
Eva Dyer 
 
work with: Mohammad Azar 
                 Konrad Körding

Convex Relaxation
Regression (CoRR)



global optimization
f

⇤ := min
x2X

f(x)
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convex relaxation

Step 1: find a tight lower bound to f(x)  
            



convex relaxation

Step 2: optimize the convex surrogate  
             instead of f(x) 



convex envelope

convex envelope = tightest convex lower bound 
                      

Kleibohm, 1967
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Kleibohm, 1967
Let f

c

be the convex envelope of f : X ! R.
Then (a) min

x2X f

c

(x) = f

⇤
and (b) X ⇤

f

✓ X ⇤
fc
.

problem: finding the convex envelope is hard!
X ⇤

f : set of the optimizers of f

convex envelope = tightest convex lower bound 
                      



solution: approximate the convex envelope!

idea behind CoRR

h(x; ✓) = h✓,�(x)i
h(·; ✓) 2 H, x 2 X , ✓ 2 ⇥
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solution: approximate the convex envelope!

idea behind CoRR

min
✓

E[d(h(x; ✓), f(x))]

what is the right objective function??



the key to CoRR 

✓µ = argmin
✓2⇥

E[|h(x; ✓)� f(x)|] s.t. E[h(x; ✓)] = µ.

Lemma 1
Assume that the convex envelope fc(x) 2 H and 
that  µ = E[fc(x)]

Then the convex approximation h(x) returned by 
(P1) will coincide with the convex envelope.

P1

L1 error term convex constraint



CoRR algorithm 

black-box setting = no gradient information 

f

⇤ := min
x2X

f(x)
xi yi = f(xi)xi yi = f(xi)

Step 1: draw T samples from the function 



CoRR algorithm 

Step 2: find a convex approximation to the function 

b
✓c = argmin

✓2⇥
bE1

⇥
|h(x; ✓)� f(x)|

⇤
s.t. bE2

⇥
h(x; ✓)

⇤
= µ

empirical expected loss empirical constraint



CoRR algorithm 

Step 2: fit a convex envelope to the function 

b
✓c = argmin

✓2⇥
bE1

⇥
|h(x; ✓)� f(x)|

⇤
s.t. bE2

⇥
h(x; ✓)

⇤
= µ

Lemma 1 tells us how we should  
regularize this problem…



finding

1. Solve Step 2 for fixed value of  
2. Optimize the convex function h(x)

h(x; ✓µ)

bµ = argmin
µ2[�R,R]

f(bxµ)

µ

µ
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               estimate    such that with probability

f(bx)� f
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= O
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guarantees 
(Thm. 1) After T function evaluations, CoRR returns an  
               estimate    such that with probability

f(bx)� f

⇤
= O

✓
log(1/�)

T

◆↵�

what makes a problem difficult:

1. fast growth around its minimum 
2. needle in the haystack!

            

=)

↵ ! 0



numerical results



numerical results



extensions to CoRR

CoRR = fixed set of samples (one-shot)

bx⇤
CoRR

sample
f

⇤ := min
x2X

f(x)



extensions to CoRR

adaCoRR = iteratively select samples around    bx⇤

bx⇤
CoRR

sample
f

⇤ := min
x2X

f(x)

update sampling interval



take-home message…

 CoRR = Convex Relaxation Regression
1. learn a convex approximation h(x)  

from black-box samples of f(x) 
2. optimize a convex surrogate instead of f(x)   

 

new approach for solving non-convex problems
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thank you! 

questions?


