
A LIST OF NOTATION

:= defined to be equal
N the natural numbers, starting with 0
∆Y the set of all probability distributions on Y
X ∗ the set of all finite strings over the alphabet

X
X∞ the set of all infinite strings over the alpha-

bet X
A the (finite) set of possible actions
E the (finite) set of possible percepts
α, β two different actions, α, β ∈ A
at the action in time step t
et the percept in time step t
rt the reward in time step t, bounded between

0 and 1
æ<t the history up to time t − 1, i.e., the first

t− 1 interactions, a1e1a2e2 . . . at−1et−1
ε the history of length 0
ε a small positive real number
γ the discount function γ : N→ R≥0
Γt a discount normalization factor, Γt :=∑∞

i=t γi
Ht(ε) the ε-effective horizon, defined in (1)
π a (stochastic) policy, i.e., a function π :

(A× E)∗ → ∆A
π∗ν an optimal policy for environment ν
V πν value of the policy π in environment ν
n, k, i natural numbers
t (current) time step
m time step at the end of an effective horizon
M a countable class of environments
ν, µ, ρ environments from M, i.e., functions ν :

(A × E)∗ × A → ∆E ; µ is the true envi-
ronment

ξ Bayesian mixture over all environments in
M

B OMITTED PROOFS

Let P and Q be two probability distributions. We say P
is absolutely continuous with respect to Q (P � Q) iff
Q(E) = 0 implies P (E) = 0 for all measurable sets E.
If P � Q then there is a function dP/dQ called Radon-
Nikodym derivative such that∫

fdP =

∫
f
dP

dQ
dQ

for all measurable functions f . This function dP/dQ can
be seen as a density function of P with respect to the back-
ground measure Q.

Proof of Lemma 2. Let P , R, and Q be probability mea-
sures with P � Q and R � Q (we can take Q :=

P/2 + R/2), let dP/dQ and dR/dQ denote their Radon-
Nikodym derivative with respect to Q, and let X denote a
random variable with values in [0, 1]. Then∫

XdP −
∫
XdR =

∫ (
X
dP

dQ
−X dR

dQ

)
dQ

≤
∫
A

X

(
dP

dQ
− dR

dQ

)
dQ

with A :=
{
x
∣∣∣ dPdQ (x)− dR

dQ (x) ≥ 0
}

≤
∫
A

(
dP

dQ
− dR

dQ

)
dQ

= P (A)−R(A)

≤ sup
A
|P (A)−R(A)| = D(P,R)

From this also follows
∫
XdR −

∫
XdP ≤ D(R,P ), and

since D is symmetric we get∣∣∣∣∫ XdP −
∫
XdR

∣∣∣∣ ≤ D(P,R). (9)

According to Definition 1, the value function is the ex-
pectation of the random variable

∑m
k=t γkrk/Γt that is

bounded between 0 and 1. Therefore we can use (9) with
P := νπ1( · | æ<t) and R := ρπ2( · | æ<t) on the
space (A × E)m of the histories of length ≤ m to con-
clude that |V π1,m

ν (æ<t) − V π2,m
ρ (æ<t)| is bounded by

Dm(νπ1 , ρπ2 | æ<t).

Proof of Lemma 5. From Blackwell-Dubins’ theo-
rem [BD62] we get D∞(µπ, ξπ | æ<t) → 0 µπ-almost
surely, and since D is bounded, this convergence also
occurs in mean. Thus for every environment ν ∈M,

Eπν
[
D∞(νπ, ξπ | æ<t)

]
→ 0 as t→∞. (10)

Now

Eπµ[Fπ∞(æ<t)]

≤ 1

w(µ)
Eπξ [Fπ∞(æ<t)]

=
1

w(µ)
Eπξ

[∑
ν∈M

w(ν | æ<t)D∞(νπ, ξπ | æ<t)

]

=
1

w(µ)
Eπξ

[∑
ν∈M

w(ν)
νπ(æ<t)

ξπ(æ<t)
D∞(νπ, ξπ | æ<t)

]

=
1

w(µ)

∑
ν∈M

w(ν)Eπν
[
D∞(νπ, ξπ | æ<t)

]
→ 0

by [Hut05, Lem. 5.28ii] since total variation distance is
bounded.



Proof of Lemma 12. By Assumption 10a we have γt > 0
for all t and hence Γt > 0 for all t. By Assumption 10b
have that γ is monotone decreasing, so we get for all n ∈ N

Γt =

∞∑
k=t

γk ≤
t+n−1∑
k=t

γt +

∞∑
k=t+n

γk = nγt + Γt+n.

And with n := Ht(ε) this yields

γtHt(ε)

Γt
≥ 1−

Γt+Ht(ε)

Γt
≥ 1− ε > 0. (11)

In particular, this bound holds for all t and ε > 0.

Next, we define a series of nonnegative weights (bt)t≥1
such that

m∑
t=t0

dk =

m∑
t=t0

bt
Γt

m∑
k=t

γkdk.

This yields the constraints

t∑
k=t0

bk
Γk
γt = 1 ∀t ≥ t0.

The solution to these constraints is

bt0 =
Γt0
γt0

, and bt =
Γt
γt
− Γt
γt−1

for t > t0. (12)

Thus we get

m∑
t=t0

bt =
Γt0
γt0

+

m∑
t=t0+1

(
Γt
γt
− Γt
γt−1

)

=
Γm+1

γm
+

m∑
t=t0

(
Γt
γt
− Γt+1

γt

)
=

Γm+1

γm
+m− t0 + 1

≤ Hm(ε)

1− ε
+m− t0 + 1

for all ε > 0 according to (11).

Finally,

m∑
t=1

dt ≤
t0∑
t=1

dt +

m∑
t=t0

bt
Γt

m∑
k=t

γkdk

≤ t0 +

m∑
t=t0

bt
Γt

∞∑
k=t

γkdk −
m∑
t=t0

bt
Γt

∞∑
k=m+1

γkdk

and using the assumption (5) and dt ≥ −1,

< t0 +

m∑
t=t0

btε+

m∑
t=t0

btΓm+1

Γt

≤ t0 +
εHm(ε)

1− ε
+ ε(m− t0 + 1) +

m∑
t=t0

btΓm+1

Γt

For the latter term we substitute (12) to get

m∑
t=t0

btΓm+1

Γt
=

Γm+1

γt0
+

m∑
t=t0+1

(
Γm+1

γt
− Γm+1

γt−1

)
=

Γm+1

γm
≤ Hm(ε)

1− ε

with (11).


