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Abstract

Exact algorithms for learning Bayesian networks
guarantee to find provably optimal networks.
However, they may fail in difficult learning tasks
due to limited time or memory. In this research
we adapt several anytime heuristic search-based
algorithms to learn Bayesian networks. These
algorithms find high-quality solutions quickly,
and continually improve the incumbent solution
or prove its optimality before resources are ex-
hausted. Empirical results show that the any-
time window A* algorithm usually finds higher-
quality, often optimal, networks more quickly
than other approaches. The results also show that,
surprisingly, while generating networks with few
parents per variable are structurally simpler, they
are harder to learn than complex generating net-
works with more parents per variable.
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and Sood 2004; Ott, Imoto, and Miyano 2004; Singh and
Moore 2005; Silander and Myllymaki 2006; Malone, Yuan,
and Hansen 2011) have been developed which guarantee to
find the highest scoring network for a dataset. However,
these algorithms do not exhibit anytime behavior; they do
not produce any solution until giving the optimal network

at the end of the search.

Recently, though, several algorithms have been developed
which include both optimality guarantees and anytime be-
havior. de Campos and Ji (2011) proposed a branch and
bound algorithm (BB). It begins with a (cyclic) structure in
which all variables have their optimal parents. Then, cycle
are broken in a best-first manner until the optimal structure
is found. These cyclic structures give a lower bound on the
optimal network which improves throughout the search. To
add anytime behavior, a local search algorithm is used to
learn a suboptimal network at the beginning of the search.
The score of that network serves as an upper bound. Fur-
thermore, the search sometimes deviates from a pure best-
first strategy to find acyclic structures and improve the up-
per bound. At anytime, the search can be stopped, and the
ratio between the upper and lower bounds give a quality

Score-based learning of Bayesian networks is a popul
strategy which assigns a score to a network structure base
on given data, and the goal is to find the highest-scoringlathematical programming (MP) algorithms (Jaakkola et
structure. The problem is NP-complete (Chickering 1996)al. 2010; Cussens 2011) have also been developed which
so much early research focused on local search strategigsave both anytime behavior and optimality guarantees.
such as greedy hill climbing in the space of Bayesian netThese algorithms search in a space which includes an em-
work structures (Heckerman 1996), hill climbing in the bedded polytope whose surface corresponds to Bayesian
space of equivalence classes of networks (Chickering 2002)etworks. The polytope has exponentially many facets, so
or hill climbing in the space of variable orderings (Teyssie it is not represented explicitly. Rather, a series of MPs are
and Koller 2005). Other more sophisticated local searctsolved to define the polytope and find the optimal point on
techniques have also been investigated (Moore and Wonigs surface, which corresponds to the optimal Bayesian net-
2003). Unfortunately, these algorithms offer no bounds orwork. The points on the surface correspond to integer co-
the quality of learned networks. On the other hand, theyordinates, so the MPs are actually integer linear programs
do have goo@nytimebehavior. That is, they quickly find (ILPs) which are solved by relaxing the problem to a nor-
a solution and improve its quality throughout the searchmal linear program (LP). After solving each LP, the solu-
The search can be stopped at “anytime” and return the be$pn is checked for integrality. If it is integral, then the-s
solution found so far. lution corresponds to the optimal Bayesian network. If not,
the value of the solution gives a lower bound on the opti-

uarantee of the current best acyclic network. When the
a&go bounds agree, the current best structure is optimal.

Several dynamic programming (DP) algorithms (Koivisto



mal score. Also, the solution can be used to decode a valithe goal is to find a Bayesian network structufe such
acyclic network and find an upper bound on the score. AshatS* = arg ming s(.5, D). We omitD for brevity in the
with BB, at any time, the search can be stopped, and theemainder of the paper.

ratio between the bounds gives a quality guarantee. The scoring function is often a penalized log-likelihood or

Yuanet al.(2011) described a shortest path formulation forBayesian criterion which trades off the goodness of fit of
the structure learning problem. Since then, several heurisS to D against the complexity of. We allow for anyde-

tic search algorithms, including A* (Yuan, Malone, and Wu composablescore, i.e., the score f&¥ is the sum of the
2011) and BFBNnB (Malone et al. 2011), have been appliedcores of each variable(S) = > ., s(X, PAx). Most

to this problem. This paper explores the empirical behaveommonly used scoring functions, including MDL (Lam
ior of a variety ofanytime heuristic search algorithmms and Bacchus 1994), fNML (Silander et al. 2008) and
including anytime weighted A* (AWeiA*) (Hansen and BDe (Buntine 1991; Heckerman 1996), are decomposable.
Zhou 2007), anytime repairing A* (ARA*) (Likhachev,
Gordon, and Thrun 2003) and anytime window A* (AW-

e (n ; N
InA*) (Aine, Chakrabarti, and Kumar 2007), within this Some scoring functions, such as BDe, assign high values

shortest path formulation. Like BB and MP, these algo- :
: ) T 2~ to better networks. We can multiply all scores by to
rithms all incorporate optimality guarantees and anytime

behavior. We empiri : Gconvert the maximization into a minimization.

) pirically compare these algorithms an

MP on a variety of synthetic datasets. We use synthetic

datasets because these allow us to better control experimed THE SHORTEST PATH PERSPECTIVE

tal conditions which affect the learning, including the rum

ber of variables, number of records and complexity of theYuan et al. (2011) formulated BNSL as a shortest-path

generating process of the datasets. finding problem. Figure 1 shows an implicit search graph
for four variables in which the shortest path search is per-
formed. Each node in the graph corresponds to an opti-
. . ) _ ®Mmal subnetwork over a unique subset of variables in the
finds higher-quality networks more quickly than MP, but is dataset. Thetart search node, at the top of the graph, cor-

slower to prove_optim_ality for simpler synthetic networks. responds to the empty variable set, while the bottom-most
More thorough investigation into the search space and 'UNsode with all variables is thgoal node. Each edge in the

time characteristics of the algorithms provide addmonalSearch graph represents adding a new variabtes a leaf

insight to the learning problem. In particular, our resultsto the optimal subnetwork over the existing variables,

show that complex generating networks may seem StrUCrpe ey variable selects its optimal parents (according to
turally challenging to learn, but they actually lie within o he scoring functions) from U. The cost of the edge is

close to_ the promising solution space that IS first explore qual to the score of the optimal parent set, which we de-
by heuristic search and are thus easier to find. In ContrasﬁoteBestScore(X U),ie

simple generating networks typically receive bad estichate

scores. Because many other search nodes have better score  cost(U — U U {X}) = BestScore(X, U)
estimates, heuristic search cannot easily prove optiynalit — min_s(X,PAy).
for these datasets. AxCU

In our work, we adopt a shortest path perspective to the
problem, so we assume the optimal structure minimizes

Experimentally, we show that AWInA* outperforms the

Based on this specification, a path fretart to goal in-
2 LEARNING BAYESIAN NETWORKS duces an ordering on the variables, based on the order in
which they are added. Thus, we also call this graptothe
A Bayesian network consists of a directed acyclic graphder graph Each variable selects its optimal parents from
(DAG) in which vertices correspond to a set of randomvariables which precede it in the ordering. Consequently,
variablesV = {X;, ..., X,,} and a set of conditional prob- combining the parent set selections made on a path from
ability distributions. The arcs in the DAG encode condi- start to goal gives the optimal network for that ordering,
tional independence relations among the variables. We usend the cost of that path corresponds to the score for that
PA; to represent the parent set &f,. The dependence network. Therefore, the shortest path frenart to goal
between each variabl&, and its parents is quantified us- corresponds to a globally optimal Bayesian network.
ing a conditional probability distributior?(X;|PA;). The
product of the conditional probability distributions githe
joint distribution over all of the variables.

The computation ofBestScore(-) is required for each
edge visited during the search. Naively, this computa-
tion requires considering an exponential number of parent
We consider the score-based Bayesian network structurgets; however, several authors (Teyssier and Koller 2005;
learning problem (BNSL) in this paper. Given a datasetde Campos and Ji 2011) have noted that many parent sets
D = {Di,...,Dn}, whereD; is a complete instantia- are not optimal for any ordering of variables. Therefore,
tion of all of the variablesv, and a scoring function, many local scores can be pruned before the search. Yuan



All of the heuristics were shown to kemissiblei.e., to

always give a lower bound on the cost frdth to goal.

Furthermore, the heuristics have been shown todresis-
@ tent which is a property similar to non-negativity required
. by Dijkstra’s algorithm. Primarily, in standard A*, consis
tency ensures that the first time a node is expanded, the
shortest path to that node has been found, so no node ever
needs to be re-expanded.
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The shortest path perspective makes it straightforward to

apply anytime heuristic search algorithms to solve the
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Figure 1: An order graph of four variables

Bayesian network learning problem. The basic A* algo-
rithm does not have anytime behavior. It expands nodes in
best-first order until expandingpal at which point it has

the optimal solution. The heuristic search community has
developed a variety of algorithms which allow A* to find
solutions more quickly. We begin by discussing weighted
and Malone (2012) developed a sparse data structure whigh* (WA*), which does not add anytime behavior to A* but
takes advantage of this pruning to store only pessibly  can greatly improve solving time while offering provable
optimal parent set§POPS) and to computBestScore(-)  quality guarantees. We then discuss two techniques which
with a linear number of bitwise operations. add anytime behavior to WA*. We also describe a third

This shortest path problem has been solved using severé‘éﬁ:’%’r gggtzzﬁfg éigrt::t;g\@’;yhmh adds anytime

heuristic search algorithms, including A* (Yuan, Malone,
and Wu 2011) and breadth-first branch and bound (BF- .
BnB) (Malone et al. 2011). In A* (Hart, Nilsson, and 41 WEIGHTED A

e s oo o o r it A () (P 1970 a vt of A i
adds a weight (> 1.0) to the heuristic function in the f-

the order graph tgoal. An f-cost is calculated folJ by cost calculations. That ig(U) = g(U)+ e x h(U). Other-

summing the cost fromtart to U (calledg(U)) and the : / .
~wise, WA* behaves exactly as unweighted A*. The inflated
lower bound fromU to goal (called h(17)). So f(U) = h-cost could now overestimate the cost of a path fidro

U) + A(U). The f-cost provides an optimistic estima- o L
9(U) + h(U) P P the goal, so the calculation is no longer admissible or con-

tion on how good a path can be if it has to go throddh . . s .
The search maintains a list of nodes to be expanded sortqsqéStent' De;plte the IOSS_Of adm|s§|p|llty, thoug_h, WAl st
as a quality guarantee:iif was originally consistent, the

by f-costs callecbpen. It also keeps a list of nodes which search algorithm can disregard any better paths it finds to
have already been expanded caliéascd. Initially, open nodes inclosed, and the cost of the path found frosturt

contains juststart, andclosed is empty. Nodes are then :
: : . to goal is guaranteed to be no more than a factorgfeater

expanded in best-first order according to f-costs. Expande . .

than the optimal solution.

nodes are added tdosed. As better paths to nodes are dis-
covered, they are addeddpen. In general, if a better path Intuitively, much of the f-cost of nodes close tdart

to a node inclosed is found, then the node must be addedcomes fronh, but the f-cost of deeper nodes is dominated
to open again and re-expanded. Upon expandjngl, the by g. Because WA* weights thk costs, but not the costs,
shortest path fromtart to goal has been found. this has the effect of making the search favor deeper nodes
because they have smallervalues. Thus, the overall ef-

In BFBNB, nodes are instead expanded one layer at a tim . " .
where a layer consists of all nodes corresponding to sutié*cgigh;i:erxi);%%r;;??S;: rr]r?grzsgll?crlflfrtizini/htan

networks of the same size. Before beginning the search,a ™. .
local search strategy, such as greedy hill climbing, is useamwmghted A%

to find a “good” network and its score. During the BFBnB

search, any node with an f-cost greater than the score fourfi? ANYTIME WEIGHTED A*

during the local search can safely be pruned. Like WA*, anytime weighted A* (AWeiA*) (Hansen and
Yuan et al. (Yuan, Malone, and Wu 2011) gave a simple Zhou 2007) adds a weight to the heuristic calculations so it
heuristic function. Later, tighter heuristics based on patalso favors expanding deeper nodes. Rather than stopping
tern databases were developed (Yuan and Malone 20123s soon agoal is expanded, though, AWeiA* continues the



search. During the search, a stream of better pathsdb  ARA*, rather than starting each iterationstirt, AWinA*

are discovered, and thacumbentsolution, which gives begins by adding all frozen nodes from the previous itera-
the current shortest path, is updated. If the search is rution to open, so it also reuses information across iterations.
until completion, it terminates with the optimal solution. ok - .
To guarantee the optimality of the final solution, though,AWInA uses the sliding window to encourage more

AWeIA* must re-expand nodes when it finds a better pathgreedy behavior in the search, but there is no quality guar-

. ! ntee for window size similar to that of the weighted algo-
to them. Any node which has a worse unweighted f-cost. . ; :
. -~ " rithms. This algorithm can calculate the ratio between the
than the incumbent can be pruned, though. At any time

the search can be stopped, and the incumbent solution rSmaIIest unweighted f-cost of a frozen node and the incum-

turned. AWeiA* also offers the same guarantee of WA*: Bent o find a quality guarantee, though.

the globally optimal solution is guaranteed to be within a

factor ofe of the incumbent. However, an even tighter error5 EMPIRICAL EVALUATIONS

bound is available by calculating the ratio of the smallest

unweighted f-cost of any open node and the incumbent. We empirically evaluated the anytime weighted
A*  (AWeiA*), anytime window A* (AWinA¥*),

43 ANYTIME REPAIRING A* and anytime repairing A* (ARA*) against the in-
teger linear programming algorithm (GOBNILP,

Anytime repairing A* (ARA*) (Likhachev, Gordon, and V1.1) (Cussens 2011) on Bayesian network learning

Thrun 2003) also starts as normal WA*. Upon finding atasks. The A* implementations are available online

solution, ARA* decreasesand searches again. At each it- (http://url.cs.qc.cuny.edu/software/URLearning.htnitor

eration, the solution improves (or stays the same), so thi§WeiA*, we used a weight of 1.25. For ARA*, we also

algorithm also produces a stream of improved solutionsset the initial weight to be 1.25 and decreased it by 0.05

Additionally, because is decreased at each iteration, the at each iteration. The initial window size of AWinA* was

quality guarantee tightens, as well. ARA* can also checkO and increased by 1 after each iteration. We used static

the ratio between the smallest unweighted f-cost and theattern databases as the heuristic function. We empyicall

incumbent to look for an even better bound. The algorithndetermined these parameters give good performance on a

terminates with the optimal solution after completing an it Variety of datasets. We used the default parameter setting
eration in whiche = 1. for the GOBNILP algorithm (ILP for short). We did

) . . ] not compare to local search strategies, such as greedy
Like AweiA*, ARA* can also find a better path to a node hjjj climbing or optimal reinsertion, because a previous

during the search. Rather than immediately adding the ”°d§[udy (Malone and Yuan 2012) has shown that WA*
back toopen, though, ARA* keeps these nodes in a sepa-qiperforms those algorithms. That study also showed that

rate list,repair. At the beginning of each iteration, rather \y» outperformed BB (de Campos and Ji 2011). The first

than beginning the search sturt, ARA* instead adds all  jieration of ARA* is equivalent to WA*, so we assume the
of repair to open. In this manner, ARA* reuses g-cost in- aqyits of that study extend here.

formation from one iteration to the next. ARA* can also

prune nodes with a worse f-cost than the incumbent. One objective in this study is to compare the anytime be-
havior of these algorithms, including the quality (i.e, o

of the anytime solution and the error bounds. The other
objective is better understand the shortest-path formula-

Unlike AWeiA* and ARA*, anytime window A* (AW- tion. To rigorously _study both (_)bjective_s, we generatet tes
inA*) (Aine, Chakrabarti, and Kumar 2007) is not based datasets by sampling synthetic Bayesian networks. For all
on WA*. Rather, it uses a type of sliding window to en- experiments, we first selected a number of variables and
courage deeper exploration of the order graph. It consistd'2X!MUM number of parents allowed for each variable. We
of a series of iterations in which a parameterwhich in- then created the networks using a slight variation on the

creases from one iteration to the next, controls the size Oge-_COZPTa'\r;lCI\/INCIZCI\/IC algorit_r;m (Ide and Cozmalr(l 200|2)'d
the window. The algorithm keeps track of the depth of all. uring the process, if a successor network resulte

nodes expanded during an iteration of the algorithm. Af—'?] a vanablelz( exceeéilmg tZe dmaX|(rjr1urr]n nl\ljlrg,l\)ﬂ% of pa_rentz,
ter expanding a node in layér all nodes in layei — w that networ was discarded, and the .contlnue
from the previous network. All variables were binary, and

arefrozenfor that iteration. Frozen nodes are stored, but " e
are not expanded. Whénis consistent (like the heuristic conditional probability distributions were sampled from a
symmetric Dirichlet distribution with a concentration pa-

functions used here in BNSL), AWinA* will only expand a

node at most once during each iteration. Therefore, node régmlfte_:_r?f 1. We call thesdednetworks tgﬁnlegggng nze(;'ooo
expansions are not explicitly considered in this algorithm works Then, we generated datasets with 1, to 20,

As with the other anytime algorithms, AWInA* can prune data points with logic sampling.
any node with a worse f-cost than the incumbent. Similar to

44 ANYTIME WINDOW A*
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All of the algorithms we consider require a decomposabldor these datasets are quite small. Therefore, the lin@ar pr
scoring function. In this evaluation, we use the MDL scor-grams constructed by ILP are small and easy to solve.
ing function (Lam and Bacchus 1994). Lete the number
of states ofX;, N,,, be the number of data points consis-
tentwith PA; = pa;, andV,, ,,, be the data points further
constraint withX; = ;. Then MDL is given as follows.

However, AWinA*'s 60-second and final solutions are all
better than those found by ILP on the datasets with 5k, 10k
and 20k data points, even though the error bound is some-
times worse than that of ILP. Those datasets had many more
POPS, so each iteration of ILP required solving a large
linear program. As a result, ILP was sometimes not able
to find any solution within 60 seconds. The difference be-
where tween scores at 60-seconds and the end of the search also
log N show that ILP does not typically find its best solution early
K(X;,PA;), in the search. In contrast, AWinA* was always able to find
N a solution within several seconds. In fact, AWinA* found
H(X;,PA;) = — Z Ny, pa; log %7 its best solution within the first 60 seconds on 14 of the
x;,pa; pai datasets; the rest of the time is spent on proving the opti-
K(Xi, PA) = (ri — 1) H - ?Oarli;y Qf theI solut(ijons. This b(cejhaviorkis highhl dhesirable. _
xePA, _ given large dataset, we do not know whether an op
timal Bayesian network can be learned given limited re-
sources. We should therefore strive to obtain as good a so-
lution as we can as quickly as possible. The results show

We first tested the anytime behavior of the algorithms onthat AWINnA* finds better solutions much sooner than ILP
random networks wit}29, 31, 33, 35 variablesand3, 6} O many of the test datasets.

maximum parents per variable. Then, from each networkwe note, however, ILP sometimes provides better error
we generated datasets withk, 5k, 10k, 20k data points.  bounds than AWinA*. This is surprising given that its so-
Thus, in total, we considered 32 datasets. We put a 2-hougtions are of lower quality, in terms of score, than those of
(7200 seconds) time limit on all the algorithms. The algo-AwWinA*. The reason is that ILP often finds tighter lower
rithms may terminate earlier than the time limit when eitherpounds than AWinA*. The solutions of the LPs for ILP op-
a provably optimal solution is found or RAM is exhausted. timize the relaxed ILPs, so they give a lower bound on the
All of the algorithms (shortest-path-based and ILP) regjuir solution. A simple local search is used to extract a valid
the local scoresNl DL(X;, PA;)) as input; therefore, we BN from the LP solution and attempt to improve the up-
do not include these calculation times in the results. Taper bound. So most of the work in ILP focuses on improv-
ble 1 shows all the results. We focus on synthetic networksng the lower bound. On the other hand, the primary goal
in this study because we can control the parameters of thef AWinA* is to find a shortest path (subject to the sliding
generating network; however, results from real-world datayindow constraint) fromstart to goal, which improves the
show similar trends. upper bound. Shortest-path-based algorithms must expand

The results show that AWinA* performs much better thannOdes with the lowest f-costs to improve the lower bounds,
the other shortest-path-based algorithms. Its 60-sequhd a but the window semantics (and also weighted heuristic) dis-

final scores and error bounds are better than those dio"rages expanding nodes in early layers of the search, re-
AWeiA* and ARA* on almost all cases. We note. how- 9ardless of their f-cost. Therefore, AWinA* focuses more

ever, that AWinA* often runs longer than the other algo- N€avily onimproving the upper bound.
rithms before exhausting all the RAM. This is because AW-The better error bounds are certainly nice to have. AWinA*
inA* finds better solutions more quickly than AWeiA* and proved the optimality of its solutions for 13 of the datasets
ARA*. Therefore, it prunes more nodes during the searchyhile ILP proved optimality for 14. However, based on
and explores more of the search space. Consequently, it filihe error bounds of ILP, we can verify that AWinA* actu-
RAM more slowly and is able to run longer. For these rea-ally found optimal solutions for several other datasets. Fo
sons, we only consider AWinA* among the shortest-path-example, for the “29.3.1k” dataset, both algorithms found
based algorithms for the remaining discussion. a network with a score of5,298.15, but the final error
ILP performed quite well on all the datasets with only 1k bc_)undfor !LP isL.00, while the bound for AWInA*isL.07.
data points; it found all the optimal solutions within 60 leen ILP's error bound, t_hen, we can con_clude_ th_at AW-
inA* actually found the optimal network. Using this line of
reasoning, we can see that AWinA* found the optimal net-

mality, and sometimes failed to do so before running ou ork on 16 datasets, b,Ut ILP on only 14. The resuI.tS Sug-
of memory. The reason for ILP’s excellent performance isgest that ILP always either found-and-proved or did-not-

that the numbers of possibly optimal parent sets (POPSf’nd the optimal network on these datasets.

MDL(G) =Y MDL(X;, PA;), (1)

MDL(X;, PA;) = H(X;, PA;) +
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seconds. AWInA* also often found the optimal solutions
quickly, although it took much longer in proving the opti-
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Figure 2: A comparison of the convergence of upper boundg éuB lower bounds (LB) for AWinA* and ILP.

Another difference between the two algorithms is that AW-timality before running out of memory. For the “29.3.5k”
inA* often terminates before the time limit because it ex- dataset, both algorithms failed to prove the optimality of
hausts all of the available RAM storingpen andclosed  their solutions. AWinA* found its best solution in 18 sec-
lists. On the other hand, ILP typically runs out of time, onds. Based on its behavior on other datasets, we sus-
but does not fully utilize RAM. These results suggest thatpect that AWinA* found the optimal solution but ran out
ILP may be able to find solutions of the same quality asof RAM before proving its optimality. ILP’s solution was
AWInA* if given enough time, but it is unclear how much worse than that of AWinA*, so it definitely did not find the
more time would be needed. Similarly, more RAM or an optimal solution; however, it obtained a much better lower
external-memory strategy could improve the quality and erbound and, hence, a better error bound. For the “29.6.5k”

ror bounds of the solutions of AWInA*. dataset, both algorithms were able to prove optimality of
the solutions. AWinA* was able to find the optimal solu-
52 CONVERGENCE OF BOUNDS tion in 42 seconds and prove it in 283 seconds, while ILP

only finds the optimal solution near the end of the search

To gain a better perspective on how AWInA* and ILP im- (6,394s). Finally for the “29.6.20k” dataset, AWinA* found
prove the upper and lower bounds, we plot the convergend&e optimal solution in 14 seconds and proved its optimal-
curves of the bounds against the running time for severdly close to the time limit. ILP took much longer (497s)
datasets in Figure 2. The results clearly agree with our anabefore finding its first solution, and was not able to find the
ysis in Section 5.1. AWinA* was able to find good solutions optimal solution within the time limit.

very quickly, while ILP was slower to find its first solu-

tion. Also, even though ILP finds quite bad lower bounds5 3 EFFECT OF GENERATING PARAMETERS

initially, it quickly improves them. Finally, the pace with

which AWInA* improves its solutions and error bounds is We created the generating networks by varying the num-
quite regular (increasing roughly exponentially from onebers of variables and maximum parents allowed for each
iteration to the next). In comparison, ILP was able to im-variable, and generated the testing datasets with differen
prove its solution quickly and often in the early stage of thenumbers of data points. In general, more variables or more
search, but its pace slowed down significantly in the laterdata points makes a dataset more difficult to solve opti-
stages. This suggests that ILP may need much longer tmally, and, hence, increased the error bounds of both AW-
find the next solution. For the “29.3.1k” dataset, ILP foundinA* and ILP. Relatively, the number of data points has a
and proved the optimal network in 45 seconds. Even thougkarger effect on ILP; it solved almost all 1k datasets and
AWInA* initially found better solutions than ILP, and the several 5k datasets optimally, but none of the 10k or 20k
optimal solution in 58 seconds, it failed to prove its op- datasets. The reason is that more data points increase the
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Table 2: The percentage of search nodes with better f-cost
than the optimal solution (“Percent”); the average number
of parents in the original (“Original”) and learned netwsrk
(“Learned”), and the structural Hamming distance between
the original and learned networks (“Distance”).
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A somewhat surprising observation comes from the effect (b) Datasets 29.8.*

of the maximum allowed parents in the generating net-

works on the the algorithms. AWinA* was able to solve Figure 3: Distributions of the f-costs of all the search reode
almost all the datasets that allow up to 6 parents (6-parentormalized by the number of data points. The enlarged
datasets for short hereafter) optimally, but none of the 3imarks indicate where the optimal solutions are located.
parent datasets. Similarly, ILP was able to find optimal so-

lutions for more 6-parent datasets than 3-parent datasetalso show distributions of the f-costs of all nodes relatiive
This is surprising because, intuitively, more parents makehe optimal solutions in Figure 3.

the Bayesian networks more complex and seemingly har_de;'&s shown in Equation 1, the MDL score consists of two
to learn. To better understand the effect of the generatin

parameters on the algorithms, especially AWINA, we per_(f]erms: the log-likelihood _of the data giver? th_e structure
formed a more detailed sensit’ivity analysis ’ and a structure complexity penalty. The likelihood term

increases linearly in the number of data points, while the
term that penalizes structural complexity increases tbgri
mically in the number of data points. Figure 4 shows that
when the number of data points is small, possibly opti-
To study the sensitivity of shortest-path-based algorithm mal parent sets (POPS) are typically smaller; consequently
to the parameters for network and dataset generation, wiearned optimal networks tend to be simpler than gener-
generated networks with: 29 variables afi2l 4, 6, 8 ating networks. As the number of data points increases,
maximum parents per variable. Then, from each networkPOPS become larger and learned networks more complex.
we again generated datasets wiffik, 5k, 10k, 208 data Indeed, as Table 2 shows, the average number of parents

points. We take the number of parameters necessary to . :
. - T . in the learned, optimal network increases as the number of
specify the conditional probability distributions in therg

erating network as a measure of complexity (i.e., more paglata points ingreases (except for a slight decrease from 5k

o to 10k data points for the 6-parent networks). As the num-
rameters mean a more complex process). L ) :

ber of data points increases, the structural Hamming dis-

For each dataset, we first collected the f-costs of all theance between the learned, optimal network and the gener-
nodes in the order graph for each dataset using a BF&ting network decreases and drops to O for several datasets.
search. Because we were interested only in the characteri$his shows that, given enough data, MDL can recover the
tics of the search space, we did not impose any time limigenerating network and is appropriate for study. In addi-
on the algorithm; it can effectively use external memory, sation, Figure 3 shows that the normalized f-costs of the op-
that resource did not pose a problem, either. Table 2 showtmal solutions shift left with increasing data points;shs
the percentages of search nodes that have better f-costs thaecause more variables used larger parent sets and obtained
the optimal solution, as well as several other statistios. W better scores. We also observe that the f-cost distribsition
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of all search nodes shifted leftward. Because of the heuris
tic functions used in A*, the internal order graph nodes re-
lax the acyclic constraints between some of the variables
and have even more freedom to use the larger POPS. As
result, more internal nodes obtained better f-costs.
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Therefore, the percentages of f-costs better than the aptim

solutions depend on the relative speed in which the opti-

mal solutions and f-cost distributions shift. For the 8qar ® 254 s 6 7 8 9101112131415 1617 1819202122 2324 25 262728

datasets, when we have few data points, even though the raver

generating network is complex, the relatively large com-_. ] . .

plexity penalty forces the search to consider simple net!:Igure 4: Average parent set Sf,ze of aI’I’ the nodes in each
. . . layer of the order graph for the “29.*.5k” datasets.

works which do not explain the data as well but incur a

small complexity penalty. As Table 2 shows, based on th@est that AWinA* would not be able to prove optimality for

average number of parents in the generating network conflatasets generated from simple networks and a large num-

pared to the optimal network for 1k records, the optimalber of data points. Table 1 shows this is exactly the case.

network is quite a bit simpler than the generating network zg fyrther evidence, Figure 4 shows the average parent set
As we add more data points, though, the likelihood termg, ¢ of the (cyclic) networks corresponding to all search
dominates the score calculations. Therefore, the compleX, a5 in each layer of the order graph for the “29.*5k”
structures which better exp_lain the data have, _relativelydatasets. For the 2- and 4-parent datasets, the average car-
much better scores than simpler structures. Figure 3(b)inajity decreases monotonically. The heuristic estimate
shows that the optimal solutions shift to the left relatwe t ¢\ <t search nodes seem to select larger parent sets and
the othgr “Qdes for the 8-parent Qatasets as the number ph, e |ower costs than the goal, so they would have to be ex-
data points increases. That explains why the percentage gt qeq by A*. For the 6- and 8-parent datasets, the average
nodes with better f-costs than the optimal network is high.a ginality dips initially and then increases. Many nodes
but decreases as the number of data points increases.  j, i middle layers seem to select smaller parent sets and

It is a different story for the 2- and 4-parent datasets. Adhave higher costs than the goal, so many of them are never
Table 2 shows, for the 2-parent datasets, the percentag€¥panded. The rate of the change of average cardinality is
of nodes with f-costs better than the optimal network areoften larger in the beginning and last layers. The explana-
rather high. The percentages increase with the number dfon is that the beginning and last layers have much fewer
data points and approa®h¥% for the 20k dataset. For the Search nodes than the middle layers, so the changes in par-
4-parent datasets, the percentage is initially low but in€nt sets have a larger effect on the average cardinality.
creases significantly as the number of data points increases
To understand why, we again consult Table 2, which show
that the generating networks for those datasets do not ha
many parents for each node. Therefore, simpler structures
both explain the data well and have a low complexityln this research, we adapted several anytime heuristic
penalty. Unlike in the 8-parent case, more complex strucsearch algorithms to learn optimal Bayesian networks from
tures can notimprove upon the likelihood very much but in-data, and empirically evaluated these algorithms agamst a
cur a much larger complexity penalty. Consequently, feweinteger linear programming algorithm. Our empirical re-
data points are needed to predict the structures well. Theults show that AWinA* is the best-performing anytime al-
results show that even with only 1k data points, the learne@orithm among the ones we evaluated in this study. It finds
networks have similar numbers of parents and structures dgtter, often optimal, solutions more quickly than exigtin
the generating networks. So the learned, optimal networkg1ethods; in many cases, the majority of its running time is
have converged to the generating networks and do not bespent on proving the optimality of a solution found early
efit much from more data points. Figure 3(a) indeed show#n the search. In comparison, the ILP algorithm focuses on
that the optimal solutions did not shift left much with more finding lower bounds for the optimal solution in its search.
than 5k data points; they actually shift towards the rightAs a result, its lower bounds are often better than those of
tails of the distributions with more data points. AWInA*, even though its solutions are often not as good.

1

CONCLUSIONS

These results help explain the performance, particulady t Our results show that, surprisingly, complex generating
error bounds, of AWinA* in the first set of experiments. To networks may seem structurally challenging to learn, but
completely prove optimality, AWinA* would have to ex- they actually lie within the promising solution space ttgat i
pand all nodes with better f-costs than the goal. In pracfirst explored by heuristic search and are easy to find.

tice, though, it can only expand about 10 million nodes in aAcknowIedgements This work was supported by NSF
search space in the allocated resources. These results SWants 115-0953723 and 11S-1219114.
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