
K T K T M
1 =1+ ZZMZM N2 =7+ > i
k=1 t=1

Update equations for 7, we have

J
E[lnp(z,w,0)] =E |Inp (1) + Z (Inp(t;,z; =k|7,B))| + const
j=1
l J nj
=lnp(m) + Z Z Kk Z (5 | In7rs + const
=1 \j=1 =1

Hence,
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t=1 Jj=1 =1

As a consequence, we have

J nj
w1 =1+ Zﬂjk Z:u;'ikl Mz =v+ Zﬂjk Z Z [ikr
j=1 =1

1=1r=I+1

3.2 Content and context atom updates

Update equations for context atomsgy, using the standard update for VB, we have



q(¢x) < p(¢r)exp (E[lnp(z | z,9)))

J
=p(dr)exp | Y pilnp(z; | ér)

Jj=1

using conjugacy, we obtain

J
A=A+ (T () 1]

Jj=1

Update equations for content atoms 1,,, similarly, we compute g (¢,,,) as follows
q(¥m) o< p (¥m) exp (E[Inp (w | ¢, z,t,9)])

¢m exXp ZZ <Z gjk ngtm'%]zkt> lnp(wjz | ql)m)

j=11i=1

Therefore

)\% = ZZ ( Z ktmﬂgzkz> T (wji) ; 1]

3.3 Indicator variable updates

Now we compute variational distribution for indicators variables, ¢ (z,t) and ¢ (¢). The join distribution ¢ (z;, t;.)
are factorized as follows ¢ (2;,;.) = q (2;) [[12, ¢ (tji | 2;) and compute

Woigg = q (tji = 1] 2z = k) o< q (tji = 1,25 = k)
ocexp (E[lnp (wji | zj =k, tj = lc, )]+ Ellnp (t; = 1| )]) -
M
o< exp (Z Pt E [Inp (wji | )] + E [In m})
m=1

This means
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In the above equation, ﬂﬁ-i & is the unnormalized value for ,ué-ikt. This term will be used to compute p as follows
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Therefore, we obtain the update equation for u7 as follows

), O< exXp (E np(z; | ¢x)] +EInBi] + Zln (Z ﬂ;wz))
i =1

Finally, we need to compute update for uf;, we have

j=1 i=1

J nj
= exp (Z W > B p (25 | )]+ E[ln em])

which is
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4 Stochastic Variational for MC2
The Evidence Lower BOund (ELBO) function for the model

can be represented as F = ijl F; = E[JF;] where J is the number of observation groups; F; is lower bound
function only related to document j-th and defined as

Lj=E[np(z;|z,¢)]+E[np(w, |2, t,¢9)] +E[np(z|8)]+E[np | z,7)]
—Eflng(z)] —E[ng (¢ | z)]

S Emp(c| ] +Enp (8] +Enp(r)] +E[np ()
(E[np (v | X)) +E[mp (6] A2))])

(Elng(c)] +E[lng ()] +E[ng ()] + E[lng(e))])
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4.1 Stochastic updates for stick-breaking variables

Update equations for 3, using results from Proposition 4 and 5 with generalized Dirichlet distributions, we
get

2B (N
aig]E [ng(B)] = a)\g@g)\g))-r [)‘51 -1 )‘52 - 1}

and

2 *B(N)
M]E[hlp(ﬁ)] = W [0y —1]



Therefore, using natural gradient, we have
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Update equations for ¢, we have

gfﬁ; = 3f$n <<1]JE lnp(c]|e)]+ %E [lnp(e)] — %IE [Ing (e)])
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Therefore, using natural gradient, we have
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Update equations for 75, we have

oL, 0 ) ) 1 np(r 1 na(r
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Similarly
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Finally, using natural gradient, we have
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4.2 Stochastic updates for content and context atoms

Update equations for content atoms ¢;, compute gradient of £; with respect to )\i (in ¢ (gi)k | Ai)), we

have
gf\é _ 8‘22 (E np(z; |z 6)] + % (E [Inp (¢ | )\f)] - EU“‘]@’)]))
2 (Blopts 1 0+ (£ 0 9] 2 [ o 1))
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here we use the fact that E [¢r, —A (¢)] is the derivative of log partition function of ¢ (qﬁk | /\f) , 1.e. Oig\);’“).
k

Moreover, using results from Proposition 4 and 5, we get
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Hence, using natural gradient, we have

DU L, =AML+ T [T () 1]

N J

Update equations for content atoms 1,,, computing gradient of £; with respect to AY (in ¢ (1/Jm | )\%) ),
we have

oL,
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Here we use the fact that E [t),, —A (¢,)] is the derivative of log partition function of ¢ (1, | A%) , i.e. Y

Moreover, using results from Proposition 4 and 5, we get
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Hence, using natural gradient, we have
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4.3 Stochastic updates for global indicator variables

Since updating pf, involving computation form all data groups j's, we will use “lazy update” with stochastic
gradient. The gradient of ELBO function over uj, is needed to compute. However, the mean-parameterization
of q (et | pf,) with constraints > uf,,, =1 and 0 < puf,,, < 1 is difficult to compute gradient. We therefore
prefer to work with a minimal natural parameterization in exponential family form as follows

q (crt | Mie) = exp (Mie, T (exr)) — B (Ap))

-
where Afy = (Mot Aynr )| 3 T(€) = [Ble=1),...,8(c— M+ )]Tand B(A) = 1+ TaZ! exp (Ayyn).
The relationship between these groups of parameters is

exp (A, )
Wit = M— 1ktm y,m=1,...,.M—1
1+Zm 16Xp( ktm)
1
and uf,, = T
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Now we can compute the gradient over new parameters Aj,:

oo L _ Nt + E [In £2]
oXg,,. J

+ (@kim — Gring) (1)
where aim = 1), > ,uéiklE Inp (wj; | ¥m)], for all m.
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