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Appendix

A Generalization Bounds

For a rule class F; with finite Natarajan dimension of at most D, the following result relates the empirical and population
0-1 errors of any rule in F;: w.p. at least 1 — ¢ (over draw of \S), for all f; € F;,
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The proof is involves a reduction to binary classification, and an application of a VC dimension based generalization bound
(see for example proof of Theorem 4 in [21]; also see Eq. (6) in [21]). It is straightforward to extend the above result to a
similar bound on the Hamming error metric of an outcome rule f € F:

Lemma 10. With probability at least 1 — § (over draw of S ~ DN), for all f € F,
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Applying (6) to the above expression, along with a union bound over all 7, gives us the desired result. O
B Proofs

B.1 Complete Proof of Lemma 5

Proof. For any f : © — (), define a binary function Gy : © —{0,1} as G (6) = 1(f1(0) # ... # fu(6)). Clearly, f is
feasible on S iff Gy evaluates to 1 on all type profiles in .S, and feasible on all type profiles iff G ¢ evaluates to 1 on all type
profiles.

Treating G as a binary classifier, the desired result can be derived using standard VC dimension based learnability results
for binary classification [22], with the loss function being the 0-1 loss against a labeling of 1 on all profiles. Let G = {G :
©—{0,1} : f e F} be the set of all such binary classifiers. Also, €pfeasible = Eg~D [1 (Gf(ﬂ) #* 1)) We then wish to
bound the expected 0-1 error of a classifier G 7 from G that outputs 1 on all type profiles in S.

We first bound the VC dimension of G. Since each F; has a Natarajan dimension of at most D, we have from Lemma 11
in [21] that the maximum number of ways a set of N profiles can be labeled by F; with labels [m] is at most NPm?2P.
Since each G ¢ is a function solely of the outputs of fi,. .., f,, the number of ways a set of IV profiles can be labeled by G
with labels {0, 1} is at most (NszD)n.

The VC dimension of G is then given by the maximum value of N for which 2V < (N mQ)HD. We thus have that the VC
dimension is at most O(nD In(mnD)).

Since Fsp # ¢, there always exists a function Gy consistent with a labeling of 1 on all profiles. A standard VC dimension

based argument then gives us the following guarantee for the outcome rule f that is feasible on sample S: w.p. at least
1 — 6 (over draw of S),
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which implies the statement of the lemma. O



B.2 Proof of Theorem 7

Proof. Letw; =[1,1,...,1,—1,—1,..., —1]. We first show that the corresponding payments are non-negative.
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We next show that the outcome rule f% is feasible, and in particular, outputs a welfare-maximizing assignment. Note that
¥ (0) can output any one of the following items:
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where 7_; is a term independent of agent ¢’s valuations and the item o over which the argmax is taken. If the above max
is achieved by more than one item, then the individual functions f* may not pick distinct items. However, in each of
the following feasible assignments, agent ¢ is assigned an optimal item from Z;: argmaxyeg{ > vi(6s, yl)} Thus f
is feasible as long as it uses a tie-breaking scheme that picks an assignment from this set. Such a tie-breaking scheme
will not violate the agent-independence condition, as the agents continue to receive an optimal item based on their agent-
independent prices. O

B.3 Proof for Theorem 8

Proof. For ease of presentation, we omit the subscript i whenever clear from context. Let A S © be a set of N profiles
N-shattered by /. Then there exists labelings L1, Lo : A — [m] that disagree on all profiles in A such that for all B < A,
there is a w with fW(0) = L1(0),V0 € B and fV(0) = Ly(9),V¥0 € A\B.

To bound the Natarajan dimension of ¥, define £ : © — {0, 1} that for any 6 € © outputs 1 if f¥(#) = Ly(6) and 0
otherwise. Then for all subsets B of a N-shattered set A, there is a w with £V (6) = 1,V0 € B and £V (6) = 0,V60 € A\B.
This implies that if a set is N-shattered by FYitis (binary) shattered by the class {¢¥ : w € R?} = Z (say). Thus the
size of the largest set N-shattered by F%isno larger than the size of the largest set (binary) shattered by =. The Natarajan
dimension of FY¥ is therefore upper bounded by the VC dimension of =.

What remains is to bound the VC dimension of Z. Note that €% (6) = 1 only when w W, (6_;, L1()) < 1 and Ly(6) >;
0,Yoe {0 € [m] : wlW;(0_;,0') < 1}. Also note that when 6 € O is fixed, the output of £ (#) for different w € R?
is solely determined by the value of the binary vector [1(w ¥, (0_;,0) < 1)]"™; € {0,1}™. Thus the number of ways a
fixed set A < O can be labeled by = cannot be larger than the number of ways A can be labeled with the binary vectors
[1(wTT;(0_;,0) <1)]™, € {0,1}™ for different w € R%.
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Each entry of the above binary vector can be seen as a linear separator. Given that the VC dimension of linear separators
in R¢ (with a constant bias term) is d, by Sauer’s lemma, the number of ways a set of N profiles can be labeled by a single
entry 1(w' W, (f_;,0) < 1) is at most (Ne)?. The total number of ways the set can be labeled with binary vectors of the
above form is at most (Ne)™<. The VC dimension of Z is then the largest N for which 2V < (Ne)™?. We thus get that
the VC dimension of = is at most O((md) In(md)), as desired. O



B.4 Proof of Theorem 9

Proof. Fix a priority 7 : [n] — [n] over the agents, where 7(4) denotes the priority to agent ¢ (with 1 indicating the lowest
priority, and n indicating the highest). Define w; € R™*™ as follows: for j € [n], k € [m],

wilj, k] = 2 7(j)>7@@), k=m—n+7(j)
ild, 51 = 0 otherwise.

We show that the resulting outcome rule is a feasible serial dictator style mechanism where the agents are served according
to the priority ordering m. We show this for the case when m = n. The proof easily extends to the case where this is not
true.

Recall that the entry (j, k) for j # ¢ in the feature map \Tli(Q_i, 0) is 1 when agent j assigns a rank of k& to item o, i.e.
rank;(6;,0) = k. One can then observe that virtual price function, thir’w (0_i,0) = w] U, (A_;,0) > 2 whenever an agent
with a higher priority assigns item o a rank greater or equal to its priority level, i.e. whenever rank;(6;, 0) > w(j) for some
j with w(j) > 7(¢). The item o is then not affordable to agent 7, as the virtual price exceeds a budget of 1.

The resulting outcome rule is similar to a serial dictatorship mechanism and serves the agents according to the priorities
m: agent w1 (1) affords all items; agent 7~ (2) affords all but the item most-preferred by agent 7—1(1); agent 7~ 1(3)
affords all items except the most-preferred item by agent 71 (1), and the first- and second-most preferred items by agent
7~1(2); and so on. Thus the most-preferred affordable item for a given agent is always unaffordable for lower priority
agents. Since each agent receives its most-preferred affordable item (and is unassigned if it cannot afford any), there are
no conflicts in assignments. O



