BN
Graph Lab\

Large-Scale Distributed Machine Learning

Carlos Guestrin

Joseph Yucheng Aapo Haijie Joseph Danny
Gonzalez Low Kyrola Gu Bradley Bickson

Needless to Say, We Need
Machine Learning for Big Data

flickr YouIT3

6 Billion — 1 Billion
Flickr Photos 28 Million Facebook Users
Wikipedia Pages

72 Hours a Minute
YouTube

Ehe New YJork Times

= “...data a new class of economic asset,
SundayReview ,
like currency or gold.

WORLD US. NJY./REGION BUSINESS TEC

NEWS ANALYSIS

The Age of Big Data

By STEVE LOHR
Published: February 11, 2012

Big Learning

How will we
design and implement
parallel learning systems?

Part 1

ASYNCHRONOUS DATA-PARALLEL
ALGORITHMS

Sparse Regression

~ 2 3
Yy X Wy t+awi+awyt+aws+...

1\ — Aw(*weights

target 1‘

basis functions

LASSO: find sparse weight vector w*
min F'(w)

F(w) = ||y — Aw||3 + Alw]|s

least / \ sparsity

inducing
regularizer

squares

¢ Fundamental machine learning task

[Tibshirani, 1996]

¢ Huge number of applications (many thousands of papers)
o Computational biology, computer vision, compressed sensing...

Shooting: Stochastic Coordinate
Desce nt (SC D) [e.g., Shalev-Shwartz & Tewari ‘09]

F(w) contour

While not converged

» Choose random coordinate j

» Optimize w, |
(closed-form minimization)

Lasso: MmInF(w) where F(w)=%IIAw—yII§ +Allwll

Coordinate Descent for LASSO
(aka Shooting Algorithm)

» Repeat until convergence

¢ Pick a coordinate j at (random or sequentially)

U N ar e < —A

Wy = 4 0 co € [\]
\ (Cg—)\)/ag Cg>)\

e Where:
ay = QZW(><]-))2

cp =2 Z he(x;) (t(Xj) — (wo + Zwihi(xj))>
j=1 1£L

A n a Iys i S Of S C D [Shalev-Shwartz, Tewari ‘'09/°11]

o Theorem: with iterations T, expected error decreases as:

d v |Jw*||?
o(K

e For d dimensions, and optimum w*

e For (coordinate-wise) strongly convex functions (Aw =6, e)):
F(w + Aw) < F(w) + |Aw|(VE(w)); + 7|A2w|

e For LASSO y=1, for Logistic Regression y=1/4

Great rate...

but gets expensive in high dimensions

Shotgun: Data-Parallel SCD

[Bradley, Kyrola, Bickson, G. ‘11]

While not converged

Nice case:
Uncorrelated
features

¢ On each of P processors

e Choose random
coordinate j

» Optimize w,
(as in Shooting) Bad case:
Correlated

features

Is coordinate desCeii.

inherently sequential?

lasso: MInF(w) where F(w)=LIlAw-yl +Allwl,

Is SCD inherently sequential?

[Lasso: min F(w) where FW)=IlXw-yl +Allwl|]

4)

Coordinate update:
W, =W, + ow ;

(closed-form minimization)

_ %
/ Collective update: \
(ow,)
0)
Aw=| 0
(5wj

_ \O)

Is SCD inherently sequential?

[Lasso: minF(w) where Fw)=lIXw-yI +Allwl|,]

Lemma: If X is normalized s.t. diag(X™X)=1,

F(W + AW) — F(W) Can be positi\ie or negative ®
2 | |
< - 2 (5W,~.) + E (XTX). ~ow, ow,
= i i EP, H
Jj=k

“Positive”
progress

Key term!
(Measures “correlation” between features...)

“interference” between updates

Theorem: Shotgun Convergence

‘

Assume P < d/,O +1 Nice case:
: ~ | Uncorrelated
where = largest eigenvalue of ATA :

features

p=1:>Pmax=d

Then: can achieve
. . Bad case:
linear speed ups with Correlated

features
up to P processors pmd=P =1 (atwors)

final - opt
objective

E[}?(W(T))]—F(w!k) <

d(% w12 +F(w<0>))
71N

iterations # parallel updates

Experiments Match Theory!

10000

nce

Shotgun outperforms LASSO solvers

(Shooting, SGD, L1_LS Parallel, FPC_AS, Spa_RSA, GPSR_BB, Hard LO)

2-10x on wide range of real data

O
e
Q
.t

10
1 10 100

Number of processors (simulated)

Mug32, single pixel camera dataset

Key Proof Technique

Parallel optimization problem

Potential interference
between updates

Guarantee based on bounding
magnitude of interference

Stepping Back...

e Stochastic coordinate ascent (SCD)
o Optimization: Pick a coordinate j, find argmin,,; F(w)

« Parallel SCD: Pick p coordinates and update at once
o Issue: Updates may interfere on p coordinates

» Solution: Bound possible interference using spectral norm

» Natural counterpart: Stochastic gradient descent (SGD)

Optimization: Pick a data point and take a small gradient step on all coordinates

¢

parallel: Pick p data points and update at once

¢

Issue: Updates may interfere on all coordinates

¢

Solution: Bound interference using sparsity of data points

¢

Stochastic Gradient Descent

» Coordinate descent updates one coordinate w;, using
all data points

¢ Stochastic gradient descent updates all coordinates,
using one data point x!:

w4V F (w; D)

Parallel Stochastic Gradient Descent

o Each processor does update using a different data point

weightvectorw:|_| | | [| § 1 [1§] 1] 1]]|

Different

. =3
data points @ @

Risk versus coordinate descent:

SGD could interfere on all coordinates simultaneously

Parallel SGD with No Locks

[e.g., Hogwild!, Niu et al. ‘11]
o Each processor in parallel:

e Pick data pointi at random
e Forj=1..d:

WY w® 4 (Vp(w; x(i)))

J

o Assume atomicity of sum operation for a coordinate:

wj%wj Qa

Key to proof of bounded interference:

Assume data points are sparse =
update interferes at most on a few coordinates

Shared Memory versus Distributed Memory

¢ Shared memory: all machines can access same memory space

Weight vector w: I I I I I I I I I

NN

¢ Distributed memory: machines can only access local memory

e

e Much harder to implement Shotgun or Hogwild!, because of need to
synchronize parameters across machines

o Synchronization can be extremely slow

Distributed Hash Tables (DHTs)
[T T T T T T TTTT11]

o DHT: Distributed memory that looks like shared
memory from the programmer’s perspective

Easy to program Only really efficient when “large” objects
are written/read

Guarantees consistency of
values read/written In ML, an “object” is a parameter, just a double
=» standard DHTSs are too slow

Parameter Servers (e, smolaetal)

¢ A parameter server is a Lazy DHT with commutative-associative

operations, e.g., Wj <— W; +
K

GlobalDHT | | | [| [1 P T 1P 1P 1]

M\

Eventually: >

<
Each machine \ E’

has a local view__
of global DHT

o Parameter servers only guarantee eventual consistency
¢ But, often good enough for many distributed learning procedures

Summary of Part 1

» Shotgun/Hogwild! solve distributed optimization by
ignoring dependencies in problem

o Key proof method: bound interference in updates

¢ Implement in distributed settings using parameter
servers

Part 2

ASYNCHRONOUS GRAPH-PARALLEL
ALGORITHMS

DATA PARALLEL
versus
GRAPH PARALLEL

abstractions

Data Parallelism (I\/IapReduce)

Solve a huge number of independent subproblems

“A white elephant is a valuable but burdensome possession of which its
owner cannot dispose and whose cost (particularly cost of upkeep)
is out of proportion to its usefulness or worth.” Wikipedia

Everyone knows has limitations,
nobody happy,
but what to do next???

MapReduce for Data-Parallel ML

Excellent for large data-parallel tasks!

< Data-Parallel

Is there more to

MapReduce . |
Machine Learning
Feature Cross
Extraction Validation ?
Computing Sufficient

Statistics e

B
What is this an image of?

It’s next to this...

"

The Power of
Dependencies

where the value is!

Flashback to 1998

m (' J
altavista. Goo S He

SSSSSSSSSSSSSS

First Google advantage:

a Graph Algorithm & a System to Support it!

It s all- about the
| graphs -

Social Media Science Advertising

a

NETELIX

¢ Graphs encode the relationships between:

People Products ldeas
Facts Interests

o Big: 100 billions of vertices and edges and rich metadata

e Facebook (10/2012): 1B users, 144B friendships
o Twitter (2011): 15B follower edges

Facebook Graph

Data model
Objects & Associations

18429207554

(page)
fan
8636146 admin bh / 0 61 l
(user) . website: http://...
verified: 1
friend
likes
liked by friend
604191769
(user)

6205972929
(story)

Slide from Facebook Engineering presentation

Examples of
Graphs in
Machine Learning

Label a Face and Propagate

Pairwise similarity not enough...

-
| % e
y £ ,_l
!) vy o —— (
: Not similar enough

grandma to be sure | ;
N A Who??? 2%

™

Propagate Similarities & Co-occurrences
for Accurate Predictions

l T

fi 1
grandma
-2 | ocrandmalll I

LV Probablllstlc Graphical Models =
& similarity t

CO-OcCcurring
faces
further evidence

Collaborative Filtering: Exploiting Dependencies

| i Women on the Verge of a
W A Nervous Breakdown
m
w
\ — N A5
\ £

The Celebration

Latent Factor Models

Non- negatlve Matrix Factorization

ﬁecommend??? 2 5%, &

' M \Wild Strawberries

m La Dolce Vita

} \

Estimate Political Bias

‘ Semi-Supervised &
Transductive Learning

w\
7
»>

Topic Modeling

JOHNNY
APPLESEED I
k to LOOK INSIDE!

Click to LOOK INSIDE!

k to LOOK INSIDE!

Machine Learning Pipeline

Extract Graph
Features Formation

s - =
4
‘ Y- -n

f i

Structured
Machine

#

Learning
Algorithm

Al
| c

similar i
mages faces f belief
aces propagation
important
docs worde shar(ejd LDA
: words
mtIQVle side collaborative
ratings e rated filtering

movies

face
labels

doc
topics

movie
recommend.

Parallelizing Machine Learning

Extract Graph
Features Formation

Structured

‘-H ‘ Machine

Learning
Algorithm

L1

J \ J

Graph Ingress Graph-Structured

mostly data-parallel Computation
graph-parallel

Graph Lab\

ML Tasks Beyond Data-Parallelism

< Data-Parallel

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics

Example of a
Graph-Parallel
Algorithm

Depends on rank
PageRank

Depends on rank -
l of who follows her /
v

What's the rank
of this user?

Loops in graph = Must iterate!

PageRank Iteration

Iterate until convergence:

“My rank is weighted
average of my friends’ ranks”

¢ a is the random reset probability
» w; is the prob. transitioning (similarity) from j to i

Properties of Graph Parallel Algorithms

Dependency Local Iterative
Graph Updates Computation

Friends Rank

Addressing Graph-Parallel ML

< Data-Parallel Graph-Parallel
Map Reduce FelclibEl el BN = lanlely

Feature Cross Graphical Models Semi-Supervised
Extraction Validation Gibbs Sampling Learning
. .. Belief Propagation Label Propagation
Computing Sufficient VariationpaIgOpt. CoEng
Statistics
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting

Graph Computation:

Synchronous
V.

Asynchronous

Bulk Synchronous Parallel Model:
Pregel (Giraph) Valiant 90

Compute Communicate

Problem:

Bulk synchronous
parallel systems can
be highly inefficient

BSP Systems Problem:
Curse of the Slow Job

Ilterations

[|

) € @’@\9\ Q0

' [L .
“HOC @ﬁ D C
O @ﬁ 96 @‘@

Barrier

VNGNONOROJORON

Bulk synchronous
parallel model
provably inefficient
for some ML tasks

Analyzing Belief Propagation

[Gonzalez, Low, G. ‘09]

®_ focus here ,m\’
O (‘—':\
" — ‘
Priority QueL{e \ ‘ W
Smart Scheduling { ‘ &) ,,Y
Ao
important
influence

Asynchronous Parallel Model (rather than BSP)

fundamental for efficiency

Asynchronous Belief Propagation

Challenge = Boundaries

Many
Updates

Few
Updates

O ~ —~ Cumulative Vertex Updates

Algorithm identifies and focuses

Q

£
4
£
g

on hidden sequential structure

Graphical Model

Runtime in Seconds

BSP ML Problem:
Synchronous Algorithms can be Inefficient

[Gonzalez, Low, G. ‘09]
/ Bulk Synchronous (e.g., Pregel)

10000 -

8000

Theorem:

6000
Asynchronous Splash BP Bulk Synchronous BP

4000 O(#vertices) slower

2000 - than Asynchronous BP

Efficient parallel
implementation was
painful, painful, painful...

The Need for a New Abstraction

¢ Need: Asynchronous, Dynamic Parallel Computations

Data-Parallel

Graph-Parallel

Map Reduce

Feature Cross
Extraction Validation

Computing Sufficient
Statistics

Gra hLabQ‘f/

arnegle Mellon

Graphical Models
Gibbs Sampling
Belief Propagation

Semi- Superwsed

Learning
Label Propagation

Variational Opt. CoEM
Collaborative Data-Mining
Filtering PageRank

Tensor Factorization Triangle Counting

The GraphlLab Goals

¢ Designed specifically for ML o Simplifies design of

¢ Graph dependencies parallel programs:

o lterative e Abstract away hardware issues

¢ Asynchronous o Automatic data synchronization

¢ Dynamic

¢ Addresses multiple hardware
architectures

Know how to)
solve ML problem 42
on 1 machine Graeahgg“%? #) Efficient

parallel
predictions

The GraphLab Goals

Know how to

solve ML problem] %ﬂ{:f;}s
on 1 machine Graph aut?‘w#/

Carnegie Mello

+

amazon SR
webservices™

Efficient

parallel
predictions

Grap hlab'!

Carnegle Mellon

)

POSSIBILITY

Data Graph

Data associated with vertices and edges

(— p

Graph: Q_Q

e Social Network

Vertex Data: '
 User profile text
e Current interests estimates

Edge Data: i
* Similarity weights

How do we program
graph computation?

“Think like a Vertex.”

-Malewicz et al. [SIGMOD’10]

Update Functions

User-defined program: applied to
vertex transforms data in scope of vertex

Update function applied (asynchronously)
in parallel until convergence

Many schedulers available to prioritize computation

Dynamic
computation

Update Function Example:
Connected Components

Initialize:
1 Assign component id

' 7 3 to vertex id
/4/

Update(v):
v.component =
min(self &
neighbor components)

T
ot g
1 3

Ensuring Race-Free Code

How much can computation overlap?

Need for Consistency?

igher
Throughput

(#updates/sec)

No Consistency

Potentially Slower
Convergence of ML

Consistency in Collaborative Filtering

128
64 - “

=#= |nconsistent updates
32 -

-@- Consistent updates
i [\

GraphlLab guarantees consistent updates

User-tunable consistency levels

trades off parallelism & consistency

0.5 -

0 2 4 6 3

Updates Millions

Netflix data, 8 cores

MORE SLIDES ABOUT
CONSISTENCY???

The GraphLab Framework

Graph Based Update Functions
Data Representation User Computation

O——C

Scheduler Consistency Model

oooo>

Alternating Least
5 >VD Splash Sampler

Squares
CoEM :
Bayesian Tensor
Lasso Belief Propagation ractorization
|
P8 PageRank
LDA
Graphl_.
Carnegie Mellon | SVM

Gibbs Sampling
Dynamic Block Gibbs Sampling

K-Means Matrix

...Many others... .
y Factorization

Linear Solvers

Never Ending Learner Project (CoEM)

Hadoop 95 Cores 7.5 hrs

Distributed 32 EC2 80 secs
GraphlLab machines

0.3% of Hadoop time

2 orders of mag faster =

2 orders of mag cheaper

G I'a Ca!'?eg‘le M/e“oni? 14 e ML algorithms as vertex programs

{

¢ Asynchronous execution and consistency
models

Thus far...

GraphLab 1 provided exciting
scaling performance

But...
We couldn’t scale up to

Altavista Webgraph 2002
1.4B vertices, 6.7B edges

[Image from WikiCommons]

07.205.200.088 \

205218104

27508

‘

Problem:

Existing distributed graph
computation systems perform
poorly on Natural Graphs

Achilles Heel: ldealized Graph Assumption

Assumed...

But, Natural Graphs...

S A RS

...\.\Y: : @ ...: 0.‘

Small degree =»
Easy to partition

Many high degree vertices

(power-law degree distribution)
> 4

Very hard to partition

Pow

er- Law Degree Dlstrlbuhon

10'°

—h
@)
o

Number of Vertices

AltaVista WebGraph

High-Degree
Vertices:

Bl 1% vertices adjacent
“# to 50% of edges

1.4B Vertices, 6.6B Edges

High Degree Vertices are Common

“Social” People Popular Movies

Netflix
= ity Potr
- Movies [

Common Words

Users

LDA

Docs

Obama

Power-Law Degree Distribution

“Star Like” Motif

President

Obama \ (> Followers

Problem:
High Degree Vertices = High
Communication for Distributed Updates

Data transmitted
across network
O(# cut edges)

Natural graphs do not have low-cost balanced cuts
[Leskovec et al. 08, Lang 04]

Popular partitioning tools (Metis, Chaco,...) perform poorly
[Abou-Rjeili et al. 06]

Extremely slow and require substantial memory

Random Partitioning

o Both GraphlLab 1, Pregel, Twitter, Facebook,... rely on
Random (hashed) partitioning for Natural Graphs

For p Machmes
Edges Cut| 1

4 :1__

E p

— - ——

10 Machines =2 90% of edges cut :
100 Machines 2 99% of edges cut!

All data is communicated... Little advantage over MapReduce

In Summary

GraphLab 1 and Pregel are not well
suited for natural graphs

» Poor performance on high-degree vertices
» Low Quality Partitioning

N
Graph Lab}

PowerGraph

SCALABILITY

Common Pattern for Update Fncs.

R[J]

e

GraphLab_PageRank(1i)

—

/

o

// Compute sum over neighbors

total =

foreach(j in in _neighbors(i)):
total = total + R[J] * wy;

Gather Information
About Neighborhood

J

/ // Update the PageRank
R[i] = ©.1 + total

Apply Update to Vertex

// Trigger neighbors to run again

if R[i] not converged then Scatter Signal to Neighbors

foreach(j in out neighbors(i))
signal vertex-program on j

& Modify Edge Data

GAS Decomposition

-

Gather (Reduce)

Accumulate information
about neighborhood

~N

Apply
Apply the accumulated
value to center vertex

Scatter

Update adjacent edges
and vertices.

Many ML Algorithms fit
into GAS Model

graph analytics, inference in graphical
models, matrix factorization,
collaborative filtering, clustering, LDA, ...

Discovering Influencers in Social Networks

Triangles measure both
“popularity” of vertex &
“cohesiveness” of
vertex’s community

Fewer Triangles More Triangles
Weaker Community Stronger Community

Gather/Apply/Scatter Triangle Counting

Gather:

Apply: Store this list

Scatter:

I'm I'm
neighbors neighbors

with: | with:

Triangle Counting on Twitter (2010)

Popular People

T

¢ | Britney Spears

: ,(. 3081108
ashton kutcher
A+L 2997653
Ellen DeGeneres
2679666

Barack Obama
2653045

CNN Breaking News
2450768

Oprah Winfrey
1994945

. @ Twitter
W 1959765

Ryan Seacrest
1885917

SHAQ
1844123

Triangles / Following

Women's Wear Daily
6449985

wefollow
5.962666e¢+06

Stephen Colbert
5607368

Jonas Brothers
5272692

Rev Run
4483823

Defamer.com
3564740

o
O
M
I3
g.
7))
>
A

You Look Great
3207562

Oprah Winfrey
2.936561e+06

Al Gore
2.488950e+06

CNN Breaking News
2.474015e+06

oW

Seeating news

Popular People
With
Strong
Communities

Factorized Belief Propagation

¢ Gather: Accumulates
product of in messages

¢ Apply: Updates central
belief

¢ Scatter: Computes out

messages & schedules
neighbors as needed

Collaborative Filtering (via Alternating Least Squares)

/0

JLL

categorles

<

Goal: discover

latent categories
for users & movies

Factorized Collaborative Filtering Updates

Apply:

Compute user’s o
new factor weights oy
JJ A

Gather:

sum over movies,
product of ratings
& factor weights

(and a little more info)

e X II

Iterate over
users & movies

Distributed Execution of a GL2 PowerGraph
Vertex-Program

Machine 1 Machine 2

. N
Gather © @

m H-
Apply

Scatter Al

Machine 3 Machine 4

Minimizing Communication in GL2 PowerGraph:
Vertex Cuts

Co...muni.Yation ..near

:V‘\ ',"‘ ~V If\lf‘\l\fl | ad \f*lr\:lf\f\("

GL2 PowerGraph includes novel vertex cut algorithms

Provides order of magnitude gains in performance
machines per vertex

Percolation theory suggests Power Law graphs can be split

by removing only a small set of vertices [Albert et al. 2000]
-

Small vertex cuts possible!

PageRank on the Twitter Follower Graph
Natural Graph with 41M Users, 1.4 Billion Links

Communication Running time

40 - 70 -

35] 60 -
= 30 -
(aa) 50 _
2 25
R w 40 -
o 20 - =
= 15 - o 30 -
© 0
TZU 10 - v 20 -
) _ 10]
o 5

0 - 0 -

GraphLab1 Pregel PowerGraph GraphLab1 Pregel PowerGraph
(Piccolo) (Piccolo)

Reduces Communication Order of Magnitude Faster

32 Nodes x 8 Cores (EC2 HPC cc1.4x)

BN
Graph Lab}

From the Abstraction
to a System

Sync. Engine Async. Engine

Fault Tolerance

MPI/TCP-IP Comms PThreads

Map/Reduce Ingress

Distributed Graph

Boost

Linux Cluster Services (Amazon AWS)

Triangle Counting on Twitter Graph
34.8 Billion Triangles

Hadoop | CELRVEL T
[WWW’11] =L

GL2 64 Machines
PowerGraph P 15 Seconds

Why? Wrong Abstraction >

Broadcast O(degree?) messages per Vertex

S. Suri and S. Vassilvitskii, “Counting triangles and the curse of the last reducer,” WWW’11

Topic Modeling (LDA)

¢ English language Wikipedia
e 2.6M Documents, 8.3M Words, 500M Tokens
¢ Computationally intensive algorithm

Million Tokens Per Second
0 20 40 60 80 100 120 140

160

Smola et al. Specifically englneered for this task

GL2 PowerGraph

How well does GraphlLab scale?

Yahoo Altavista Web Graph (2002):
One of the largest publicly available webgraphs

1.4B Webpages, 6.7 Billion Links

7 seconds per iter.

1B links processed per second

30 lines of user code
:;; = l! Sandy Bridge I V

1024 Cores (2048 HT) 4.4 TB RAM

GraphChi: Going small with GraphlLab

Craph_ab\

Solve huge problems on
small or embedded
devices?

Key: Exploit non-volatile memory

(starting with SSDs and HDs)

GraphChi — disk-based Graphlab

Challenge: ;

Random Accesses \ / /

Novel GraphChi solution:
Parallel sliding windows method =
minimizes number of random accesses

Triangle Counting on Twitter Graph

40M Users Total: 34.8 Billion Triangles
1.2B Edges

Hadoop
_ 59 Minutes, 1 Mac Mini!
GraphChi
) 64 Machines, 1024 Cores
15 Seconds
GraphlLab2

Hadoop results from [Suri & Vassilvitskii '11]

G raph L 10\ 28 ¢ ML algorithms as vertex programs

Carnegie Mellon "~J‘LL-'
¢ Asynchronous execution and consistency

models

< 1\
G (@Dh La b o) ¢ Natural graphs change the nature of
PowerGraph computation

¢ Vertex cuts and gather/apply/scatter model

GL2 PowerGraph

focused on
Scalability

at the loss of
Usability

GraphlLab 1

PageRank(i, scope){
acc = @

for (j in InNeighbors) {
acc += pr[j] * edge[j].weight

}

pr[i] = ©.15 + 0.85 * acc

Explicitly described operations

Code is intuitive

GraphlLab 1 GL2 PowerGraph

Implicit operation

gather(edge) {

*
PageRank(i, scope){ return edge.source.value

acc = 0 edge.weight
for (j in InNeighbors) { }
acc += pr[j] * edge[j].weight
}
pr[i] = .15 + ©.85 * acc merge(accl, acc2) {
} return accuml + accum2

¥

Explicitly described operations

Implicit aggregation

apply(v, laccum) {
v.pr = 0.15 + 0.85 * acc

}

Need to understand engine

Code is intuitive to understand code

. Grap h_ab\
Gra h|_ab f/l PowerGraph

Ca“‘eg‘e Mellon Scalability,
Great flexibility, but very rigid abstraction

(many contortions needed to implement

but hit scalability wall

SVD++, Restricted Boltzmann Machines)

BN
Graph Lab}

WarpGraph

USABILITY

GL3 WarpGraph Goals

Program Run Like
Like GraphLab 1 GraphlLab 2

% Machine 1 Machine 2

Fine-Grained Primitives

Expose Neighborhood Operations through Parallelizable Iterators

R[i] = 0.15+0.85 > w[j,] = R[j]
(4,0 €E

PageRankUpdateFunction(Y) {
Y.pagerank = 0.15 + 0.85 *

Expressive, Extensible Neighborhood API

f

N (

MapReduce over
Neighbors

Parallel

Parallel Transform
Adjacent Edges

Modify adjacent edges

' '

Sum

DHT Get Keys

N\

Broadcast

Schedule a selected subset

DHT Update

. of adjacent vertices

J

Keys

Can express every GL2 PowerGraph program
(more easily) in GL3 WarpGraph

UpdateFunction(v) {
. if (v.data == 1)
But GL3 is more accum = MapReduceNeighs(g,m)

expressive else ...
}

Multiple Scatter before Conditional
gathers gather execution

GL2 PowerGraph:
Fast because communication phases are very predictable
Gather Apply Scatter

TN o

... repeat

GL3 WarpGraph:

Communication highly unpredictable

Scatter Gather Transform Gather

Risk: High Latency

(spend all our time waiting for a reply...)

Hide Latency
Do Something Else while Waiting

Create 1000s of threads, each running an update function on a different vertex

Performance Bottleneck: Context Switching

.~ \ Every cycle used in
k context switching is wasted

(OS context switch is slow requiring 10K-100k cycles)

GL3 WarpGraph: Novel user-mode threading

8M context switches per second
100x faster than OS

Page Rank Twitter Graph: 41M Vertices 1.4B Edges

800

600

GL3 WarpGraph

Runtime(s)
N
o
o

GL2 PowerGraph

8 16 24 32
#Machines

WarpGraph only 25% slower, with much improved programmability

But, here, asynchrony not fundamental for performance

32 Nodes x 16 Cores (EC2 HPC cc2.8x)

Gra ph COlOri NE Twitter Graph: 41M Vertices 1.4B Edges

GL2 PowerGraph 227 seconds

GL3 WarpGraph| :: .. .-

Asynchrony fundamental here =

WarpGraph outperforms PowerGraph with simpler code

32 Nodes x 16 Cores (EC2 HPC cc2.8x)

Usability

Consensus that WarpGraph is much
easier to use than PowerGraph

User study size = 2 :-)

Bigger + Real User Study in Progress,
as we release new open-source version of GraphLab

New abstraction simplifies
writing programs in GraphlLab

But you still need to get a cluster,
install GraphLab, configure system...

v o GraphLab | Large-Scale Machine Learning - Mozilla Firefox —

Firefox v [GraphLab | Large-Scale Machine L...
e @ [https://console.graphlab.com/login v e} [' Google Q] @ @ '

N
Graph Cab'

Log in Cancel

You don't have an account yet? Register here

GraphLab | Large-Scale Machine L...

> https://console.graphlab.com/login v c B v Google

Graph Lab\

Launch GraphLab Cluster

Demo User | Help

Name: []

Node Configuration | Number: Type:

Options | SSL Certificate

‘v O

GraphLab | Large-Scale Machine Learning - Mozilla Firefox

Firefox v] GraphLab | Large-Scale Machine L... “i]

e |

https://console.graphlab.com/login

v @} [8' Google

al &>

~

Graph Cab'

Demo User | Help

Clusters
Name Connect URL Configuration Status Last
demo https://go.graphlab.com/user/demo/learn Iir.‘"'""‘ nnect | 1 Node (m2.4xlarge) Running today

rv o

GraphLab | Large-Scale Machine Learning - Mozilla Firefox —

Firefox v | © GraphLab | Large-Scale Machine L...

& » [https://go.graphlab.com/demo/learn 'c] l' Google Q] & Q '

N

GrapnlLa b\

In [2]:

import GraphLab

gl = GraphLab.UndirectedTriangleCount()

file = '/home/graphlab/python-demo/1M.tsv'

(seconds, triangles) = gl.execute(input_file = file)

print "Finding %d undirected triangles in '%s' took %f seconds." % (triangles, file, seconds)

Finding 329024 undirected triangles in '/home/graphlab/python-demo/1M.tsv' took 2.439280 seconds.

Graphlab

Carnegie Mellon Vil L

AN
Grapn Lab\q

PowerGraph

2N
Graph Lab\ﬁ

WarpGraph

e ML algorithms as vertex programs

¢ Asynchronous execution and consistency
models

¢ Natural graphs change the nature of
computation

¢ Vertex cuts and gather/apply/scatter model

¢ Usability is key

e Access neighborhood through parallelizable
iterators and latency hiding

Usability for Whom???

-
Q.
©

MG
O
S

GL2
PowerGraph

Machine Learning
PHASE 3

USABILITY

Exciting Time to Work in ML

With Big Data,
I'll take over

Why won't
Big Data read

because of my mind???

Big Data

Unique opportunities to change the world!! ©

But, every deployed system is an one-off solution,
and requires PhDs to make work... ®

And, Usability for ML is not just “Engineering” —
Must Be Easy to Iterate through Models to Solve Task

But, when ML doesn’t work, need a PhD to understand why...

I
Graph Lab\ One kind of ML usability:

Fast and easy iteration.:, over huge datasets

Features Machine

Learning
Algorithm

Interpretable feature engineering? Why was this prediction made?
No parameters to tune, please... How can I give valuable feedback?

N
Graph Lab\
vl Possibility

v2 Scalability
v2 Usability

Graphlab 2.2 available now: graphlab.com

