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A Details of Example/[]]

Table 1: Values of X1, X2, Xcand Y.

X, X» X.|Y
0 0 00
0 0 010
0 0 1|2
o0 0 1|3
o 1 02
0 1 0|3
o 1 110
0 1 1]o
1 0 o0 |1
1 0 0 |1
1 0 1|2
1 o0 1|3
1 1 02
1 1 0|3
11 1|1
11 1|1

B Proof of Theorem[l

Theorem. X is irrelevant to Y with respect to V' iff all
variables in 'V are context-independent to Y with respect
to X. (and V) and I(Y; X,.) = 0.

Necessary condition.

Proof. If X, is irrelevant to Y w.r.t. V, we have, by defi-
nition, that I(Y; X.|B) = 0 for all subset B C V. Hence,
we have I(Y; X.) = 0 as a special case.

A variable X,,, € V is context-independent if for all B C
V~™ and for all z. € X, b € B, we have

IY: Xpn|B=b,X.=u.)—I(Y;X|B=0b)=0.
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Let us proof this:

I(YaXm|B =b,X.= l’c) _I(Yva‘B = b)

= H{Y|B=bX.=xz.)— HY|X,,,B=0b,X.=x.)

< —H(Y|B=0)+ H(Y|X, B=0)
H(Y|B=b)— H(Y|X,n,B =b)
s —H(Y|B =b)+ H(Y|X,n,, B=10)

= O,

where H(Y|B = b,X. = z.) = H(Y|B = b) and
H(Y|Xpm, B = b,X, = 20) = HY|Xn,B = b) are
consequences of I(Y; X.|B) = 0 for all B if we assume
that p(B =b) # 0 (Vb € B)and p(X, = 2., B =5b) # 0
Vx. € X, and Vb € B). L]

Sufficient condition.

Proof. 1If all variables are context-independent, we have
that forall X,, € V, BC V™", b€ B, and . € X,:

I(Y;X|B =b, X, =2.) = I(Y; Xn|B =)

By averaging the left- and right-hand sides of this equality
over P(B, X,.), we get:

I(Y;X,,|B,X.) =I1(Y; X,,| B).
From this, one can derive (Louppe et al.l 2013):
I(Y§ Xc‘BaXm) = I(Y;Xc|B)'

Since this equality is valid for all B, including B = ), and
all X,,,, we have that for all B’ C V, I(Y; X.|B’) can be
reduced to I(Y'; X..), which is equal to zero by hypothesis.
The variable X, is thus irrelevant to Y with respect to V.

O

C Proof of Theorem 2]

Theorem. A variable X,, € V is context-independent to
Y with respect to X, iff Imp!®</(X,,,) = 0 for all x..



Necessary condition.

Proof. By definition of context-independence, we have

I(Y;Xp|B=b,Xe=2.)— I(Y; Xpu|B=10) =0 0
VB C V™™ Va, € X,,Vb € B.

Given that each term
[ [(X;Y|B=0b)—I(X,;Y|B=b; X. = x.)|

of Impl®<!(X,,) (Equation (2?)) is equal to 0, the sum is
thus also equal to 0. O

Sufficient condition.

Proof. Given the definition of Impl®l(X,,):

p—1
1 1
Implmcl(Xm) = Z Ckp—k Z ZP(B =)
k=0 P BEP,(V—m) beB
< | I(X;Y|B=0b) — I(X,,;Y|B=b; X, = z.)|,
2)

appears to be a sum of positive terms (because of the
absolute value). As in Theorem [ we assume that
probabilities are non-null and therefore, we have that
the only way to have the sum equal to zero is to have
each term of the sum equal to 0. Hence, we have
[[(X,;Y|B=0b)—I(X;Y|B=0bX.=2.)| = 0 for
all z., B and b which verifies the definition of context-
independence for X,,.

O

D Proof of Theorem

Theorem. If |Imp®(X,,)| = Impl*l(X,,) for a
context-dependent variable X,,, then X,, is context-
complementary if Imp®e(X,,) < 0 and context-redundant
if Imp® (X,,) > 0.

Proof. The absolute value of a sum is less than or equal
the sum of the absolute value of each terms. The equal-
ity is only verified when all terms are of the same sign.
Therefore, the sign of Imp®e(X,,,) indicates the sign of all
terms and thus verify either the context-complementarity if
all terms are negative or the context-redundancy if all terms
are positive. O



E Results for Problem 3.

Table 2: Importances as computed analytically using asymptotic
formulas. The context is defined by the binary context feature Sex
(Sex = 0 denotes female and Sex = 1 denotes male).

Imp(Xp) | Imp(Xm|Xe = zc) Imp'®l(X,,) Imp%e(Xm)
m - r. =0 x.=1 T.=0 z.,=1 r. =0 T =1
0 age 0.2958 0.3386 0.2885 0.1382  0.1505 | -0.0095 -0.0156
1 histologic-type 0.3522 0.1389 0.4366 0.2087 0.114 0.1988  -0.0569
2 | degree-of-diffe 0.4413 0.4175 0.4208 0.1653 0.158 0.0561 0.0157
3 bone 0.2429 0.2502 0.2367 0.0933  0.0755 | -0.0043 0.0165
4 bone-marrow 0.0192 0.0201 0.0148 0.0126  0.0101 0.0009 0.0041
5 lung 0.1627 0.2059 0.1370 0.1038  0.0949 | -0.0259 0.0172
6 pleura 0.1485 0.1496 0.1015 0.0590 0.09 0.0313 0.0234
7 peritoneum 0.3184 0.3459 0.1979 0.0861 0.138 0.0147  0.0956
8 liver 0.2285 0.2138 0.2630 0.0786  0.1279 | 0.0375 -0.0602
9 brain 0.0465 0.0349 0.0548 0.0378 0.0254 | 0.0114 -0.0104
10 skin 0.0677 0.0362 0.0923 0.0314  0.0403 | 0.0252 -0.0133
11 neck 0.2215 0.0690 0.2582 0.1466  0.0692 | 0.1316  -0.0081
12 | supraclavicular 0.1676 0.1915 0.1448 0.0845 0.067 -0.0198  0.0269
13 axillar 0.1393 0.1457 0.1068 0.0655 0.0629 | -0.0067 0.0447
14 mediastinum 0.1838 0.2050 0.1716 0.1016  0.0806 | -0.0059 0.0140
15 abdominal 0.2553 0.3296 0.1372 0.1346  0.1379 | -0.0330 0.0898
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