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Abstract

We introduce a graphical framework for
multiple instance learning (MIL) based on
Markov networks. This framework can be
used to model the traditional MIL definition
as well as more general MIL definitions. Dif-
ferent levels of ambiguity – the portion of
positive instances in a bag – can be explored
in weakly supervised data. To train these
models, we propose a discriminative max-
margin learning algorithm leveraging efficient
inference for cardinality-based cliques. The
efficacy of the proposed framework is evalu-
ated on a variety of data sets. Experimental
results verify that encoding or learning the
degree of ambiguity can improve classifica-
tion performance.

1 INTRODUCTION

Multiple instance learning aims to recognize patterns
from weakly supervised data. Contrary to standard
supervised learning, where each training instance is
labeled, in the MIL paradigm training instances are
given in positive and negative bags. In the traditional
MIL definition, a bag is positive if it contains at least
one positive instance, while in a negative bag all the
instances are negative. This ambiguity in the instance
labels is passed on to the learning algorithm, which
should incorporate the information to classify unseen
bags. In this paper we develop a novel framework for
MIL with a more general definition of a positive bag.

Multiple instance learning has been successfully used
in many applications such as image categoriza-
tion (Chen et al., 2006), text categorization (Andrews
et al., 2002), content-based image retrieval (Zhang and
Goldman, 2002), text-based image retrieval (Li et al.,
2011; Duan et al., 2011), object detection (Viola et al.,
2006) and tracking (Babenko et al., 2009). Chen et al.

(2006) treated each image as a bag of instances cor-
responding to blocks, regions, or patches of the im-
age for the purpose of image categorization. Andrews
et al. (2002) approached text categorization with a
MIL framework, where each document is represented
by a bag of passages. Li et al. (2011) and Duan et al.
(2011) used MIL to handle ambiguity in labels of train-
ing images incurred by coarse ranking of web images.
Viola et al. (2006) used MIL to overcome the ambigu-
ity in object annotation, by representing each image
with a bag of windows centered around the ground
truth. Likewise, in object tracking Babenko et al.
(2009) used several blocks around the estimated ob-
ject location to construct a positive training bag for
MIL.

The traditional MIL definition states that at least one
of the instances in a positive bag is positive. However,
this is a too weak statement in many MIL applications.
For example, in image retrieval most top-ranked train-
ing images are truly relevant to the query – they are
true positives and not just additional irrelevant ele-
ments in a bag (Li et al., 2011). Using this prior infor-
mation can help to train stronger and more robust clas-
sifiers. Further, in some applications, because of noisy,
imperfect, or low-quality feature representations, neg-
ative bags can contain instances that are effectively
indistinguishable from positive instances. In these sit-
uations more robust MIL definitions are needed.

To address these issues, we develop a MIL framework
based on Markov networks with a flexible notion of
a positive bag. This general MIL framework uses
cardinality-based measurements over bags, which ex-
tend from the notion of “at least one positive” to “at
least some positives” to “nearly all positives.” Thus,
it can explore different levels of ambiguity in the data.
In addition, this framework can be adapted to esti-
mate the appropriate MIL notion from training data
without prior information about the fraction of posi-
tives in the bags. We show that it is possible to use
efficient inference techniques (Gupta et al., 2007) to



train and evaluate these general MIL models quickly.
For the learning criterion, we propose a max-margin
discriminative algorithm to train the models.

This paper is organized as follows. Section 2 reviews
related work. Section 3 describes our framework of
multiple instance learning with Markov networks. In
particular, the models for different MIL definitions, in-
cluding the traditional MIL definition and more gen-
eral MIL definitions are described in this section. In
Section 4 the inference and learning algorithms are ex-
plained. Section 5 provides experimental comparisons
to state-of-the-art MIL algorithms and an application
to video sequence classification. We conclude in Sec-
tion 6.

2 RELATED WORK

Dietterich et al. (1997) introduced the first algorithms
for multiple instance learning. The main idea was
to construct a hyper-rectangle maximizing the num-
ber of enclosed instances from positive bags while
excluding all the instances of negative bags. Based
on similar ideas, the general diverse density (DD)
framework (Maron and Lozano-Pérez, 1998) was pro-
posed. This algorithm works by finding a concept
point which is near to at least one instance of every
positive bag, but far from all negative instances. Next,
EM-DD (Zhang and Goldman, 2002), the expectation-
maximization version of DD, was proposed by incorpo-
rating the iterative EM approach of estimating positive
instances and refining the concept hypothesis within
the DD framework.

Gärtner et al. (2002) defined a kernel for multiple in-
stance data and used SVMs to learn a bag classifier.
Andrews et al. (2002) modified SVMs for MIL, propos-
ing two algorithms. The first, mi-SVM, aims to max-
imize the instance margin jointly over the hidden in-
stance labels. The second, MI-SVM, tries to maximize
the bag margin, where the bag margin is defined by
the most positive instance of each bag. Chen et al.
(2006) employed a DD function to map the instances
of a bag into a bag-level feature vector. Then, the im-
portant features were used by 1-norm SVM for image
categorization. Zhou et al. (2009) proposed MIGraph
and miGraph. In these methods, first a graph is con-
structed for each bag, and then an SVM is trained by
designing a graph kernel. Thus, by considering the re-
lations among the instances in a bag, the instances are
treated as non-i.i.d samples.

The very successful Latent SVM (Felzenszwalb et al.,
2010) is also a multiple instance learning framework.
For positive instances, a set of latent variable values
is used. One can consider the set of completed data
instances (latent variable values with observed input

feature values) as a “bag” in MIL, as in the MI-SVM
framework (Andrews et al., 2002). Latent SVMs have
been used in numerous applications, and often obtain
state of the art performance. However, they use the
“at least one positive instance” positive bag definition.
As noted above, for some applications this is limiting
since many latent variable settings could in fact be
positive and could aid in training a better classifier.
The more general MIL definition and algorithms in
this paper aim to remedy this.

In recent years, more advanced algorithms have been
developed to address non-traditional MIL definitions.
Gehler and Chapelle (2007) proposed SVM-like algo-
rithms, AL-SVM and AW-SVM, for MIL. They ar-
gued that different levels of ambiguity in positive bags
can influence the performance of MIL-based methods.
Hence, they provided the possibility to encode prior
knowledge about the data set, i.e., fraction of positive
instances (witnesses) in a bag. However, these algo-
rithms need a preset parameter which determines the
fixed ratio of witnesses.

Bunescu and Mooney (2007) used the transductive
SVM framework to propose a MIL algorithm for sparse
positive bags. Li and Sminchisescu (2010) proposed a
MIL model based on likelihood ratio estimation. The
likelihood ratio is estimated by a support vector regres-
sion scheme. For bag classification, an SVM is trained
to linearly combine the instance likelihood ratios in a
postprocessing step. Although, the original model for-
mulation follows the traditional MIL assumption, how-
ever, their experiments show that the postprocessing
makes this algorithm suboptimally adaptive to differ-
ent witness rates.

Duan et al. (2011) and Li et al. (2011) introduced a
generalized MIL definition, where the positive bags
contained at least a certain portion of positive in-
stances. They used a mixed-integer SVM formulation
with new constraints on instance labels of the bags.
It is shown that this NP-hard problem can be viewed
as a multiple kernel learning problem with an expo-
nential number of base kernels. Thus, this algorithm
requires some heuristics to solve the original problem.
Hajimirsadeghi and Mori (2012) proposed a boosting
algorithm for MIL, which can softly explore different
levels of ambiguity using linguistic aggregation func-
tions with different degrees of orness. However, this
algorithm also needs approximate before-hand knowl-
edge of the witness ratio, or uses cross-validation to
estimate it.

In this work, we propose a MIL framework based on
Markov networks. This framework is used to model
more general MIL definitions, and superior to previous
algorithms (Gehler and Chapelle, 2007; Duan et al.,



2011; Li et al., 2011; Hajimirsadeghi and Mori, 2012),
it can also work without prior information about the
fraction of positive instances inside the bags. In fact,
the proposed model can be trained to discover this
knowledge directly from data. The inference and
learning of the proposed models is exact and no heuris-
tics are needed. Further, the Markov network allows
flexible modification and extensions, for instance mod-
eling bag structure. This framework could also be
modified to address issues such as training individ-
ual classifiers from group statistics of label propor-
tions (Kueck and de Freitas, 2005; Quadrianto et al.,
2009; Rueping, 2010).

Note that there are also some other MIL methods
based on Markov networks or conditional random
fields (CRFs). Deselaers and Ferrari (2010) proposed
MI-CRF. In this method, the bags are modelled as
nodes in a CRF, where each node can take one of the
instances in the bag as its state. So, the bags are
jointly trained and classified in this model. Warrell
and Torr (2011) proposed another CRF-based method.
This method provides a structured bag model, by con-
structing an undirecetd graph among the instances, in-
stance labels and the bag label. In this CRF, hard and
soft MIL constraints are incorporated in the model by
defining energy functions between the labels. How-
ever, infering the proposed CRFs is performed ap-
proximately by dual decomposition, and the models
are trained by deterministic annealing. Tarlow et al.
(2012) proposed a model to approach MIL by CRFs
with cardinality potentials over instance labels. How-
ever, this model works by sum-product (i.e., marginal-
ization) inference of cardinality potentials. Note that
maximum a posteriori (MAP) inference of cardinality
potentials, which is used in our proposed method, is
faster than the sum-product inference (Tarlow et al.,
2012). In addition, our max-margin learning algorithm
is different from their maximum likelihood approach to
learning.

3 MIL USING MARKOV
NETWORKS

In MIL, training examples are presented in bags where
the instances in a bag share a label. In this work,
we use Markov networks to model MIL problems and
develop a generalized notion of positive bags.

The Markov network is used to define a scoring func-
tion for a bag. A graphical representation of the pro-
posed Markov network for a bag is shown in Figure 1.
Each instance and its label are modeled by two nodes
in a clique. The clique potential specifies a classifier
for an individual instance. A second clique contains all
instance labels and the bag label. This clique is used to

define what makes a bag positive. Varying this clique
potential will lead to different MIL definitions, and is
the focus for our work.

3.1 MODEL DETAILS

More formally, let X = {x1, · · · ,xm} denote a bag
with m instances and a binary bag label y ∈ {−1, 1}.
The collective binary instance labels are denoted by
h = {h1, · · · , hm}. We use the Markov network in Fig-
ure 1 to define a scoring function over tuples (X,h, y).
In testing, this scoring function will be used to find the
label y for a test bag, inferring the bag and instance
labels that maximize the scoring function.

The network has cliques on each instance and its label,
and one clique on all instance labels and the bag label.
We define the scoring function on these cliques by:

fw(X,h, y) = φCw(h, y) +
∑
i

φIw(xi, hi), (1)

where φIw(xi, hi) represents the potential between each
instance and its label, and φCw(h, y) is the clique poten-
tial over all the instance labels and the bag label. Note
that the potential functions in (1) are parametrized by
w. We explain the details of these potential functions
as follows.
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Figure 1: Graphical illustration of the proposed model
for multiple instance learning. Potential functions re-
late instances xi to labels hi. A clique relates all in-
stance labels hi to the bag label y.

Instance-Label Potential φIw(xi, hi): This poten-
tial function models the compatibility between the
ith instance feature vector xi and its label hi. It is
parametrized as:

φIw(xi, hi) = w>I xi hi

= w>I ψI(xi, hi).



Labels Clique Potential φCw(h, y): This potential
function models the relations between the instance la-
bels and the bag label. Since the MIL problems are
defined based on the number of positive and negative
instances, we can formulate this as a cardinality-based
clique potential. Cardinality-based potentials are only
a function of counts – in this case, the counts of the
numbers of positive and negative instances in the bag.

By modifying the form of the cardinality-based po-
tential, we can obtain different MIL definitions, which
will be shown in the subsequent section. Moreover,
while for arbitrary clique potentials inference could be
NP-complete, for cardinality-based potentials efficient
inference algorithms exist. This will lead to efficient
algorithms for training and testing, described in Sec-
tion 4.

In order to define the cardinality-based potentials, we
will use the notation m+/m− for the number of labels
in h which are positive/negative. The clique potential
depends on these counts, and the bag label y. We
parameterize two different clique potentials, one for
positive bags (C+

w) and one for negative bags (C−w):

φCw(h, y) = Cw

(
m+,m−, y

)
= C+

w

(
m+,m−

)
1(y = 1)

+ C−w
(
m+,m−

)
1(y = −1).

(2)

The following sections define functions C+
w and C−w

that lead to a variety of MIL models.

3.1.1 Multiple Instance Markov Network
(MIMN)

This network models the standard MIL problem, i.e.,
in a positive bag at least one of the instances is posi-
tive, and in a negative bag all the instances are nega-
tive. The labels clique potential is given by

C+
w(0,m) = −∞ (3)

C+
w(m+,m−m+) = w+

c m+ = 1, · · · ,m (4)

C−w(0,m) = w−c (5)

C−w(m+,m−m+) = −∞ m+ = 1, · · · ,m. (6)

This clique potential states that in a positive bag it
is impossible to have all the instances be negative (3),
but there is the same potential of having more than
one positive instance (4). However, for a negative bag,
it is only possible to have negative instances (5) & (6).
One might set w+

c and w−c to a constant value (e.g. 0),
but we treat them as the model parameters and show
how to learn them in Section 4.2.

3.1.2 Ratio-constrained Multiple Instance
Markov Network (RMIMN)

Ratio-constrained MIL extends the notion of positive
bags in MIL. In RMIMN, each positive bag contains
at least a certain portion of positive instances. For
example, at least x% of the instances should be posi-
tive in a positive bag. To model this problem with our
proposed Markov network, we can refine the functions
C+ and C−:

C+
w(m+,m−m+) = −∞ 0 ≤ m+

m
< ρ

C+
w(m+,m−m+) = w+

c ρ ≤ m+

m
≤ 1

C−w(m+,m−m+) = w−c 0 ≤ m+

m
< ρ

C−w(m+,m−m+) = −∞ ρ ≤ m+

m
≤ 1,

(7)

where ρ indicates the required portion of positive in-
stances in a positive bag.

3.1.3 Generalized Multiple Instance Markov
Network (GMIMN)

GMIMN allows a very flexible notion of positive bags.
We allow the portions of positive and negative in-
stances in bags to be a learned parameter, discovered
from the data. The MIL model will learn which frac-
tions of instances tend to be positive in a bag. This
network provides a very general model for multiple in-
stance learning and is parametrized by:

C+
w(0,m) = −∞

C+
w(m+,m−m+) =

K∑
k=1

w+
k 1(

k − 1

K
<
m+

m
≤ k

K
)

m+ = 1, · · · ,m

C−w(m+,m−m+) =

K∑
k=1

w−k 1(
k − 1

K
≤ m+

m
<

k

K
)

m+ = 0, · · · ,m− 1

C−w(m, 0) = −∞.
(8)

where K determines the number of weighted segments
of a bag. This model divides the bag size into K equal
parts, and the weight of each segment wk determines
how important it is that the number of positive in-
stances be placed inside that interval1. In other words,

1Note that the weights wk are not necessarily mono-
tonically increasing as k increases. For example, in a MIL
data set, there might be only a few true positive instances
in the positive bags, and so the potential of having many
instances be positive is low.



these learning weights specify the importance or im-
pact of different witness ratios for labeling a bag as
positive or negative. Large values of K provide more
detailed and specific models of bag definition by learn-
ing cardinality-based measures with finer resolution,
while low values of K define a coarser model of bag.
So, by controlling the granularity, this parameter is
set in a trade-off between training accuracy and gen-
eralization ability2. Note that C+

w(0,m) = −∞ and
C−w(m, 0) = −∞ are the only required prior informa-
tion in this model.

With these definitions, we note that using C+
w and

C−w defined in any of the MIMN, RMIMN, or GMIMN
models makes the clique potential (i.e., φCw) a linear
function of the learning parameters. More formally:

φCw(h, y) = w>CΨC(h, y) + gC(h, y), (9)

where wC represents the concatenation of the learn-
ing parameters in C+

w and C−w , while ΨC(h, y) and
gC(h, y) are functions independent of w, which are
specified by aggregation of the indicator functions.

4 INFERENCE AND LEARNING

The MIL models above define scoring functions that
consider counts of instance labels in a bag. Using this,
for a given bag we can define a scoring function for
labeling a bag X with a label y:

Fw(X, y) = max
h

fw(X,h, y). (10)

Below, we describe how to use efficient inference al-
gorithms (Gupta et al., 2007) to efficiently solve this
inference problem for the cardinality-based cliques we
defined above.

Using this inference technique, learning can be per-
formed using a max-margin criterion, as in the Latent
SVM approach.

Classification of a new test bag can be done in a sim-
ilar manner. We can predict the bag label by simply
running inference, trying y = +1 and y = −1 and
taking the maximum scoring bag label:

y? = arg max
y

Fw(X, y). (11)

4.1 INFERENCE

The inference problem is to find the best set of instance
labels h given observed values for the data instances
X and the bag label y – the maximization problem in

2In the experiments of this paper, we use cross-
validation on the values K = 3, K = 5, and K = 10
to roughly estimate this parameter.

(10). Using (1) and (2), the inference problem can be
written as

max
h

∑
i

φIw(xi, hi) + Cw(m+,m−, y). (12)

This problem is an instance of inference in graph-
ical models with cardinality-based clique poten-
tials (Gupta et al., 2007). This class of clique poten-
tials is specified by two parts: the sum of individual
node potentials and a function over all the nodes which
only depends on the counts of the nodes which get spe-
cific labels. Efficient inference algorithms have been
proposed for this class of graphical model in (Gupta
et al., 2007). In this paper, we only work with the
binary case (i.e., hi ∈ {+1,−1}), for which there is an
exact inference algorithm with O(m logm) time com-
plexity. The inference algorithm is as follows.

First, sort the instances in decreasing order of
φIw(xi,+1) − φIw(xi,−1). Then, for k = 0, · · · ,m,
compute sk, the sum of the top-k instance poten-
tials φIw(xi,+1)−φIw(xi,−1) plus the clique potential
Cw(k,m−k, y). Finally, find k? which gets the largest
sk, and inference is accomplished by assigning the top
k? instances to positive labels and the rest to negative
labels.

4.2 LEARNING

The training set is given by
{
(
X1, y1

)
, · · · ,

(
XN , yN

)
}, and the goal is to train

the Markov models by learning the parameters w.
Inspired by the relations to latent SVM, we formulate
the learning problem as minimizing the regularized
hinge loss function:

min
w

N∑
n=1

(Ln −Rn) +
λ

2
‖w‖2

where Ln = max
y

max
h

(∆(y, yn) + fw(Xn,h, y)),

Rn = max
h

fw(Xn,h, yn),

∆(y, yn) =

{
1 if y 6= yn

0 if y = yn.

(13)

One approach to solve this problem approximately is
the iterative algorithm of alternating between infer-
ence of the latent variables and optimization of the
model parameters. So, the first step estimates the in-
stance labels and the second step learns a standard
SVM classifier given the estimated instance labels. It
can be shown that using this approach with the MIMN



model leads to an algorithm very similar to mi-SVM
(Andrews et al., 2002).

However, we use the non-convex cutting plane method
(Do and Artières, 2009) to directly solve the optimiza-
tion problem in (13). This method is proved to con-
verge to a local optimum, unlike the heuristic itera-
tive algorithm of mi-SVM, which has no convergence
guarantee. The non-convex cutting plane method
iteratively makes an increasingly accurate piecewise
quadratic approximation of the objective function. At
each iteration, a new linear cutting plane is obtained
via the subgradient of the objective function and added
to the piecewise quadratic approximation. To use this
algorithm, the principal issue is to compute the sub-
gradients ∂wLn(w) and ∂wRn(w). To this end, we
need to know the subgradient of the network potential
function, i.e., ∂wfw(X,h, y).

It is simple to show that

∂wfw(X,h, y) = Ψ(X,h, y), (14)

where Ψ(X,h, y) =
[∑

i ψI(xi, hi)
>,ΨC(h, y)>

]>
.

Using equations (13) and (14), it can be shown that
∂wLn(w) = Ψ(Xn,h?, y?), where (h?, y?) is the solu-
tion to the inference problem:

max
y

max
h

(∆(y, yn) + fw(Xn,h, y)). (15)

This inference problem can be solved using the algo-
rithm in 4.1. In summary, for y = 1 and y = −1 we
find h by doing inference on the resulting graphical
model (which has cardinality-based clique potential).
Then, the y with the highest value gives the predicted
bag label y?.

In the same way, it can be shown that ∂wRn(w) =
Ψ(Xn,h?, yn), where h? is the solution to the inference
problem:

max
h

fw(Xn,h, yn). (16)

5 EXPERIMENTS

In this section we describe the evaluation of our MIL
models. First, the proposed models are evaluated
on MIL benchmark data sets to demonstrate they
can achieve state of the art performance on standard
datasets. Next, we evaluate the models on a challeng-
ing cyclist helmet recognition dataset, and show that
flexibility in the portion of positives in a bag can lead
to improved classification accuracy.

5.1 BENCHMARK DATA SETS

We evaluate the MIL models on five well-known MIL
datasets. These benchmark data sets are the Elephant,

Fox, Tiger image data sets (Andrews et al., 2002)
and Musk1 and Musk2 drug activity prediction data
sets (Dietterich et al., 1997). In the image data sets,
each bag represents an image, and the instances inside
the bag represent 230-D feature vectors of different
segmented blobs of the image. These data sets contain
100 positive and 100 negative bags. In the MUSK data
sets, each bag describes a molecule, and the instances
inside the bag represent 166-D feature vectors of the
low-energy configurations of the molecule. Musk1 has
47 positive bags and 45 negative bags with about 5
instances per bag. Musk2 has 39 positive bags and 63
negative bags with variable number of instances in a
bag, ranging from 1 to 1044 (average 64 instances per
bag). Note that in all experiments of this section, we
have used normalized data sets, which are obtained by
scaling the features of the original data sets3 to the
range [0, 1].

The 10-fold averaged classification accuracies for the
MIMN model on different data sets are shown in Table
1. At each trial, we run the non-convex cutting plane
algorithm with all the learning weights initialized to 0,
roughly optimized λ, and at most 300 iterations. This
table also includes the classification results with differ-
ent kernel feature maps. For these data sets (especially
Musk1 and Musk2), non-linear kernels are commonly
used for SVM-like algorithms. For example, in (An-
drews et al., 2002) mi-SVM and MI-SVM are trained
on Musk1 and Musk2 data sets by RBF kernels. Or in
(Ray and Craven, 2005) and (Bunescu and Mooney,
2007) quadratic kernels have shown successful classifi-
cation results. Since our algorithm works with linear
kernels, we exploit the idea of kernel feature maps.
We investigate the performance of quadratic features
in addition to the feature maps proposed in (Vedaldi
and Zisserman, 2012) for homogeneous kernels: inter-
section, χ2, and Jensen-Shannon.

Table 1: MIMN classification accuracy with different
kernel functions. The best results are marked in bold
face.

Method ElephantFox Tiger Musk1Musk2

MIMNLinear 85.5 62.5 87.0 78.3 77.6
MIMNQuadratic 82.50 64.0 87.0 85.9 81.9
MIMNIntersection 89.0 59.0 85.5 86.1 89.5
MIMNχ2 87.0 60.0 84.0 84.1 90.3
MIMNJensen-
Shannon

86.0 59.0 84.5 83.7 87.4

Now, we compare the best of MIMN with state-of-the-

3The original data sets are available online at http:
//www.cs.columbia.edu/~andrews/mil/datasets.html.



art MIL methods in Table 24. The performance of
the methods varies depending on the data set. How-
ever, MIMN is always among the best methods. More
specifically, it achieves the best accuracy in the Ele-
phant, Fox, Tiger and Musk2 data sets.

Note that the competing methods miGraph and MI-
Graph (Zhou et al., 2009) treat the instances as non-
i.i.d samples and model correlations among the bags –
this incorporates different information into the model,
which is not directly present in our approach.

Next, the results of the experiments with the RMIMN
model are presented in Table 3. It can be observed
that for the image data sets RMIMN cannot improve
MIMN significantly. However, for Musk1 and Musk2
substantial performance gains can be made. The rea-
son might be that in an image usually one of the seg-
ments is the true segment (positive instance). So,
the prior information, at least one of the instances
is positive, is likely sufficient. However, in the Musk
data sets, more than one configuration of a molecule
might be positive. In fact, it has been previously
reported (Gehler and Chapelle, 2007; Hajimirsadeghi
and Mori, 2012) that the Musk data sets contain many
positive instances in each positive bag. This experi-
ment shows that our graphical approach to MIL allows
for exploring different levels of ambiguity in the bags
in order to enhance classification accuracy.

Table 3: RMIMN classification accuracy with different
ρ values, compared with MIMN. All results are based
on linear kernel functions.

Method ρ Elephant Fox Tiger Musk1 Musk2
MIMN - 85.5 62.5 87.0 78.3 77.6

RMIMN 0.1 85.5 62.0 85.5 80.4 79.9
RMIMN 0.2 83.5 61.0 85.0 88.1 82.8
RMIMN 0.3 84.0 56.5 83.5 83.9 88.6
RMIMN 0.4 83.5 60.0 83.0 82.7 84.6
RMIMN 0.5 83.5 59.5 83.5 86.0 86.6
RMIMN 0.6 84.0 59.5 84.0 85.8 86.3
RMIMN 0.7 84.5 58.0 84.0 85.0 84.5
RMIMN 0.8 84.0 57.5 83.5 83.8 82.6
RMIMN 0.9 85.0 61.0 83.5 83.8 82.8
RMIMN 1.0 87.5 62.5 84.5 89.1 84.8

Finally, the results of the experiments with the
GMIMN model are provided in Table 4. We evaluate
the performance of this model with K = 10 weighted
segments. It can be observed that although GMIMN
gets very weak prior information on the notion of pos-
itive bags, by learning the levels of ambiguity in data
it outperforms MIMN in most cases.

4Note that the reported results for some other methods
(e.g. mi-SVM and MI-SVM) on different data sets are also
based on the most successful kernels.

Table 4: GMIMN classification accuracy, compared
with MIMN. All results are based on linear kernel func-
tions.
Method Elephant Fox Tiger Musk1 Musk2
MIMN 85.5 62.5 87.0 78.3 77.6
GMIMN(K = 10) 89.0 61.5 86.5 87.1 81.4

Figure 2: Cyclist helmet classification – is she wear-
ing helmet? how many positives are in this bag? An
automatic cyclist detector/tracker is run, with head
position estimate in green rectangle. Data instances
are features defined on the head position estimates,
bags aggregate these over a track.

5.2 CYCLIST HELMET RECOGNITION

The previous experiments show that the proposed
method is comparable to the state-of-the-art on stan-
dard datasets. However, those datasets exhibit limited
ambiguity in positive bags. We now show that for more
complex situations, our framework can effectively dis-
cover the ambiguity in positive bags. In this section,
we use our proposed models to address a video classi-
fication task. This problem is illustrated in Figure 2.
Given an automatically-obtained cyclist trajectory, we
must determine whether the cyclist is wearing a hel-
met or not. One can treat this as a MIL problem –
each frame is an instance, and the trajectory forms
a bag. The bag (trajectory) should be classified as
containing a helmet-wearing cyclist or not. However,
the standard MIL or traditional supervised learning
approaches (e.g. classify each instance and majority
vote) cannot easily handle this problem. Because of
imperfection in tracking, it is unlikely that all the in-
stances in a positive bag are truly positive – some will
not be well centered on the cyclist’s head due to jitter,
regardless of the tracker used. Traditional supervised
learning would have many corrupted positive instances
of helmet-wearing cyclists. Standard MIL would not
make full use of the training data, since each track
would very likely have more than one positive instance.

5.2.1 Experimental Setup

We work with cyclist trajectories automatically ex-
tracted from video data. The data are collected for a
busy 4-legged intersection with vehicles, pedestrians,
and cyclists, over a two-day period. Kanade-Lucas-
Tomasi feature tracking and trajectory clustering are
used to extract moving objects. These clusters are



Table 2: Comparison between state-of-the-art MIL methods. The best and second best results are highlighted
in bold and italic face respectively.

Method Elephant Fox Tiger Musk1 Musk2
MIMN 89 64 87 86 90
mi-SVM (Andrews et al., 2002) 82 58 79 87 84
MI-SVM (Andrews et al., 2002) 81 59 84 78 84
MI-Kernel (Gärtner et al., 2002) 84 60 84 88 89
MIRealBoost (Hajimirsadeghi and Mori, 2012) 83 63 73 91 77
MIForest (Leistner et al., 2010) 84 64 82 85 82
MILES (Chen et al., 2006) 81 62 80 88 83
AW-SVM (Gehler and Chapelle, 2007) 82 64 83 86 84
AL-SVM (Gehler and Chapelle, 2007) 79 63 78 86 83
EM-DD (Zhang and Goldman, 2002) 78 56 72 85 85
SVR-SVM (Li and Sminchisescu, 2010) 85 80 63 88 85
MIGraph (Zhou et al., 2009) 85 61 82 90 90
miGraph (Zhou et al., 2009) 87 62 86 90 90

then automatically classified (vehicle, pedestrian, cy-
clist) by analyzing speed profiles (e.g. the pedalling
cadence).

We chose a dataset of 24 cyclist tracks for our experi-
ments – 12 wearing helmets and 12 not. The head lo-
cation is estimated using background subtraction upon
the tracks. Samples of tracking the cyclists’ heads in
the videos are shown in Figure 3. We describe each
frame of a track using texton histograms (Malik et al.,
2001) in a region of size 20 × 20 around the head po-
sition (chosen after empirically examining other fea-
tures). We report the results of helmet classification
using leave-one-out cross-validation on this dataset.

We introduce a MIL approach to classify sequences.
Each video is treated as a bag of frames represented by
instances, and we use the proposed models in Section
3 to classify the bags. We also compare this approach
with non-MIL methods. In the non-MIL approach, all
frames from positive and negative training videos are
put together and labelled according to their video la-
bels. Next, a standard SVM classifier (Chang and Lin,
2011) is trained and used to predict each frame label
of the test videos. Finally, the bag label is predicted
by one of the following criteria:

• SVM-AtLeastOne: The bag label is positive if at
least one of the instance labels is positive.

• SVM-Majority: The bag label is specified by the
majority voting of the instance labels.

5.2.2 Experimental Results

The average classification accuracy of each method is
shown in Table 5. We include mi-SVM as an additional

baseline. The results of the RMIMN model have been
provided with different ρ values.

Table 5: Results of the experiments on cyclist helmet
classification problem.

Method Accuracy %
SVM-AtLeastOne 58.33
SVM-Majority 79.17
mi-SVM 62.50
MIMN 58.33
GMIMN (K = 5) 87.50
RMIMN (ρ = 0.1) 79.17
RMIMN (ρ = 0.2) 83.33
RMIMN (ρ = 0.3) 91.67
RMIMN (ρ = 0.4) 87.50
RMIMN (ρ = 0.5) 91.67
RMIMN (ρ = 0.6) 91.67
RMIMN (ρ = 0.7) 87.50
RMIMN (ρ = 0.8) 87.50
RMIMN (ρ = 0.9) 83.33
RMIMN (ρ = 1.0) 66.67

It can be observed that the classification accuracy of
SVM-AtLeastOne, MIMN, and mi-SVM are quite low.
This shows that the traditional classification approach
and MIL definition (used in SVM-AtLeastOne, MIMN,
and mi-SVM) are very inefficient in this problem. The
traditional MIL definition (i.e., at least one instance
of a positive bag is positive) fails because it is very
likely that at least one of the instances in a negative
bag is classified as positive, and consequently most of
the negative bags are assigned positive labels. This
problem is due to the imperfection in the classifier and
low-quality visual representation of the cyclist’s head



Figure 3: Samples of tracking the cyclists’ heads in
the videos. Red + shows automatic head position es-
timate.

in the video. However, it is clearly evident that SVM-
Majority, RMIMN (with most ρ values), and GMIMN
are more robust to these defects. The results show that
RMIMN with ρ = 0.3, 0.5, and 0.6 outperform all the
other methods. Also, it is shown that GMIMN has
good performance, learning the MIL definition prop-
erly without any prior knowledge of ambiguity level
(e.g., parameter ρ) and classifying the videos success-
fully.

6 CONCLUSION

We proposed a novel graphical framework for MIL
based on Markov networks and max-margin discrim-
inative training. This framework is flexible and can
model the traditional MIL definition as well as more
general MIL definitions. Thus, it is more robust to
the amount of ambiguity (i.e. true positive instances)

in the bags. Especially, it can be helpful in vision ap-
plications which exhibit imperfect annotation or am-
biguous feature representations. For training the pro-
posed models, we formulated the learning process as a
max-margin optimization problem.

Experiments on MIL benchmark data sets showed that
the proposed algorithm is comparable with state-of-
the-art MIL methods. In addition, it was verified that
learning and encoding the degree of ambiguity in the
classifier can influence the accuracy of classification.
We used the proposed framework for classifying cyclist
trajectories. This is a challenging problem, where the
traditional supervised learning and traditional MIL
definitions fail. However, the RMIMN and GMIMN
models enhance classification performance by finding
more general and robust MIL definitions and mining
the degree of ambiguity.

The proposed graphical framework is flexible and can
be easily extended or modified. For example, it can
be modified to define a bag margin based on the most
positive instance of the bag, e.g. MI-SVM (Andrews
et al., 2002). It can be also extended for multi-class
classification. In addition, more potential functions
can be defined between the network nodes. For exam-
ple, a potential function can be added between a bag-
level feature vector and the bag label, or new potential
functions can be defined over neighbouring instance
labels to treat the instances as non-i.i.d. samples. Fi-
nally, this framework could be adapted for individ-
ual classification from group statistics, and applied to
tasks such as privacy-preserving data mining, election
results analysis, spam and fraud detection (Rueping,
2010).
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