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1 Proof of Proposition 1.1
In this section, we provide a proof of Proposition 1.1 that was omitted from the main body of the paper. We follow the
same notation as in the paper. However, the statement of the proposition is reproduced here for quick reference.

Proposition 1.1. Consider a semi-Markovian graph G = (V, E,U, H) and a distribution P(V,U) respecting it. Let
R = {ei = (Ai,Vi) | 1 ≤ i ≤ q} be a set of k edges in E ∪ H such that ei is ε i-weak, with ε ··=

∑k
i=1 ε i . Suppose that X,

Y are disjoint subsets of V for which P (Y | do X ) is not identifiable in G, but identifiable in G′ = (V, E \ R,U, H \ R).
Then there exists a distribution P̃(V,U) respecting G′ such that

−ε ≤ log
P̃(V )
P(V )

≤ ε, and − ε ≤ log
P̃(Y | do X )
P(Y | do X )

≤ ε .

Note that P̃(Y | do X ) is computable (by the algorithms of Shpitser and Pearl (2006) and Huang and Valtorta (2008))
given P̃(V ), but P(Y | do X ) is not even uniquely determined given only the observed marginal P(V ).

Proof of Proposition 1.1. We define P̃ on (V,U) by giving an explicit factorization which respects G′ by construction.
We first define P̃(U) = P(U), so that P and P̃ agree when restricted to the hidden variables. The weakness of the edges
removed from G to obtain G′ only plays a part in defining the factorization on the visible nodes in V . Let B be a vertex
in V , and let A1, A2, . . . , Ak be the (possibly empty) set of vertices in U ∪ V such that among the k edges removed from
G to obtain G′, those incident on B are (A1, B), (A2, B), . . . , (Al, B). Let εB1, εB2, . . . , εBl

be such that the edge (Ai, B)
is εBi -weak. Let Ξ(B) denote the set of parents of B in U ∪ V disjoint from {A1, A2, . . . , Al }. We then define:

P̃(B = b | Ξ(B) = ξ) = P(B = b | Ξ(B) = ξ, Ai = ai, 1 ≤ i ≤ l), (1)

where b, ξ are values in the domain of B and Ξ(B) respectively, and ai are arbitrary values in the domain of the Ai .
From the definition of weakness, we then have, for all b, ξ in the domain of B and Ξ(B) respectively, and for all a′i in
the domain of the Ai:

���log P̃(B = b | Ξ(B) = ξ) − log P(B = b | Ξ(B) = ξ, Ai = a′i, 1 ≤ i ≤ l)��� ≤
l∑

i=1
εBi . (2)

We now define P̃(V,U) in the standard way by factorizing in terms of the conditional probabilities defined in eq. (1): it
then respects G′ by construction. Using eq. (2), we have, for every u and v in the domain of U and V respectively,

���log P̃(V = v,U = u) − log P(V = v,U = u)��� ≤
1∑
i=1

ε i = ε . (3)

The claim of the proposition comparing P(V ) and P̃(V ) now follows from the fact that P(V = v) and P̃(V = v) are
both obtained by marginalizing P and P̃ over the domain of U, and the latter are ε-close by eq. (3). The proof of the
claim comparing P(X | do(Y )) and P̃(X | doY ) follows in exactly the same fashion starting from eq. (1), by using the
factorizations of these quantities in terms of the conditional probabilities appearing in eq. (1). �
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