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global optimization

f*:=min f(x)
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optimization problems
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convex relaxation

Step 1: find a tight lower bound to f(x)




convex relaxation

Step 2: optimize the convex surrogate
instead of f(x)




convex envelope

convex envelope = tightest convex lower bound

Kleibohm, 1967

Let f. be the convex envelope of f : X — R.
Then (a) mingex fe(z) = f* and (b) X7 C X7 .

X7 : set of the optimizers of f
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problem: finding the convex envelope is hard!



idea behind CoRR

solution: approximate the convex envelope!

h(z;0) = (0,¢(x))
h(;0) e H,x € X,0 € ©



idea behind CoRR

solution: the convex envelope!

min E[d(h(x;0), f(z))]




idea behind CoRR

solution: approximate the convex envelope!

min E[d(h(z;0), f(2))]

what is the right objective function??




the key to CoRR

Lemma 1

Assume t

nat the convex envelope f.(x) € H and

that u =

| fe()]

Then the

convex approximation h(x) returned by

(P1) will coincide with the convex envelope.

P1

0, =argmin [E|
0coO

hz;0) — f(z)|] st E[h(z;0)] = p.

v \4

L1 error term convex constraint




CoRR algorithm

Step 1: draw T samples from the function

black-box setting = no gradient information



CoRR algorithm

Step 2: find a convex approximation to the function

AN

0. = arg min

S

0cO

S | h(z;0) — f(x)]] st. Ealh(z;0)] = p

AN

v

empirical expected loss

v

empirical constraint




CoRR algorithm

Step 2: fit a convex envelope to the function

AN S s

0. = argr@réi(g S | h(z;0) — f(x)]] st. Ealh(z;0)] = p

Lemma 1 tells us how we should
regularize this problem...




finding M

1. Solve Step 2 for fixed value of 4 —— h(x;0,)

P

2. Optimize the convex function h(x) — Z,

i = argmin f(z,,)




guarantees

(Thm. 1) After T function evaluations, CoRR returns an
estimate z such that with probability 1 — ¢

@) - = o| ()
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(Thm. 1) After T function evaluations, CoRR returns an
estimate z such that with probability 1 — ¢
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characterizes difficulty of problem




guarantees

(Thm. 1) After T function evaluations, CoRR returns an
estimate z such that with probability 1 — ¢

@) - = o| ()

what makes a problem easy:

1. smoothness around its minimum
2. upper and lower bound are

/ matched H

| 2 a=1/2

>




guarantees

fx

) — [

(Thm. 1) After T function evaluations, CoRR returns an
estimate z such that with probability 1 — ¢

o=y

what makes a problem difficult:

1. fast growth around its minimum

>

2. needle in the haystack!

!

a— 0




numerical results
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extensions to CoRR

&)
%

f(x) - CoRR

CoRR = fixed set of samples (one-shot)



extensions to CoRR

update sampling interval

sample

) f(x) - CoRR :

adaCoRR = iteratively select samples around =~



take-nome message...

new approach for solving non-convex problems

CoRR = Convex Relaxation Regression
1. learn a convex approximation h(x)
from black-box samples of f(x)
2. optimize a convex surrogate instead of f(x)
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thank you!

guestions”?



