Supplementary Material for Budgeted Semi-supervised Support Vector
Machine

The general update rule is
Wil = Wy — Nge — 2001, D (x1,) — 2264, D (24,)
_t - Lo + Co‘tty“ @ (@) + C'FH B (@ (24,) = @ (0,)) = 210, D (a1,) = 210, D (aa,)
We do the convergence analysis for BS3VM with the removal strategy. In this case, the difference vector is D (z) =
D (x).

Lemma 1. Let us denote sy = Zielé |0;] + Ziel?

0i|. The following statement holds
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Proof. According to the update rule, we have
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Here we note that we have used the inequality fty,,, =€~ = <1
It follows that
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Taking sum when t =1,...,T — 1, we gain
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Lemma 2. The following statement holds )
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Proof. We have
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It follows that ,
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Lemma 3. The following statement holds

gl < G =2 <C+2C/) Vi



Proof. We have , )
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where oy = —I,, (We; T, 4i,) = -L, Wi (e, )<1 and B, = —sign (W] ®u,v, ).
It follows that
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Lemma 4. Given two positive integer numbers m,n, assume that before removed the coefficient of ® (x;,) is updated m
times via the verter sampling and n times via the edge sampling of the spectral graph. We then have

10,] < mC + nC’
WS T

Proof. We assume that the coefficient of ® (x;,) is updated via the vertex sampling at iterations ki, ..., k,,. At the iteration
k;, this coeflicient is added by the quantity
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At the iteration t, the above quantity becomes
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We further assume that the coefficient of ® (z;,) is updated via the vertex sampling at iterations hq,..., h,. At the
iteration h;, this coefficient is added by the quantity
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At the iteration t, the above quantity becomes
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Therefore, we have the following representation
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Hence, we gain the conclusion since
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Lemma 5. Given a positive integer number p, assume that before removed the coefficient of ® (x,,) is updated p times

via edge sampling. We then have
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Proof. We skip this proof since it is similar to that of Lemma [ O

Lemma 6. We define p; = % =t8; and hy = Zlp;, D (1,) + Z{pu, D (74,). Then we have

Ihe]| < H=mC + (n+p)C, Vt



Proof. We have
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Lemma 7. The following statement holds
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where W = H + \/H? + (G + H)?.

Proof. We have
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Taking the conditional expectation w.r.t w;, we gain
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Here we note that we have used the following inequality
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Taking the expectation again, we achieve
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Choosing W = H ++/H?+ (G + H)z, we have the following: if E [||wt — W*||2} <W?,E [||wt+1 - w*||2] < W2.
Theorem 8. Let us consider the running of Algorithm 1. The following statement holds
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where p;, = % and py, =

Proof. We have
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Taking the conditional expectation w.r.t wy, ..., wy, 21, ..., 2; of two sides on the above inequality, we gain
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Here we note that p;, and p,, are functionally dependent on wy, ..., wy, 21,...,z; and J (w) is 1-strongly convex function.
Taking the expectation of two sides of the above inequality, we obtain
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Taking sum when t = 1, ..., T, we gain
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