
SparsityBoost: A New Scoring Function for Learning Bayesian
Network Structure

Eliot Brenner,∗ David Sontag
Courant Institute of Mathematical Sciences

New York University

Abstract

We give a new consistent scoring function for
structure learning of Bayesian networks. In
contrast to traditional approaches to score-
based structure learning, such as BDeu or
MDL, the complexity penalty that we pro-
pose is data-dependent and is given by the
probability that a conditional independence
test correctly shows that an edge cannot ex-
ist. What really distinguishes this new scor-
ing function from earlier work is that it has
the property of becoming computationally
easier to maximize as the amount of data in-
creases. We prove a polynomial sample com-
plexity result, showing that maximizing this
score is guaranteed to correctly learn a struc-
ture with no false edges and a distribution
close to the generating distribution, when-
ever there exists a Bayesian network which is
a perfect map for the data generating distri-
bution. Although the new score can be used
with any search algorithm, we give empirical
results showing that it is particularly effec-
tive when used together with a linear pro-
gramming relaxation approach to Bayesian
network structure learning.

1 Introduction

We consider a fundamental problem in statistics and
machine learning: how can one automatically extract
structure from data? Mathematically this problem can
be formalized as that of learning the structure of a
Bayesian network with discrete variables. Bayesian
networks refer to a compact factorization of a mul-
tivariate probability distribution, one-to-one with an
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acyclic graph structure, in which the conditional prob-
ability distribution of each random variable depends
only on the values of its parent variables. One ap-
plication of Bayesian network structure learning is for
the discovery of protein regulatory networks from gene
expression or flow cytometry data (Sachs et al. , 2005).

Existing approaches to structure learning follow two
basic methodologies: they either search over struc-
tures that maximize the likelihood of the observed data
(score-based methods), or they test for conditional in-
dependencies and use these to constrain the space of
possible structures. The former approach leads to ex-
tremely difficult combinatorial optimization problems,
as the space of all possible Bayesian networks is expo-
nentially large, and no efficient algorithms are known
for maximizing the scores. The latter approach gives
fast algorithms but often leads to poor structure re-
covery because the outcomes of the independence tests
can be inconsistent, due to sample size problems and
violations of assumptions.

We formulate a new objective function for structure
learning from complete data which obtains the best of
both worlds: it is a score-based method, based pre-
dominantly on the likelihood, but it also makes use of
conditional independence information. In particular,
the new objective has a “sparsity boost” corresponding
to the log-probability that a conditional independence
test correctly shows that an edge cannot exist. We
show empirically that this new objective substantially
outperforms the previous state-of-the-art methods for
structure learning. In particular, on synthetic distri-
butions we find that it learns the true network struc-
ture with less than half the data and one tenth the
computation.

The contributions of this paper are the introduction
of this new scoring function, a proof of its consistency
(we show polynomial sample complexity), and a care-
fully designed importance sampling algorithm for ef-
ficiently computing the confidence scores used in the
objective. For both the proof of sample complexity and



the importance sampling algorithm, we develop several
new results in information theory, constructing precise
mappings between a parametrization of distributions
on two variables and mutual information, and charac-
terizing the rate of convergence of various quantities
relating to mutual information. We expect that many
of the techniques that we developed will be broadly
useful beyond Bayesian network structure learning.

2 Background

This paper considers the problem of learning Bayesian
network structure from complete data (no hid-
den variables or unobserved factors). Let X =
(X1, X2, . . . , Xn) be a collection of random variables.
For reasons that we explain in the next section, our
results are restricted to the case when the variables
Xi are binary, i.e. Val(Xi) = {0, 1}. Formally, a
Bayesian network over X is specified by a pair (G,P ),
where G = (V,E) is a directed acyclic graph (DAG)
satisfying the following conditions: the nodes V cor-
respond to the variables Xi ∈ X and E is such that
every variable is conditionally independent of its non-
descendants given its parents. The joint distribution
can then be shown to factorize as P (x1, . . . , xn) =∏
i∈V P (Xi = xi | XPa(i) = xPa(i)), where Pa(i) de-

notes the parent set of variable Xi in the DAG G, and
xPa(i) refers to an assignment to the parents.

A Bayesian network G is called an independence map
(I-map) for a distribution P if all the (conditional)
independence relationships implied by G are present
in P . Going one step further, G is called a perfect
map for P if it is an independence map and the con-
ditional independence relationships implied by G are
the only ones present in P . By ωN (or in some con-
texts, YN ) we denote a sequence of observations of the
random variables X , generated i.i.d. from an unknown
Bayesian network (G,P ), where G is a perfect map
for P . The problem that we study is that of learn-
ing the Bayesian network structure and distribution
(G,P ) from the samples ωN .

The simplest case of learning BN structure is when we
have two random variables, which we will call XA and
XB . There are only two nonequivalent BN structures:

G0 : XA XB (“disconnected”),

G1 : XA −→ XB (“connected”).

The structure learning problem in this case is to re-
turn, based on ωN , a decision XA ⊥⊥ XB (G0) or
XA 6⊥⊥ XB (G1). In other words, in this case, the
structure learning problem is strictly equivalent to one
case of hypothesis testing, a well-studied and classic
problem in statistics, specifically testing the hypothe-
sis of whether XA and XB are independent.

In the case of three or more variables, the equivalence
no longer holds in any strict sense. Constraint-based
approaches use the results of conditional independence
tests to infer the model structure. These methods solve
the structure learning problem sequentially by first
learning the undirected skeleton of the graph, Skel(G),
and then orienting the edges to obtain a DAG. Assum-
ing that G is a perfect map for P , if A is conditionally
independent of B then we can conclude that neither
A→ B nor B → A can be in G. It can be shown that
either A’s parents or B’s parents will be a separat-
ing set proving their conditional independence (there
may be others). Thus, if we make the key assump-
tion that each variable has at most a fixed number of
parents d, then this can yield a polynomial time al-
gorithm for structure learning (Spirtes et al. , 2001;
Pearl & Verma, 1991). However, this approach has
a number of drawbacks: difficulty setting thresholds,
propagation of errors, and inconsistencies.

Let p = p(ωN , A,B | s) denote the empirical distribu-
tion of A and B conditioned on an assignment S = s
for S ⊆ V \{A,B}, and marginalized over all of the
other variables. The mutual information statistic,

MI(p) =
∑

a∈Val(A), b∈Val(B)

p(a, b|s) log

(
p(a, b|s)

p(a|s)p(b|s)

)
is a measure of the conditional independence of A and
B conditioned on S = s. Given infinite data, two
variables are independent if and only if their mutual
information is zero. However, with finite data, mutual
information is biased away from zero (Paninski, 2003).
As a result, it can be very difficult to distinguish be-
tween independence and dependence.

An alternative approach is to construct a scoring func-
tion which assigns a value to every possible structure,
and then to find the structure which maximizes the
score (Lam & Bacchus, 1994; Heckerman et al. , 1995).
Perhaps the most popular score is the BIC (Bayesian
Information Criterion) score:

Sψ1
(ωN , G) = LL(ωN |G)− ψ1(N) · |G|. (1)

Here, LL(ωN |G) is the log-likelihood of the data
given G, |G| is the number of parameters of G, and
ψ1(N) is a weighting function with the property that
ψ1(N) → ∞ and ψ1(N)/N → 0 as N → ∞. When
ψ1(N) := logN

2 , the score, now called MDL, can be
theoretically justified in terms of Bayesian probabil-
ity. Intuitively, we can explain the BIC/MDL score
as a log-likelihood regularized by a complexity penalty
to keep fully connected models (with the most pa-
rameters) from always winning. Finding the struc-
ture which maximizes the score is known to be NP-
hard (Chickering, 1996; Chickering et al. , 2004; Das-
gupta, 1999). Heuristic algorithms have been proposed



for maximizing this score, such as greedy hill-climbing
(Chickering, 2002; Friedman et al. , 1999) and, more
recently, by formulating the structure learning prob-
lem as an integer linear program and solving using
branch-and-cut (Cussens, 2011; Jaakkola et al. , 2010).

The running time of solving the integer linear pro-
grams dramatically increases as the amount of data
used for learning increases (see, e.g., Fig 4). This is
counter-intuitive: more data should make the learning
problem easier, not harder. The core problem is that
as the amount of data increases, the likelihood term
grows in magnitude whereas the complexity penalty
shrinks. This is necessary to prove that these scoring
functions are consistent, i.e. that in the limit of infi-
nite data the structure which maximizes the score in
fact is the true structure. As a consequence, however,
the score becomes very flat near the optimum with a
large number of local maxima, making the optimiza-
tion problem extremely difficult to solve.

3 SparsityBoost: A New Score for
Structure Learning

We design a new scoring function for structure learning
that is both consistent and easy to solve regardless of
the amount of data that is available for learning. The
key property that we want our new scoring function
to have is that as the amount of data increases, opti-
mization becomes easier, not harder. When little data
is available, it should reduce to the existing scoring
functions.

Our approach is to add, to the BIC score, new terms
derived from statistical independence tests. Before in-
troducing the new score we provide some background
on hypothesis testing. Let P denote the simplex of
(joint) probability distributions over a pair of random
variables, and let P0 denote the subset of product dis-
tributions: P0 = {q ∈ P | MI(q) = 0}. For q /∈ P0,
the magnitude of MI(q) provides a measure of how far
q is from the set of product distributions. For η > 0, we
define Pη := {q | MI(q) ≥ η}. The testing procedure
has ωN as input, null hypothesis H0 (independence)
for p ∈ P0, and alternative hypothesis H1 for p ∈ Pη.
The Type I error αN is defined as the probability of
the test rejecting a true H0, the Type II error βN is
defined as the probability of the test falsely accepting
H0, and the power is defined as 1− βN .

The theory of Neyman-Pearson hypothesis testing for
composite hypotheses tells us how to construct a hy-
pothesis test of maximal power for any αN (Hoeffd-
ing, 1965; Dembo & Zeitouni, 2009). In our set-
ting, the test corresponds to computing MI(ωN ) :=
MI(p(ωN )) and deciding on H1 if the test statistic ex-

ceeds a threshold γ. Let βN (γ) denote the Type II
error of the Neyman-Pearson test with threshold γ.

We propose using in our score the Type II error of the
test with threshold MI(ωN ),

βp
η

N (MI(ωN )) := PrYN∼pη {MI(YN ) ≤MI(ωN )} ,

where pη is the M -projection of p(ωN ) onto Pη, that is,
with H(·‖·) denoting the Kullback-Leibler divergence,

pη := argmin
p∈Pη

H(p(ωN )‖p). (2)

An intuitive explanation for the Type II error is that
βp

η

N (γ) is the probability of obtaining a test statis-
tic MI(YN ), YN ∼ pη, that is more extreme, in the
wrong direction of independence, than the observed
test statistic γ. On the one hand, if ωN ∼ p0 ∈ P0,
then with high probability the power of the test with
threshold MI(ωN ) approaches 1 and βp

η

N (MI(ωN ))
approaches 0, exponentially fast as N → ∞; on the
other hand, if ωN ∼ p1 ∈ Pε, where ε > η, then
with high probability the power approaches 0 and
βp

η

N (MI(ωN )) approaches 1, as N →∞.

Now we can state our new score for structure learning
and explain its remaining features:

Sη,ψ1,ψ2
(ωN , G) = LL(ωN |G)− ψ1(N) · |G|+ ψ2(N) ·∑

(A,B)/∈G

max
S∈SA,B(G)

min
s∈val(S)

− ln
[
βp

η

N (MI(p(ωN , A,B|s)))
]

The first line is the BIC score. In the second line
ψ2(N) is a weighting function such that ψ2(N)/N → 0
as N → ∞: ψ2(N) := 1 in the experiments. Each
term in the sum is called a sparsity boost. The sum
contains one sparsity boost for each nonexistent edge
(A,B) /∈ G. If A ⊥⊥ B|(S = s), then the sparsity boost
is Θ(N) as N → ∞, and if A 6⊥⊥ B|(S = s), then it
is O(1), and further, in that case the sparsity boost
becomes insignificant compared to the LL term (since
ψ2(N)/N → 0).

Second, the sets SA,B(G), called separating sets, are
certain subsets of the power set of V − {A,B}, which
provide certificates for statistical recovery of G. More
precisely, we have (A,B) /∈ G, if and only if there is a
witness S ∈ SA,B(G) such that A ⊥⊥ B|S. The most
common ways of defining SA,B(G) are as follows:

SA,B(G) = {S ⊂ V \{A,B} | |S| ≤ d}, (3)

SA,B(G) = {PaG(A)\B, PaG(B)\A}. (4)

The family of assignments (A,B,G) 7→ SA,B(G) for
all (A,B) ranging over distinct pairs of vertices and G
over some family G of DAGs, constitutes a collection
of separating sets, denoted by S.



In order for A ⊥⊥ B|S to hold, we must have A ⊥⊥ B|s,
for every joint assignment s ∈ Val(S). This is the
reason for taking the minimum over s ∈ Val(S) of
the possible sparsity boosts. The existence of just one
S ∈ SA,B(G) such that A ⊥⊥ B|S suffices to rule out
(A,B) as an edge in G. This is the reason for taking
the maximum over S ∈ SA,B(G). The sparsity boost is
O(1) for an (A,B) ∈ G, and Θ(N) for an (A,B) /∈ G.

It remains to explain how to compute βp
η

N (γ) in the im-
plementation of the score Sη,ψ1,ψ2

. According to the
definition (2), pη is data-dependent, and this makes it

impractical to compute βp
η

N (MI(ωN )) quickly enough
for use in our algorithm. We make an approximation
by fixing pη to be a single“reference”distribution, with
uniform marginals and satisfying MI(pη) = η. In the
case when Val(Xi) = {0, 1}, there are two such distri-
butions. Namely, let p0 denote the uniform distribu-
tion, and let

p0(t) =

 1
4 + t 1

4 − t
1
4 − t 1

4 + t

 for all t ∈
(
−1

4
,

1

4

)
. (5)

Clearly, p0(t) has uniform marginals. Consider the
function MI(p0(t)) for t ∈

(
0, 14
)
. On this inter-

val MI(p0(t)) is positive, increasing, and has range(
0,MI

(
p0
(
1
4

)))
. Thus for each η in the range, there is

a unique parameter value t+η such that MI(p0(t+η )) =
η. By symmetry, we also have MI(p0(−t+η ))) = η; fix

pη := p0(t+η ). (6)

We compute t+η by a binary search in the interval(
0, 14
)
; by (5) and (6) this suffices to compute pη, and

has to be done only once during the algorithm’s setup.

Having computed pη, we can compute βp
η

N (γ) for many
values of N, γ, and store them in a table. During the
learning phase, we evaluate βp

η

N (MI(ωN )) by interpo-
lation. We explain more details in Sec. 5.

Related work. Our new score is similar to other “hy-
brid” algorithms that use both conditional indepen-
dence tests and score-based search for structure learn-
ing, notably Fast 2010’s Greedy Relaxation algorithm
(Relax) and Tsamardinos et al. 2006’s Max-Min Hill-
Climbing (MMHC) algorithm. The MMHC algorithm
has two stages, first using independence tests to con-
struct a skeleton of the Bayesian network, and then
performing a greedy search over orientations of the
edges using the BDeu score. The Relax algorithm
starts by performing conditional independence tests to
learn constraints, followed by edge orientation to pro-
duce an initial model. After the first model has been
identified, Relax uses a local greedy search over pos-
sible relaxations of the constraints, at each step choos-
ing the single constraint which, if relaxed, leads to the

largest improvement in the score. Both of these al-
gorithms separate the constraint- and score-based ap-
proaches into two distinct steps, in contrast to our
approach which directly incorporates the conditional
independence tests as a term in the score itself.

The only other work that we are aware of that has
studied the incorporation of reliability of independence
tests in score-based structure search is de Campos
(2006). Their objective function is very different from
ours, comparing the empirical mutual information to
its expected value assuming independence (using the
χ2 distribution). In contrast to de Campos’s MIT
score, the SparsityBoost score is consistent, provably
able to recover the true structure.

Importance of using Type II error. To our knowl-
edge, all previous approaches for Bayesian network
structure learning use the Type I error αN in assessing
the reliability of an independence test, which is asymp-
totically given by the χ2 distribution. A relatively high
threshold needs to be specified in order to prevent the
false rejection of independence and to correct for multi-
ple hypothesis testing. One of our key contributions is
to show how to use βN , the Type II error. Minimizing
the Type II error is essential because we want to err on
the side of caution, only having a large sparsity boost
if we are sure that the corresponding edge does not ex-
ist. Type I errors, on the other hand, can be corrected
by the part of the objective corresponding to the BIC
score. If we had instead used the Type I error prob-
ability within our score, it would have corresponded
to a dependence boost rather than independence, and
would be fooled if we failed to find a good separating
set (e.g., for computational reasons).

4 Polynomial Sample Complexity of
the SparsityBoost Score

4.1 Statement of Main Results

In this section, we prove the consistency of the Spar-
sityBoost score. In order to state our main results, we
need to define certain additional parameters. First,
there is a (small) positive integer, d, which bounds the
in-degree of all vertices in G. The family of BNs on n
vertices satisfying this condition is called Gd.
Second, we formalize the notion of the
minimal edge strength ε in G. Define

SA,B(Gd) :=
⋃
G∈Gd

SA,B(G).

Recall that the witness sets in S provide certificates
for statistical recovery of G. We quantify the edge
strength of (A,B) ∈ G with respect to SA,B(Gd), i.e.



the amount of dependence even after conditioning, by

ε((A,B), SA,B(Gd)) := min
S∈SA,B(Gd)

max
s∈Val(S)

MI(p(A,B|s))

Then, let ε = ε(G) = min(A,B)∈G ε((A,B), SA,B(Gd)).
Next, we need the notion of an error tolerance ζ >
0, which in turn follows from a notion of a G′ ∈ Gd
being ζ-far from the true network (G,P ). For any
G′ ∈ Gd, define the probability distribution pG′,P over
X to be the distribution which factors according to G′

and minimizes the KL-divergence from P , i.e.

pG′,P := argmin
Q :G′ is an I-map for Q

H(P‖Q).

We call H(P‖pG′,P ) the divergence of P from
G′, and if H(P‖pG′,P ) > ζ we say that G′ is ζ-far
from (G,P ). In Theorem 1(a) we set an error tol-
erance of ζ, which is to say that we specify that our
learning algorithm should rule out all G′ which are
ζ-far from (G,P ).

Finally, we need m, the (maximum) inverse probability
of an assignment to a separating set. More precisely,
for any A,B ∈ V 2, A 6= B, and S ∈ SA,B(Gd), let
mP (S) := maxs∈Val(S)[P (S = s)]−1. Then let

m = mP (G,Gd,S) = max
(A,B)∈G

max
S∈SA,B(Gd)

mP (S). (7)

For all (A,B) /∈ G, there will be at least one witness
S ∈ SA,B(G) such that A ⊥⊥ B|S. Let

ŜP ((A,B), G) := argmin
S∈SA,B(G) : A⊥⊥B|S

mP (S).

Finally, let

m̂P (G,S) := max
(A,B)/∈G

mP (ŜP ((A,B), G)). (8)

Theorem 1 Suppose that (G,P ) ∈ Gd is a Bayesian
network of n binary random variables and G is a per-
fect map for P . Set SA,B(G) = {S ⊂ V \{A,B} | |S| ≤
d}. Assume that (G,P ) ∈ Gd has minimal edge
strength ε > 0, and minimal assignment probabilities
m, as defined in (7) and m̂P (G,S), as defined in (8).
Fix η = λε for λ ∈ (0, 1), an error probability δ > 0,
and a tolerance ζ > 0. Let Sη denote our score Sη,ψ1,ψ2

for ψ1(N) := κ log(N) and ψ2(N) = 1. Let ωN be a
sequence of observations sampled i.i.d. from P .

(a) There is a function N(ε,m, n; δ, ζ; η, κ) in

Õ

(
max

( log(n)m

ε2
,
n2

ζ2

)
log

1

δ

)
as ε, ζ, δ → 0+, n,m→∞, such that for all N >
N(ε,m, n; δ, ζ; η, κ), with probability 1−δ, we have

Sη(G,ωN ) > Sη(G′, ωN ),

for all G′ ∈ Gd which are ζ-far from G.

(b) Then there is a function N(ε,m, m̂P , n; δ; η, κ) in

Õ

(
max

( log(n)m

ε2
,
n2m̂2

P

ε2

)
log

1

δ

)
as ε, δ → 0+, n,m, m̂P → ∞, such that for all
N > N(ε,m, m̂P , n; δ; η, κ), with probability 1− δ,
we have

Sη(G,ωN ) > Sη(G′, ωN ),

for all G′ ∈ Gd such that Skel(G′) 6⊆ Skel(G).

In order to explain the significance of this result, it
is helpful to relate it to three representative sample
complexity results in the literature: Höffgen (1993),
Friedman & Yakhini (1996), Zuk et al. (2006). The
result of Zuk et al. differs from the other two and
from our result because it only gives conditions for the
(BIC) score of G to beat that of an individual compet-
ing network G′, not a family, such as Gd. The main
difference between Höffgen and Friedman & Yakhini
is that, like our result, Höffgen assumes that the com-
peting network lies in Gd and achieves a sample com-
plexity that is polynomial in n = card(V ), while Fried-
man & Yakhini puts no restriction on the in-degree of
competing networks, and obtains complexity that is
exponential in n. Our result and Zuk et al. differ
from both Höffgen and Friedman & Yakhini in that
we provide guarantees for learning the correct DAG
structure G (or at least a G without false edges), not
just a distribution P ′ which is ζ-close to P . For this
reason, only our paper and Zuk et al. need to define
a minimal edge strength as a parameter, whereas for
Höffgen and Friedman & Yakhini the main parameter
is the error tolerance ζ, which they call ε.

4.2 Overview of Proofs

The proof of Theorem 1 consists of showing that for
all sufficiently large N we can find a (probable) lower
bound on the score difference,

Sη(G,ωN )− Sη(G′, ωN ), G,G′ ∈ Gd, ωN ∼ G. (9)

The score difference breaks down into a sum of the
following terms:

(a) The difference of log-likelihood terms,
LL(G,ωN )− LL(G′, ωN ).

(b) The difference of complexity penalties,
κ log(N)(|G′| − |G|).

(c) For each distinct pair of vertices A,B ∈ V such
that neither G nor G′ has (A,B) as an edge, the
difference of the sparsity boosts in the objective
functions of G and G′, for that nonexistent edge.



(d) For each true edge (A,B) ∈ G missing from G′,
the negative of the sparsity boost for (A,B) /∈ G′.

(e) For each false edge (A,B) 6∈ G present in G′, the
(positive) sparsity boost for (A,B) /∈ G.

With the choice of S in the Theorem, SA,B(G′) =
SA,B(G) for all A,B ∈ V 2, which implies that (c) is
exactly 0. Furthermore, (b) is clearly O(logN) for
G,G′ ∈ Gd, while both (a) and (e) will turn out to be
Θ(Nα) for α > 0, so that (b) has only minor impact
on the sample complexity.

So we will focus on how to estimate (a), (d), and
(e). Conceptually, estimating each of these terms calls
for the same type of result : a concentration lemma
stating how quickly the empirical LL(·, ωN ) (for (a)),
respectively MI(ωN , A,B|s) (for (d) and (e)) con-
verges to the “ideal” counterpart LL(I)(·, P ), respec-
tively MI(P,A,B|s). In fact, both of the latter consist
of a polynomial in n number of terms (which is where
we use the hypothesis G ∈ Gd) of the form p log p for
parameters p of certain Bernoulli random variables.

Proposition 1 Let p ∈ (0, 1) be given and X(p)
the Bernoulli random variable with parameter p. Let
ε̂, δ ≥ 0 be given. For YN ∼ p, denote the empirical
parameter pYN by p̃N . Then there is a function

N(ε̂, δ) ∈ O
((

1

ε̂

)2

log
1

δ

)
, (10)

as ε̂, δ → 0+ with the property that for N > N(ε̂, δ),

Pr (|p̃N log p̃N − p log p| < ε̂) ≥ 1− δ.

Proposition 1 improves slightly on Lemma 1 in Höffgen
(1993), by replacing Õ(·) with O(·) in (10).

A key feature of Proposition 1, for obtaining our con-
centration results for LL and MI is that (10) is in-
dependent of the Bernoulli parameter p. From the
concentration result for LL, we can show that (a) is
with high probability positive and larger than Nζ/3,
for all G′ which are ζ-far from G and for sufficiently
large N . From the concentration result for MI we can
show that a sparsity boost from a true edge is bounded
above by a constant for sufficiently large N (linear in
m). So the negative contribution of (d) is bounded.
These bounds suffice to prove Theorem 1(a).

In the proof of Theorem 1(b), from the concentra-
tion result for LL, we can show that (a) is with high
probability larger than a constant times −n

√
log(n)N .

Furthermore, a sparsity boost from a false edge is
Ω(Γ(η)N), where the speed Γ(η) of the linear growth
is on the order of η2 as η → 0+. To show the latter,
we first apply Proposition 1, given a witness, to prove

that MI(ωN , A,B|s) is (likely) less than η/2. Second,

using a Chernoff bound, we show that − log βp
η

N (γ) is
Ω(η2N) for γ less than η/2. So, with high probability
the positive contribution of (e) eventually overwhelms
any negative contribution of (a).

The techniques derived from the Chernoff bound yield
a version of Theorem 1(b) with an exponent of 4 on
the ε in the denominator of the term n2m̂2

P /ε
2. To

improve the exponent to 2, we need a strengthened
result on the linear growth of a sparsity boost from a
false edge, in which the speed Γ(η) is on the order of
only η instead of η2, as η → 0+.

We have to use a new method derived from Sanov’s
Theorem instead of Chernoff’s Bound. To our knowl-
edge, the way we use Sanov’s Theorem to study the
concentration of mutual information is a novel contri-
bution to information theory. For all of the following
we are assuming that Val(Xi) = {0, 1} for all Xi ∈ V
so that P is the space of probability distributions over
the alphabet {0, 1}2. We have already, in (5), given
a parameterization of the path of distributions of uni-
form marginals in P. We now generalize (5) and the
associated parameterization by defining

p(pA,0, pB,0, t) :=

[
pA,0pB,0 + t pA,1pB,0 − t
pA,0pB,1 − t pA,1pB,1 + t

]
(11)

where pA,1 := 1 − pA,0 and pB,1 := 1 − pB,0. When
(pA,0, pB,0) ranges over [0, 1]2 and t over (tmin, tmax)
(an interval depending on pA,0, pB,0), (11) parameter-
izes the whole space P.

Since the t parameter is a measure of how far p is from
P0, it is not surprising that we can derive formulas
relating t to

√
MI. In order to carry this out, we

consider the function MI(p(pA,0, pB,0, t)) as a function
of t and carefully study the Taylor series expansion of
this function around the basepoint t = 0.

The reason for preferring the t parameter to MI itself
is that by means of Sanov’s Theorem and Pinsker’s In-
equality, we obtain a very general result which bounds
− log βp

η

N (γ) from below by N times the squared L∞-
distance of pη from a distribution qγ . More specifically,
defining the complement of Pγ by

Aγ := {p ∈ P |MI(p) ≤ γ} , (12)

the distribution qγ is defined as the I-projection of
pη onto Aγ . We would like to relate ‖pη − qγ‖∞ to
|MI(pη)−MI(qγ)| = |η−γ|, and the t-parameters act
as an effective intermediary, because it is easy to show
that ‖pη − qγ‖∞ is on the order of |t+η − t+γ |, where t+γ
is the t-parameter of qγ . Applying the relation of the
preceding paragraph between t and

√
MI, we obtain

a bound, from below, of − log βp
η

N (γ) by something on
the order of (

√
η −√γ)2N .



5 Computation of β values

Exact computation. Here we give an exact for-
mula for βp

η

N (γ) using the Method of Types (Cover
& Thomas, 2006, Chapter 11). Denoting the entries of
pη ∈ P by (p0,0, p0,1, p1,0, p1,1), we have

βp
η

N (γ) =
∑
YN

1∏
i,j=0

p
Ti,j(YN )
i,j 1[MI(YN ) ≤ γ],

where Ti,j(YN ) is the number of observations of (i, j)
in the sampled sequence YN of length N . Consider
the set TN of length-4 vectors of nonnegative integers
(T0,0, T0,1, T1,0, T1,1) summing to N . Every T ∈ TN
corresponds one-to-one with a distribution pT ∈ P
(obtained by dividing every entry in T by N). Let
|T | denote the number of sequences YN corresponding
to type T . Then it is not difficult to see that |T | is
given by a multinomial coefficient and that

βp
η

N (γ) =
∑
T∈TN

|T |
1∏

i,j=0

p
Ti,j
i,j 1Aγ (pT ), (13)

where 1Aγ is the characteristic function of Aγ (see

Eq. 12). We can use (13) to exactly compute βp
η

N (γ),
but because of the summation over TN the running
time of this algorithm is O(N3), which will not scale
to the range of N we need for our experiments.

Monte Carlo computation. In place of exact cal-
culation, we estimate βp

η

N by means of Monte Carlo
integration, using importance sampling of the domain
to reduce the variance. In order to implement this, we
first observe that (13) is essentially a Riemann sum for
a definite integral, so that we may replace the summa-
tion with an integral. Second, the integrand we ini-
tially obtain in this manner has numerous discontinu-
ities, because of the |T | factor. It makes the next steps
easier to implement if we replace |T | with a (slightly
larger) continuous approximation (Csiszar & Körner,
2011, p. 39). We finally obtain the following integral

which approximates βp
η

N (γ) given in (13):(
N

2π

)(|X|−1)/2∫
P
e−NH(q‖pη)

1∏
i,j=0

q
− 1

2
i,j 1Aγ (q) dq.

For the Monte Carlo integration we use an importance
sampling scheme based on the following idea: the in-
tegrand is largest when H(q‖pη) is small and q ∈ Aγ ,
and so it should be strongly concentrated around qγ

(the I-projection of pη onto Aγ). We have an un-
proven conjecture, supported by numerical evidence,
that qγ = pγ := p0(t+γ ) (the unproven part of this is
that qγ has uniform marginals) for η less than approx-
imately 0.1109. The importance sampling algorithm
samples points p ∈ P i.i.d., favoring points near pγ .

We use the parameterization (11) of P and sample the
parameters pA,0, pB,0 & t independently according to
Gaussian distributions. For the selection of the two
marginals, we use identical Gaussians centered at 1

2
and becoming more concentrated (exponentially fast)
around their mean as N → ∞. For the t parame-
ter, we use use a third Gaussian centered at t+γ . For
each (N, γ) we determine the concentration of the third
Gaussian by sampling the integrand along the path
p
(
1
2 ,

1
2 , t
)
, in the segment (0, t+γ ).

Since we cannot possibly tabulate βp
η

N (ωN ) for ev-
ery empirical sequence that might arise, we tabulate
βp

η

N (γ) for N, γ in a strategically chosen grid of values,
and during the learning phase we interpolate or extrap-
olate (as the need arises) from these tabulated values.

We interpolate/extrapolate − lnβp
η

N (γ) linearly in the
statistics N and H(pγ‖pη). Sanov’s Theorem gives
heuristic support to this procedure, but ultimately our
justification for this procedure rests on the empirical
results presented in Section 6 below.

6 Experimental Results

Computing the confidence measure. In Figure 1
we present several empirical results that help to justify
our methods for calculating βp

η

N (γ), our new measure
of the reliability of an independence test. First, in (a),
we show that using the method of summing over types
to calculate βp

η

N (γ) has a running time which is O(N4),
whereas the Monte Carlo method explained in Section
5 is O(1) as N → ∞. Thus, although it is feasible

to pre-compute βp
η

N (γ) for small values of N , exact
calculation is impractical for N much larger than 200.

As for the accuracy of the Monte Carlo estimation,
the table in Figure 2 shows that for very small N , e.g.
N < 50, some multiplicative errors for our method of
≈ 30% are observed, but by the time we reach N =
100, the errors are consistently < 10%. Figure 1(b)
shows that, for N = 200, the Monte Carlo estimate
has a consistently small error over the range of γ.

The linear interpolation procedure for obtaining
lnβp

η

N (MI(ωN )) from the pre-computed tables of

lnβp
η

N (γ) receives heuristic support from Sanov’s The-
orem; it receives empirical support from Figure 1(c)
(resp. (d)), which shows that the dependence of

lnβp
η

N (γ) on N (resp., H(pγ‖pη)), assuming all other
inputs are fixed, is roughly linear.

Sample Complexity. In this section we study the
accuracy of our learning algorithm as a function of
the amount of data we provide it. We compare our
algorithm to two baselines: BIC and Max-Min Hill-
Climbing. BIC is equivalent to our score without
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Figure 1: Computation of βp
η

N . All results shown are for η = 0.01. (a) Running time of the exact algorithm to compute

βp
η

N grows cubically in N , but for Monte Carlo approximation remains constant (results shown for γ = 0.005 and 0.001

combined). (b) Monte Carlo estimate of βp
η

N (γ) for fixed η, N = 200. (c) Exponential decay of βp
η

N (γ) in N for fixed γ.

(d) Exponential decay of βp
η

N (γ) as a function of KL-divergence H(pγ‖pη), as γ is varied, for large N = 9000.

γ
N 0.001 0.005
20 12.20% 29.15%
30 24.65% 1.18%
40 39.77% 7.07%
50 2.45% 4.88%
60 3.52% 0.30%

γ
N 0.001 0.005
70 1.03% 3.59%
80 9.06% 4.13%
90 0.77% 4.05%

100 1.01% 0.03%
110 2.27% 3.01%

Figure 2: Multiplicative error of Monte Carlo approxima-

tion, |βp
η

N − β̂
pη

N |/β
pη

N , for η = 0.01 as N, γ vary.

the sparsity boost terms. MMHC is state-of-the-art
in terms of both speed and quality of recovery, and
has been shown to outperform most other constraint-
based approaches (Tsamardinos et al. , 2006). As we
discussed earlier, MMHC is also a hybrid algorithm,
using both conditional independence tests and score-
based search. We use the implementation of MMHC
provided by the authors as part of Causal Explorer 1.4
(Aliferis et al. , 2003), with the default parameters.1

We use an integer linear program to exactly solve
for the Bayesian network that maximizes the BIC or
SparsityBoost scores (Jaakkola et al. , 2010; Cussens,
2011). To solve the ILP, we use Cussens’ GOB-
NILP 1.2 software together with SCIP 3.0 (Achter-
berg, 2009). Conveniently, since the sparsity boost
terms in our objective can be subsumed into the par-
ent set scores, we can use these off-the-shelf Bayesian
network solvers without any modification.

The data that we use for learning is sampled from
synthetic distributions based on the Alarm network
structure (Beinlich et al. , 1989). The Alarm net-
work has 37 variables, 46 edges, and a maximum
in-degree of 4. In our synthetic distributions, ev-
ery variable has only two states, and its conditional
probability distribution is given by a logistic function,

p(Xi = 1 | xPa(i)) = 1/(1 + e−
~θi·xPa(i)−ui). We sam-

1Threshold for χ2 test of .05 and Dirichlet hyperparam-
eters equal to 10. Varying these did not improve results.
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Figure 3: Comparison of the sample complexity of
MMHC, BIC, and our new SparsityBoost objective. Each
point is the average of the SHD of the learned network from
truth for 10 synthetic distributions.

pled 10 different distributions, with parameters drawn
according to θij ∼ U [−.5, .5] + 1

4N (0, 1) for j ∈ Pa(i)
and ui ∼ 1

4N (0, 1). For each value of N , a new set
of N samples were drawn from the corresponding syn-
thetic distribution. The results shown are the average
for each of these 10 synthetic distributions.

We use SA,B(G) from Eq. 3 with d = 2, enumerating
over all separating sets of size at most two. Larger
separating sets are less useful because they lead to
a smaller ε, less data, and more computation to cre-
ate the objective. In the Alarm network, for every
(A,B) 6∈ G there is a separating set S such that |S| ≤ 2
and A ⊥ B|S. Regardless, if a separating set for an
inexistent edge cannot be found, our score simply re-
duces to the BIC score, so no harm is done.

Our results are shown in Figure 3. We measure the
quality of structure recovery using the Structural Ham-
ming Distance (SHD) between the partially directed
acyclic graphs (PDAG) representing the equivalence
classes of the true and learned networks (Tsamardi-
nos et al. , 2006). The SHD is defined as the number
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Figure 4: Total running time to learn a Bayesian net-
work from data for BIC, SparsityBoost, and MMHC. We
maximize the BIC and SparsityBoost scores by solving an
integer linear program to optimality.

of edge additions, deletions, or reversals to make the
two PDAGs match. The plots for SparsityBoost with
η = 0.005 and η = 0.02 (not shown) are nearly iden-
tical to that of η = 0.01. SparsityBoost consistently
learns better structures than MMHC or BIC, and often
perfectly recovers the networks after only 1600 sam-
ples. SparsityBoost obtains a smaller average error
with 3000 samples than BIC does with 6000, repre-
senting a more than 50% reduction in the number of
samples needed for learning. We also found that the
SparsityBoost results had substantially less variance
than either BIC or MMHC.

Our theoretical results only guarantee exact recovery
when η < ε. For each of the synthetic distributions
we computed ε(A,B) for all of the edges (A,B) in the
true structure (see Sec. 4.1 for definition). The mini-
mum of these, that is to say ε, ranged from .000028 to
.0047, which is in fact smaller than the largest value of
η considered in our experiments (.005). Despite this,
we obtained excellent empirical results for Sparsity-
Boost with η ∈ {.005, .01, .02}. This may be partially
explained by the average value of ε(A,B) being .062.
Even when we push η to be as high as .04, Sparsity-
Boost converges to an average SHD of at most 3 (see
Fig. 3). Thus, our new objective appears to be partic-
ularly robust to choosing the wrong value of η.

Running Time. We show the running time of our
new objective compared to BIC in Figure 4. The fig-
ure shows the total time, which includes both the time
to compute the score of all parent sets and the time to
solve the ILP to optimality. These results confirm our
hypothesis that the new score would be substantially
easier to optimize. We found that the linear program-
ming relaxation for SparsityBoost (with η = 0.01) was
tight on nearly all instances: branch-and-bound did
not need to be performed. Once the SparsityBoost
objective has been computed, the ILP is solved within

6 seconds in every single instance.

The timing experiments reported in this section were
performed on a single core of a 2.66 Ghz Intel Core
i7 processor with 4 GB of memory. MMHC’s average
running time was less than 8 seconds for all sample
sizes. MMHC is significantly faster because it quickly
prunes edges that cannot exist and in its second step
uses a greedy (rather than exact) optimization algo-
rithm for score-based search.

7 Discussion

Our approach maintains the advantages of other score-
based approaches to structure learning, such as the
ability to find the K-best Bayesian networks and ease
of introducing additional constraints (e.g., from inter-
ventional data). In order to optimize our score, virtu-
ally any optimization procedure can be used. Since the
ILP is easy to solve, this suggests that greedy structure
search may also be able to easily find the best-scoring
Bayesian network under the SparsityBoost score.

One subject for future investigations is to generalize
and sharpen our results in various ways. Using a simi-
lar construction for pη, we believe it should be possible
to extend our score and proof of consistency to non-
binary variables. We also believe it will be possible to
eliminate the dependence of N(ε,m, m̂P , n; δ, ζ; η, κ) in
both parts of Theorem 1 on the parameter m, leaving
only the dependence on m̂P in part (b), which is in
some cases much smaller than m.

Another issue to be explored as a future line of investi-
gation is the choice of pη in our measure of reliability,
βp

η

N (γ). The overall motivation for βp
η

N (γ) is to capture
the probability of Type II error of a statistical test with
independent distributions P0 as the null hypothesis H0

and all distributions Pη as the alternative hypothesis
H1. The choice of uniform marginals for pη represents
an expedient choice, providing an objective function
that is manageable to implement and compute, yet
still has a reasonable theoretical and empirical sam-
ple complexity. Better results might be obtained by
setting the marginals of pη to approximate those of
p(ωN ). More generally, one can contemplate incorpo-
rating various other statistically derived probabilities
into the objective function.

This leads to the broader point that objective func-
tions, and the optimization of them over discrete
spaces of structures, are ubiquitous throughout com-
puter science and statistics. Our work suggests a new
paradigm for incorporating information from “classi-
cal” hypothesis tests into the objective functions used
for machine learning. This new paradigm provides
both computational and statistical efficiency.
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