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Appendix

A Generalization Bounds

For a rule class Fi with finite Natarajan dimension of at most D, the following result relates the empirical and population
0-1 errors of any rule in Fi: w.p. at least 1´ δ (over draw of S), for all fi P Fi,
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The proof is involves a reduction to binary classification, and an application of a VC dimension based generalization bound
(see for example proof of Theorem 4 in [21]; also see Eq. (6) in [21]). It is straightforward to extend the above result to a
similar bound on the Hamming error metric of an outcome rule f P F :
Lemma 10. With probability at least 1´ δ (over draw of S „ DN ), for all f P F ,
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Proof. We would like to bound:
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Applying (6) to the above expression, along with a union bound over all i, gives us the desired result.

B Proofs

B.1 Complete Proof of Lemma 5

Proof. For any f : ΘÑΩ, define a binary function Gf : ΘÑt0, 1u as Gf pθq “ 1
`

f1pθq ‰ . . . ‰ fnpθq
˘

. Clearly, f is
feasible on S iff Gf evaluates to 1 on all type profiles in S, and feasible on all type profiles iff Gf evaluates to 1 on all type
profiles.

Treating Gf as a binary classifier, the desired result can be derived using standard VC dimension based learnability results
for binary classification [22], with the loss function being the 0-1 loss against a labeling of 1 on all profiles. Let G “ tGf :
ΘÑt0, 1u : f P Fu be the set of all such binary classifiers. Also, εinfeasible “ Eθ„D

“

1
`

G
pf pθq ‰ 1q

˘

. We then wish to
bound the expected 0-1 error of a classifier G

pf from G that outputs 1 on all type profiles in S.

We first bound the VC dimension of G. Since each Fi has a Natarajan dimension of at most D, we have from Lemma 11
in [21] that the maximum number of ways a set of N profiles can be labeled by Fi with labels rms is at most NDm2D.
Since each Gf is a function solely of the outputs of f1, . . . , fn, the number of ways a set of N profiles can be labeled by G
with labels t0, 1u is at most

`

NDm2D
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.

The VC dimension of G is then given by the maximum value of N for which 2N ď
`

Nm2
˘nD

. We thus have that the VC
dimension is at most OpnD lnpmnDqq.

Since FSP ‰ φ, there always exists a function Gf consistent with a labeling of 1 on all profiles. A standard VC dimension
based argument then gives us the following guarantee for the outcome rule pf that is feasible on sample S: w.p. at least
1´ δ (over draw of S),
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which implies the statement of the lemma.



B.2 Proof of Theorem 7

Proof. Let wi “ r1, 1, . . . , 1
loooomoooon
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s. We first show that the corresponding payments are non-negative.
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We next show that the outcome rule fw is feasible, and in particular, outputs a welfare-maximizing assignment. Note that
fwi pθq can output any one of the following items:
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where T´i is a term independent of agent i’s valuations and the item o over which the argmax is taken. If the above max
is achieved by more than one item, then the individual functions fwi may not pick distinct items. However, in each of
the following feasible assignments, agent i is assigned an optimal item from Ii: argmaxyPΩ
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(

. Thus pf
is feasible as long as it uses a tie-breaking scheme that picks an assignment from this set. Such a tie-breaking scheme
will not violate the agent-independence condition, as the agents continue to receive an optimal item based on their agent-
independent prices.

B.3 Proof for Theorem 8

Proof. For ease of presentation, we omit the subscript i whenever clear from context. Let A Ď Θ be a set of N profiles
N-shattered by rFΨ. Then there exists labelings L1, L2 : AÑrms that disagree on all profiles inA such that for allB Ď A,
there is a w with fwpθq “ L1pθq,@θ P B and fwpθq “ L2pθq,@θ P AzB.

To bound the Natarajan dimension of rFΨ, define ξw : ΘÑt0, 1u that for any θ P Θ outputs 1 if fwpθq “ L1pθq and 0
otherwise. Then for all subsets B of a N -shattered set A, there is a w with ξwpθq “ 1,@θ P B and ξwpθq “ 0,@θ P AzB.
This implies that if a set is N-shattered by rFΨ, it is (binary) shattered by the class tξw : w P Rdu “ Ξ (say). Thus the
size of the largest set N-shattered by rFΨ is no larger than the size of the largest set (binary) shattered by Ξ. The Natarajan
dimension of rFΨ is therefore upper bounded by the VC dimension of Ξ.

What remains is to bound the VC dimension of Ξ. Note that ξwpθq “ 1 only when wJΨipθ´i, L1pθqq ď 1 and L1pθq ľi

o,@o P to1 P rms : wJΨipθ´i, o
1q ď 1u. Also note that when θ P Θ is fixed, the output of ξwpθq for different w P Rd

is solely determined by the value of the binary vector r1pwJΨipθ´i, oq ď 1qsmo“1 P t0, 1u
m. Thus the number of ways a

fixed set A Ď Θ can be labeled by Ξ cannot be larger than the number of ways A can be labeled with the binary vectors
r1pwJΨipθ´i, oq ď 1qsmo“1 P t0, 1u

m for different w P Rd.

Each entry of the above binary vector can be seen as a linear separator. Given that the VC dimension of linear separators
in Rd (with a constant bias term) is d, by Sauer’s lemma, the number of ways a set of N profiles can be labeled by a single
entry 1pwJΨipθ´i, oq ď 1q is at most pNeqd. The total number of ways the set can be labeled with binary vectors of the
above form is at most pNeqmd. The VC dimension of Ξ is then the largest N for which 2N ď pNeqmd. We thus get that
the VC dimension of Ξ is at most Oppmdq lnpmdqq, as desired.



B.4 Proof of Theorem 9

Proof. Fix a priority π : rnsÑ rns over the agents, where πpiq denotes the priority to agent i (with 1 indicating the lowest
priority, and n indicating the highest). Define wi P Rnˆm as follows: for j P rns, k P rms,

wirj, ks “

#

2 πpjq ą πpiq, k ě m´ n` πpjq

0 otherwise.

We show that the resulting outcome rule is a feasible serial dictator style mechanism where the agents are served according
to the priority ordering π. We show this for the case when m “ n. The proof easily extends to the case where this is not
true.

Recall that the entry pj, kq for j ‰ i in the feature map rΨipθ´i, oq is 1 when agent j assigns a rank of k to item o, i.e.
rankjpθj , oq “ k. One can then observe that virtual price function, tvir,w

i pθ´i, oq “ wJi
rΨipθ´i, oq ě 2 whenever an agent

with a higher priority assigns item o a rank greater or equal to its priority level, i.e. whenever rankjpθj , oq ě πpjq for some
j with πpjq ą πpiq. The item o is then not affordable to agent i, as the virtual price exceeds a budget of 1.

The resulting outcome rule is similar to a serial dictatorship mechanism and serves the agents according to the priorities
π: agent π´1p1q affords all items; agent π´1p2q affords all but the item most-preferred by agent π´1p1q; agent π´1p3q
affords all items except the most-preferred item by agent π´1p1q, and the first- and second-most preferred items by agent
π´1p2q; and so on. Thus the most-preferred affordable item for a given agent is always unaffordable for lower priority
agents. Since each agent receives its most-preferred affordable item (and is unassigned if it cannot afford any), there are
no conflicts in assignments.


