A LIST OF NOTATION

= defined to be equal

N the natural numbers, starting with 0

AY the set of all probability distributions on )

X the set of all finite strings over the alphabet
X

x> the set of all infinite strings over the alpha-
bet X

A the (finite) set of possible actions

& the (finite) set of possible percepts

a, two different actions, o, 3 € A

ag the action in time step ¢

e the percept in time step ¢

T the reward in time step ¢, bounded between
0and 1

&y the history up to time ¢ — 1, i.e., the first
t — 1 interactions, aije1a2€s . .. at_1€t—1
the history of length 0

€ a small positive real number

vy the discount function v : N — R

Iy a discount normalization factor, I'; :=
Z?it Vi

H:(e) the e-effective horizon, defined in (T])

T a (stochastic) policy, i.e., a function 7 :
(AxE)* = AA

) an optimal policy for environment v

vr value of the policy 7 in environment v

n,k,© natural numbers

t (current) time step

m time step at the end of an effective horizon

M a countable class of environments

v, i, p environments from M, i.e., functions v :
(A x E)* x A — AE; u is the true envi-
ronment

& Bayesian mixture over all environments in
M

B OMITTED PROOFS

Let P and @Q be two probability distributions. We say P
is absolutely continuous with respect to Q (P < Q) iff
Q(F) = 0 implies P(E) = 0 for all measurable sets E.
If P < @ then there is a function dP/dQ called Radon-
Nikodym derivative such that

[ rir = / f—d@

for all measurable functions f. This function dP/d@ can
be seen as a density function of P with respect to the back-
ground measure Q).

Proof of[Lemma 2] Let P, R, and () be probability mea-
sures with P <« @ and R < @ (we can take @ :=

P/2 + R/2), let dP/dQ and dR/dQ denote their Radon-
Nikodym derivative with respect to (2, and let X denote a
random variable with values in [0, 1]. Then

/XdP /XdR /( ar _ Q)dQ
r(ly )

with A := {x‘ %(m) Z’S( x) > 0}

dP dR
</, (dQ - dQ) dQ
= P(A) — R(A)
< sup |P(A) — R(A)| = D(P, R)

From this also follows [ XdR — [ XdP < D(R, P), and
since D is symmetric we get

‘/XdP— /XdR‘ < D(P,R). 9)

According to the value function is the ex-
pectation of the random variable >} , v7% /T that is
bounded between 0 and 1. Therefore we can use (9) with
P = v™m(- | &«) and R := p™(- | @&<4) on the
space (A x &)™ of the histories of length < m to con-
clude that |V (<) — V2™ (&<)| is bounded by
Do (™, 57 | 2<1). O

Proof of[Lemma 3] From  Blackwell-Dubins’  theo-
rem [BD62|] we get Doo (1™, €™ | &<;) — 0 p™-almost
surely, and since D is bounded, this convergence also
occurs in mean. Thus for every environment v € M,

ET [Doo(z/”,f7r \ a?<t)] — 0ast — oo. (10)

Now

ER[FS (<))

< T EEFL ()
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—  [ET w(y ‘ <t)Do¢(l/7r,§7r | <t)]
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= ! Ef wlv M T ET
- w(u) 5 l; ( >57T(‘T’<t)DOO( ¢ a?<t)]
- w(lu) Z wW)E] [Dos(v™, €™ | ®<4)] = 0

by [HutO5, Lem. 5.28ii] since total variation distance is
bounded. O]



Proof of|Lemma 12| By [Assumption 10a] we have v, > 0

for all ¢ and hence I'; > 0 for all t. By

have that v is monotone decreasing, so we get for alln € N

t+n—1
ka < Z% + ka =ny +Dign.
k=t k=t+n

And with n := Hy(e) this yields

’Yth(€) >1_ Ft+Ht(€)
I - I

>1-e>0. (11

In particular, this bound holds for all £ and € > 0.

Next, we define a series of nonnegative weights (b;)>1

such that .
Z dy = Z Z'dek

t=to t= tg

This yields the constraints

b

§ =1 V> .
Ty

k=to

The solution to these constraints is

Iy Iy

by, = —2, and by = — — fort > tg. (12)
Yo Yoo T-1
Thus we get
- r — (I, T
Sn=ite S (-0t
t=to Vool N L
A /T, T
EENES (t - t+1>
Tm =g \ Tt Vi
I
=" m—tg+1
Ym
Hy,
< (6) +m — ity + 1
1-¢
for all ¢ > 0 according to (TT).
Finally,
b
Sas S 318
t=to
<t0+z Z%dk—z > i

t= to t= to k m+1

and using the assumption (3) and d; > —

<t0+2bt5+zbt mtl

t=to t=to

H,, bl
Sto+€ ()+s( —to+1) +Z —mtl

t=to Ly

For the latter term we substitute (T2) to get

>

zm: btrm+1 _ Fm+1

t=to Ft ,yto
_ Fm—i—l < Hm(ﬁ)
Ym ~ l—¢€

with (TT).
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