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Abstract

Possibilistic and qualitative POMDPs (π-
POMDPs) are counterparts of POMDPs
used to model situations where the agent’s
initial belief or observation probabilities are
imprecise due to lack of past experiences or
insufficient data collection. However, like
probabilistic POMDPs, optimally solving π-
POMDPs is intractable: the finite belief state
space exponentially grows with the number
of system’s states. In this paper, a possibilis-
tic version of Mixed-Observable MDPs is pre-
sented to get around this issue: the complex-
ity of solving π-POMDPs, some state vari-
ables of which are fully observable, can be
then dramatically reduced. A value iteration
algorithm for this new formulation under in-
finite horizon is next proposed and the op-
timality of the returned policy (for a spec-
ified criterion) is shown assuming the exis-
tence of a ”stay” action in some goal states.
Experimental work finally shows that this
possibilistic model outperforms probabilistic
POMDPs commonly used in robotics, for a
target recognition problem where the agent’s
observations are imprecise.

1 INTRODUCTION

Markov Decision Processes (MDPs) define a useful
formalism to express sequential decision problems
under uncertainty [2]. Partially Observable MDPs
(POMDPs) [15] are used to model situations in which
an agent does not know directly the current state of
the system: its decisions are based on a probability
distribution over the state space. This distribution
known as “belief” is updated at each stage t ∈ N of
the process using the current observation. This up-
date based on Bayes’ rule needs perfect knowledge of

the agent’s initial belief and of the transition and ob-
servation probability distributions.

Consider situations where the agent totally ignores the
system’s initial state, for instance a robot that is for
the first time in a room with an unknown exit location
(initial belief) and has to find the exit and reach it.
In practice, no experience can be repeated in order to
extract a frequency of the exit’s location. In this kind
of situation, uncertainty is not due to a random fact,
but to a lack of knowledge: no frequentist initial belief
can be used to define the model. A uniform probabil-
ity distribution is often chosen in order to assign the
same mass to each state. This choice can be justi-
fied based on the subjective probability theory [5] (the
probability distribution represents then an exchange-
able bet) but subjective probabilities and observation
frequencies are combined during the belief update.

In other cases, the agent may strongly believe that
the exit is located in a wall as in the vast majority of
rooms, but it still grants a very small probability pε to
the fact that the exit may be a staircase in the middle
of the room. Even if this is very unlikely to be the
case, this second option must be taken into account in
the belief, otherwise Bayes’ rule cannot correctly up-
date it if the exit is actually in the middle of the room.
Eliciting pε without past experience is not obvious at
all and does not rely on any rational reasons, yet it
dramatically impacts the agent’s policy. On the con-
trary, possibilistic uncertainty models allow the agent
to elicit beliefs with imprecise unbiased knowledge.

The π-POMDP model is a possibilistic and qualitative
counterpart of the probabilistic POMDP model [12]:
it allows a formal modeling of total ignorance using a
possibility distribution equal to 1 on all the states.
This distribution means that all states are equally
possible independently of how likely they are to hap-
pen (no necessary state). Moreover, consider robotic
missions using visual perception: observations of the
robot agent are outputs of image processing algorithms
whose semantics (image correlation, object matching,



class inference, etc.) is so complex that probabilities
of occurrence are hard to rigorously extract. Finding
qualitative estimates of their recognition performance
is easier: the π-POMDP model only require qualita-
tive data, thus it allows to construct the model without
using more information than really available.

However, just like the probabilistic POMDP model,
this possibilistic model faces the difficulty of comput-
ing an optimal policy. Indeed, the size of its belief
space exponentially grows with the size of the state
space, which prevents the use of π-POMDPs in prac-
tice. In situations where most state variables are fully
observable, an alternative structuring of the model still
allows to solve the problem: the possibilistic Mixed-
Observable MDP model (π-MOMDP), which is the
first contribution of this paper, indeed allows us to rea-
son with beliefs over the partially observed states only.
In this model borrowed from probabilistic POMDPs
[9, 1], states are factorized into two sets of fully and
partially observable state variables. Whereas, in prob-
abilistic POMDPs, this factorized model permits to
reason about smaller continuous belief subspaces and
speed up α-vector operations, its impact is totally dif-
ferent in possibilistic POMDPs: it allows us to reduce
the size of the discrete belief state space.

Our second contribution is a possibilistic value itera-
tion algorithm for this extension, which exploits the
hybrid structure of the belief space. This algorithm is
derived from a π-MDP algorithm, Sabbadin’s work up-
date, whose optimality of the returned policy is proved
for an infinite horizon criterion which is made explicit.
It relies on intermediate “stay” actions that are needed
to guarantee convergence of the algorithm but that
vanish in the optimized policy for non goal states; they
are the possibilistic counterparts of the discount factor
in probabilistic POMDPs.

Finally, we experimentally demonstrate that in some
situations π-MOMDPs outperform their probabilis-
tic counterparts for instance on information-gathering
robotic problems where the observation function re-
sulting from complex image processing algorithms is
not precisely known, as it is often the case in realis-
tic applications. This result is significant for us, be-
cause roboticists commonly think that probabilistic
POMDPs, and more generally Bayesian approaches,
are first-choice reasoning models to solve sequential
information-gathering missions. We prove in this pa-
per that sometimes possibilistic uncertainty models
perform better in practice.

2 BACKGROUND

The Markov Decision Process framework models situ-
ations in which the system, for instance the physical
part of an agent and its environment, has a Marko-

vian dynamic over time. The different possible states
of the system are represented by the elements s of the
finite state space S. The initial system state is denoted
by s0 ∈ S. At each stage of the process, modeled by
non negative integers t ∈ N, the decisional part of the
agent can choose an action a in the finite set A. The
chosen action at determines the uncertainty over the
future state st+1 knowing the current state st.

2.1 Qualitative possibilistic MDPs

The work of Sabbadin [12] proposes a possibilistic
counterpart of Markov Decision Processes. In this
framework, the transition uncertainty is modeled as
qualitative possibility distributions over S. Let L be
the possibility scale i.e. a finite and totally ordered set
whose greatest element is denoted by 1L and the least
element by 0L (classically L={0, 1

k ,
2
k , . . . ,

k−1
k , 1} with

k ∈ N∗). A qualitative possibility distribution over S is
a function π : S → L such that maxs π(s) = 1L (possi-
bilistic normalization), implying that at least one en-
tirely possible state exists. Inequality π(s) < π(s′)
means that state s′ is more plausible than state s. This
modeling needs less information than the probabilistic
one since the plausibilities of events are “only” classi-
fied (in L) but not quantified.

The transition function Tπ is defined as follows: for
each pair of states (s, s′) ∈ S2 and action a ∈ A,
Tπ(s, a, s′) = π (s′ | s, a ) ∈ L, the possibility of reach-
ing the system state s′ conditionned on the current
state s and action a. Scale L serves as well to model
the preference over states: function µ : S → L mod-
els the agent’s preferences. A π-MDP is then entirely
defined by the tuple 〈S,A,L, Tπ, µ〉.
A policy is a sequence (δt)t>0 of decision rules δ : S →
A indexed by the stage of the process t ∈ N: δt(s) is the
action executed in state s at decision epoch t. We de-
note by ∆p the set of all p-sized policies (δ0, . . . , δp−1).
Let τ = (s1, . . . , sp) ∈ Sp be a p-sized trajectory and

(δ) = (δt)
p−1
t=0 a p-sized policy. The set of all the p-sized

trajectories is denoted by Tp.
The sequence (st)t>0 is a Markov process: the possi-
bility of the trajectory τ = (s1, . . . , sp) which starts
from s0 using (δ) ∈ ∆p is then

Π (τ | s0, (δ) ) =
p−1

min
t=0

π (st+1 | st, δt(st) ) .

We define the preference of τ ∈ Tp as the preference
of the last state: M(τ) = µ(sp). As advised in [13]
for problems in which there is no risk of being blocked
in an unsatisfactory state, we use here the optimistic
qualitative decision criterion [3] which is the Sugeno
integral of the preference distribution over trajectories
using possibility measure:

up (s0, (δ) ) = max
τ∈Tp

min {Π (τ | s0, (δ) ) ,M(τ)} . (1)



A policy which maximizes criterion 1 ensures that
there exists a possible and satisfactory p-sized trajec-
tory. The finite horizon π-MDP is solved when such a
policy is found. The optimal p-sized horizon criterion
u∗p(s) = max(δ)∈∆p

up(s, (δ)) is the solution of the fol-
lowing dynamic programming equation, as proved in
[6]: ∀i ∈ {1 . . . p}, ∀s ∈ S,

u∗i (s) = max
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗i−1(s′)

}
, (2)

δ∗p−i(s) ∈ argmax
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗i−1(s′)

}
with the initialization u∗0(s) = µ(s).

2.2 The partially observable case

A possibilistic counterpart of POMDPs is also given
in [12]. As in the probabilistic framework, the agent
does not directly observe the system’s states. Here,
uncertainty over observations is also modeled as pos-
sibility distributions. The observation function Ωπ

is defined as follows: ∀o′ ∈ O, s ∈ S and a ∈ A,
Ωπ (s′, a, o′ ) = π (o′ | s, a ) the possibility of the cur-
rent observation o′ conditionned on the current state
s′ and the previous action a. Then a π-POMDP is de-
fined by the tuple 〈S,A,L, Tπ,O,Ωπ, µ, β0〉, where β0

is the initial possibilistic belief. The belief of the agent
is a possibility distribution over S; total ignorance is
defined by a belief equal to 1L on all states, whereas
a given state s is perfectly known if the belief is equal
to 1L on this state and to 0L on all other states.

The translation into π-MDP can be done in a similar
way as for POMDPs: we denote by Bπ ⊂ LS the
possibilistic belief state space which contains all the
possibility distributions defined on S. We can now
compute the possibilistic belief update. If at time t
the current belief is βt ∈ Bπ and the agent executes
action at, the belief over the future states is given by:

βatt+1(s′) = max
s∈S

min {π (s′ | s, at ) , βt(s)} ,

and the belief over the observations

βatt+1(o′) = max
s′∈S

min
{
π (o′ | s′, at ) , βatt+1(s′)

}
.

Next, if the agent observes ot+1 ∈ O, the possibilistic
counterpart of Bayes’ rule ensures that

βt+1(s′)=

{
1L if βatt+1(ot+1)= π (s′, ot+1 | βt, at )> 0L

π (s′, ot+1 | βt, at ) otherwise
(3)

where ∀(s′, o′) ∈ S × O, π (s′, o′ | β, a ) =
min {π (o′ | s′, a ) , βa(s′)} is the joint possibility of
(s′, o′). Such an update of a belief β is denoted by

βa,o
′
: βt+1 = βa,o

′

t . As the belief update is now
made explicit, its dynamics can be computed: let

Γβ,a (β′ ) =
{
o′ ∈ O | βa,o′ = β′

}
. Then π (β′ | β, a )

= max
o′∈Γβ,a(β′)

βa (o′ ) with the convention max∅ = 0L.

We now define the preference over belief states with a
pessimistic form in order to prefer informative beliefs:
a belief state has a good preference when it is unlikely
that the system is in an unsatisfactory state: µ(β) =
mins∈S max {µ(s), n(β(s))} , with n : L → L the order
reversing map i.e. the only decreasing function from L
to L. A π-MDP is then defined, and the new dynamic
programming equation is ∀i ∈ {1, . . . , p}, ∀β ∈ Bπ,

u∗p(β) = max
a∈A

max
β′∈Bπ

min
{
π (β′ | β, a ) , u∗p−1(β′)

}
= max

a∈A
max
o′∈O

min
(
βa(o′), u∗p−1(βa,o

′
)
)

with the initialization u∗0(β) = µ(β). Note that Bπ is a
finite set of cardinal #Bπ = #L#S − (#L−1)#S (the
total number of #S-size vectors valued in L, minus
(#L − 1)#S non-normalized distributions). However,
for concrete problems, the state space can be dramat-
ically large: #Bπ explodes and computations become
intractable like in standard probabilistic POMDPs.
The next section presents the first contribution of this
paper, which exploits a specific structure of the prob-
lem that is very common in practice.

3 Possibilistic and qualitative mixed
observable MDPs (π-MOMDPs)

The complexity issue of π-POMDP solving is due to
the fact that the size of the belief state space Bπ expo-
nentially grows with the size of the state space S. How-
ever, in practice, states are rarely totally hidden. Us-
ing mixed observability can be a solution: inspired by
a similar recent work in probabilistic POMDPs [9, 1],
we present in this section a structured modeling that
takes into account situations where the agent directly
observes some part of the state. This model general-
izes both π-MDPs and π-POMDPs.

Like in [1], we assume that the state space S can be
written as a Cartesian product of a visible state space
Sv and a hidden one Sh: S = Sv × Sh. Let s =
(sv, sh) be a state of the system. The component sv is
directly observed by the agent and sh is only partially
observed through the observations of the set Oh: we

st st+1

sv,t sv,t+1sh,t sh,t+1

atat−1

(oh)t (oh)t+1

(ov)t (ov)t+1

26664
1L 0L

.
.
.

0L 1L

37775

π
h ( (o

h )
t+

1 | s
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t+1 | s

t , a
t )

Figure 1: Graphical representation of a π-MOMDP



denote by π (o′h | s′, a ) the possibility distribution over
the future observation o′h ∈ Oh knowing the future
state s′ ∈ S and the current action a ∈ A. Figure 1
illustrates this structured model.

The visible state space is integrated to the observation
space: Ov = Sv and O = Ov × Oh. Then, knowing
that the current visible component of the state is sv,
the agent necessarily observes ov = sv (if o′v 6= sv,
π (o′v | sv ) = 0L). Formally, seen as a π-POMDP, its
observation possibility distribution can be written as:

π (o′ | s′, a ) = π (o′v, o
′
h | s′v, s′h, a )

= min {π (o′h | s′v, s′h, a ) , π (o′v | s′v )}

=

{
π (o′h | s′, a ) if o′v = s′v

0L otherwise
(4)

since π (o′v | s′v ) = 1L if s′v = o′v and 0L otherwise.
The following theorem, based on this equality enables
the belief over hidden states to be defined.

Theorem 1. Each reachable belief state of a π-
MOMDP can be written as an element of Sv × Bπh
where Bπh is the set of possibility distributions over Sh:
any β ∈ Bπ can be written as (sv, βh) with βh(sh) =
maxsv∈Sv β(sv, sh) and sv = argmaxsv∈Sv β(sv, sh).

Proof. We proceed by induction on t ∈ N: as the initial
visible state sv,0 is known by the agent, only states
s = (sv, sh) for which sv = sv,0 are such that β0(s) >
0L. A belief over hidden states can be thus defined as
βh,0(sh) = maxsv∈Sv β0(sv, sh) = β0(sv,0, sh).

At time t, if βt(s) = 0L for each s = (sv, sh) ∈ S
such that sv 6= sv,t, the same notation can be adopted:
βh,t(sh) = βt(sv,t, sh). Thus, if the agent reaches state
st+1 = (sv,t+1, sh,t+1) and if s′ = (s′v, s

′
h) with s′v 6=

sv,t+1, then s′v 6= ov,t+1 and:

π (ot+1, s
′ | βt, at ) = min

{
π (ot+1 | s′, at ) , βatt+1(s′)

}
= 0L.

thanks to Equation (4). Finally, update Formula (3)
ensures that βt+1(s′) = 0L. Then, βt+1 is entirely
encoded by (sv,t+1, βh,t+1) with sv,t+1 = ov,t+1 and
βh,t+1(sh) = maxsv βt+1(sv, sh) ∀sh ∈ Sh.

As all needed belief states are in Sv × Bπh , the next
theorem redefines the dynamic programming equation
restricted to this product space.

Theorem 2. Over Sv×Bπh , the dynamic programming
equation becomes: ∀i ∈ {1, . . . , p}, ∀t ∈ N,
u∗i (sv, βh)

= max
a∈A

max
s′v∈Sv

max
o′h∈Oh

min
{
βa(s′v, o

′
h), u∗i−1(s′v, β

a,s′v,o
′
h

h )
}

with the initialization u∗0(sv, βh) = µ(sv, βh),

where µ(sv, βh) = min
sh∈Sh

max {µ(sv, sh), n(βh(sh))}
is the preference over Sv ×Bπh ,

βa(s′v, o
′
h) = max

s′h∈Sh
min {π (o′h | s′v, s′h, a ) , βa(s′v, s

′
h)} ,

and the belief update β
s′v,o

′
h,a

h (s′h)

=

 1L if min {π (o′h | s′v, s′h, a ) , βa(s′v, s
′
h)}

= βa(s′v, o
′
h) > 0L

min{π (o′h | s′v, s′h, a ) , βa(s′v, s
′
h)} otherwise

Proof. Using the classical dynamic programming
equation, Theorem 1, and the fact that Sv = Ov,
u∗i (sv, βh) = u∗i (β)

= max
a∈A

max
(o′v,o

′
h)∈O

min
{
βa(o′v, o

′
h), u∗i−1(βa,(o

′
v,o
′
h))
}

= max
a∈A

max
s′v∈Sv

max
o′h∈Oh

min
{
βa(s′v, o

′
h), u∗i−1(βa,s

′
v,o
′
h)
}

= max
a∈A

max
s′v∈Sv

max
o′h∈Oh

min
{
βa(s′v, o

′
h), u∗i−1(s′v, β

a,s′v,o
′
h

h )
}

where ∀sh ∈ Sh, β
a,s′v,o

′
h

h (sh) = maxsv β
a,s′v,o

′
h(sv, sh)

= βa,s
′
v,o
′
h(s′v, sh). For the initialization, we just note

that n(β(sv, sh)) = 1L when sv 6= sv, then

µ(β) = min
s

max {µ(s), n(β(s))}
= min

sh
max {µ(sv, sh), n(β(sh, sv))} ,

which completes the procedure. The belief over ob-
servations defined in the last section can be written:
∀o′ = (o′v, o

′
h) ∈ O,

βa(o′) = max
s′∈S

min {π (o′v, o
′
h | s′, a ) , βatt (s′)}

= max
s′h∈Sh

min {π (o′h | s′v, s′h, at ) , βatt (s′v, s
′
h)}

with s′v = o′v since otherwise π (o′ | s′v, s′h, a ) = 0L
according to Equation (4). Then: βa(s′v, o

′
h) =

βa(o′v, o
′
h). Finally, using the standard update Equa-

tion (3) with o′v = s′v and Equation (4), we get the
new belief update.

A standard algorithm would have computed u∗p(β)
for each β ∈ Bπ while this new dynamic program-
ming equation leads to an algorithm which com-
putes it only for all (sv, βh) ∈ Sv × Bπh . The
size of the new belief space is #(Sv × Bπh ) =
#Sv ×

(
#L#Sh − (#L − 1)#Sh

)
, which is exponen-

tially smaller than the size of standard π-POMDPs’
belief space: #L#Sv×#Sh − (#L − 1)#Sv×#Sh .

4 Solving π-MOMDPs
A finite policy for possibilistic MOMDPs can now be
computed for larger problems using the dynamic pro-
gramming equation of Theorem 2 and selecting max-
imizing actions for each state (sv, βh) ∈ Sv × Bπ, as



done in Equation (2) for each s ∈ S. However, for
many problems in practice, it is difficult to determine
a horizon size. The goal of this section is to present
an algorithm to solve π-MOMDPs with infinite hori-
zon, which is the first proved algorithm to solve π-
(MO)MDPs.

4.1 The π-MDP case

Previous work, [12, 14], on solving π-MDPs proposed
a Value Iteration algorithm that was proved to com-
pute optimal value functions, but not necessarily op-
timal policies for some problems with cycles. There
is a similar issue in undiscounted probabilistic MDPs
where the greedy policy at convergence of Value Iter-
ation does not need to be optimal [11]. It is not sur-
prising that we are facing the same issue in π-MDPs
since the possibilistic dynamic programming operator
does not rely on algebraic products so that it cannot
be contracted by some discount factor 0 < γ < 1.

Algorithm 1: π-MDP Value Iteration Algorithm

for s ∈ S do
u∗(s)← 0L ;
uc(s)← µ(s) ;
δ(s)← a ;

while u∗ 6= uc do
u∗ = uc ;
for s ∈ S do

uc(s)← max
a∈A

max
s′∈S

min {π (s′ | s, a ) , u∗(s′)} ;

if uc(s) > u∗(s) then
δ(s) ∈ argmax

a∈A
max
s′∈S

min {π (s′ | s, a ) , u∗(s′)} ;

return u∗, δ ;

To the best of our knowledge, we propose here the
first Value Iteration algorithm for π-MDPs, that prov-
ably returns an optimal policy, and that is differ-
ent from the one of [14]. Indeed, in the determin-
istic example of Figure 2, action a, which is clearly
suboptimal, was found to be optimal in state s1

with this algorithm: however it is clear that since
π (s2 | s1, b ) = 1L and µ(s2) = 1L, u∗1(s1) = 1L.
Obviously, u∗1(s2) = 1L and since π (s1 | s1, a ) =
1L, maxs′∈S min {π (s′ | s1, a ) , u∗1(s′)} = 1L ∀a ∈
{a, b} = A, i.e. all actions are optimal in s1. The
“if” condition of Algorithm 1 permits to select the
optimal action b during the first step. This condi-
tion and the initialization, which were not present in
previous algorithms of the literature, are needed to
prove the optimality of the policy. The proof, which is
quite lengthy and intricate, is presented in Appendix
A. This sound algorithm for π-MDPs will then be
extended to π-MOMDPs in the next section.

Figure 2: Example

s1 s2a
b a, b

µ(s1) = 0L

µ(s2) = 1L

As mentioned in [12], we assume the existence of an
action “stay”, denoted by a, which lets the system in
the same state with necessity 1L. This action is the
possibilistic counterpart of the discount parameter γ in
the probabilistic model, in order to guarantee conver-
gence of the Value Iteration algorithm. However, we
will see action a is finally used only on some particular
satisfactory states. We denote by δ is the decision rule
such that ∀s ∈ S, δ(s) = a. The set of all the finite
policies is ∆ = ∪i>1∆i, and #δ is the size of a policy
(δ) in terms of decision epochs. We can now define the
optimistic criterion for an infinite horizon: if (δ) ∈ ∆,

u(s, (δ)) = max
τ∈T#δ

min {Π (τ | s, (δ) ) ,M(τ)} . (5)

Theorem 3. If there exists an action a such that,
for each s ∈ S, π (s′ | s, a ) = 1L if s′ = s and 0L
otherwise, then Algorithm 1 computes the maximum
optimistic criterion and an optimal policy which is sta-
tionary i.e. which does not depend on the stage of the
process t.

Proof. See Appendix A.

Let s be a state such that δ(s) = a, where δ is the
returned policy. By looking at Algorithm 1, it can be
noted that u∗(s) always remains equal to 0L during the
algorithm: ∀s′ ∈ S, either ∀a ∈ A µ(s) > π (s′ | s, a ),
or µ(s) > u∗(s′). If the problem is non trivial, it means
that s is a goal (µ(s) > 0L) and that degrees of pos-
sibility of transitions to better goals are less than the
degree of preference for s.

4.2 Value Iteration for π-MOMDPs

We are now ready to propose the Value Iteration al-
gorithm for π-MOMDPs. In order to clarify this algo-
rithm, we set

U(a, s′v, o
′
h, βh) = min

{
βa(s′v, o

′
h), u∗(s′v, β

a,s′v,o
′
h

h )
}
.

Note that Algorithm 2 has the same structure as
Algorithm 1. Note that a π-MOMDP is a π-MDP
over Sv × Bπh . Let sv ∈ Sv, βh ∈ Bπh and now

Γβ,a,s′v (β′h) =
{
o′h ∈ Oh | β

a,s′v,o
′
h

h = β′h

}
. To satisfy

the assumption of Theorem 3, it suffices to ensure that
maxo′h∈Γβ,a,s′v (β′h) β

a(s′v, o
′
h) = 1L if s′v = sv and β′h =

βh and 0L otherwise. This property is verified when
π (s′ | s, a ) = 1L if s′ = s (and 0L otherwise) and there
exists an observation “nothing” o that is required for
each state when a is chosen: π (o′ | s′, a ) = 1L if o′ = o
and 0L otherwise.



Algorithm 2: π-MOMDP Value Iteration Algorithm

for sv ∈ Sv and βh ∈ Bπh do
u∗(sv, βh)← 0L ;
uc(sv, βh)← µ(sv, βh) ;
δ(sv, βh)← a ;

while u∗ 6= uc do
u∗ = uc ;
for sv ∈ Sv and βh ∈ Bπh do

uc(s)← max
a∈A

max
s′v∈S

max
o′h∈Oh

U(a, s′v, o
′
h, βh) ;

if uc(sv, βh) > u∗(sv, βh) then
δ(s) ∈ argmax

a∈A
max
s′v∈S

max
o′h∈Oh

U(a, s′v, o
′
h, βh) ;

return u∗, δ ;

5 Experimental results

Consider a robot over a grid of size g × g, with g > 1.
It always perfectly knows its location on the grid
(x, y) ∈ {1, . . . , g}2, which forms the visible state space
Sv. It starts at location sv,0 = (1, 1). Two tar-
gets are located at (x1, y1) = (1, g) (“target 1”) and
(x2, y2) = (g, 1) (“target 2”) on the grid, and the robot
perfectly knows their positions. One of the targets is
A, the other B and the robot’s mission is to identify
and reach target A as soon as possible. The robot does
not know which target is A: the two situations, “tar-
get 1 is A” (A1) and “target 2 is A” (A2), constitute
the hidden state space Sh. The moves of the robot are
deterministic and its actions A consist in moving in
the four directions plus the action “stay”.
At each stage of the process, the robot analyzes pic-
tures of each target and gets then an observation of
the targets’ natures: the two targets (oAA) can be ob-
served as A, or target 1 (oAB), or target 2 (oBA) or
no target (oBB).

In the probabilistic framework, the probability of
having a good observation of target i ∈ {1, 2}, is not
really known but approximated by Pr(goodi | x, y )=

1
2

[
1 + exp

(
−
√

(x−xi)2+(y−yi)2
D

)]
where (x, y) = sv

∈ {1, . . . , g}2 is the location of the robot, (xi, yi)
the position of target i, and D a normalization
constant. Then, for instance, Pr (oAB | (x, y), A1)
is equal to Pr (good1 | (x, y) )Pr (good2 | (x, y) ),
Pr (oAA | (x, y), A1) to Pr (good1 | (x, y) )
× [ 1− Pr (good2 | (x, y) ) ], and so on. Each step
of the process before reaching a target costs 1,
reaching target A is rewarded by 100, and -100
for B. The probabilistic policy was computed in
mixed-observability settings with APPL [9], using a
precision of 0.046 (the memory limit is reached for
higher precisions) and γ = 0.99. This problem can

not be solved with the exact algorithm for MOMDPs
[1] because it consumes the entire RAM after 15
iterations.

Using qualitative possibility theory, it is always pos-
sible to observe the good target: π (good | x, y ) = 1.
Here L will be a finite subset of [0, 1], that is why 1L
can be denoted by 1. Secondly, the more the robot is
far away from target i, the more likely it can badly
observe it (e.g. observe A instead of B), which is a rea-
sonable assumption concerning the imprecisely known

observation model: π (badi |x, y ) =

√
(x−xi)2+(y−yi)2√

2(g−1)
.

Then for instance, π (oAB | (x, y), A1) = 1,
π (oAA | (x, y), A1) = π (bad2 |x, y ),
π(oBA | (x, y), A1)=min{π (bad1 |x, y ), π (bad2 |x, y )},
etc. Note that the situation is fully known when
the robot is at a target’s location: thus there is no
risk of being blocked in an unsatisfactory state, that
is why using the optimistic π-MOMDP works. L
thus consists in 0, 1, and all the other intermediate
possible values of π (bad | x, y ). Note that the con-
struction of this model with a probability-possibility
transformation [4] would have been equivalent. The
preference distribution µ is equal to 0 for all the
system’s states and to 1 for states [(x1, y1), A1] and
[(x2, y2), A2] where (xi, yi) is the position of target i.
As mentioned in [12], the computed policy guarantees
a shortest path to a goal state. The policy then aims
at reducing the mission’s time.

Standard π-POMDPs, which do not exploit mixed ob-
servability contrary to our π-MOMDP model, could
not solve even very small 3× 3 grids. Indeed, for this
problem, #L = 5, #Sv = 9, and #Sh = 2. Thus,
#S = #Sv × #Sh = 18 and the number of belief
states is then #Bπ = L#S−(L#S−1)#S = 518−418 >
3.7.1012 instead of 81 states with a π-MOMDP. There-
fore, the following experimental results could not be
conducted with standard π-POMDPs, which indeed
justifies our present work on π-MOMDPs.

In order to compare performances of the probabilistic
and possibilistic models, we compare their total re-
wards at execution: since the situation is fully known
when the robot is at a target’s location, it can not end
up choosing target B. If k is the number of time steps
to identify and reach the correct target, then the total
reward is 100− k.

We consider now that, in reality (thus here for the
simulations), used image processing algorithms badly
perform when the robot is far away from targets, i.e.,
if ∀i ∈ {1, 2},

√
(x− xi)2 + (y − yi)2 > C, with C a

positive constant, Pr (goodi | x, y ) = 1−Pbad < 1
2 . In

all other cases, we assume that the probabilistic model
is the good one. We used 104 simulations to compute
the statistical mean of the total reward at execution.



The grid was 10× 10, D = 10 and C = 4.

Figure 3.a shows that the probabilistic is more af-
fected by the introduced error than the possibilistic
one: it shows the total reward at execution of each
model as a function of Pbad, the probability of badly
observing tagets when the robot’s location is such that√

(x− xi)2 + (y − xi)2 > C. This is due to the fact
that the possibilistic update of the belief does not
take into account new observations when the robot
has already obtained a more reliable one, whereas the
probabilistic model modifies the current belief at each
step. Indeed, as there are only two hidden states (that
we now denote by s1

h and s2
h ), if βh(s1

h) < 1, then
βh(s2

h) = 1 (possibilistic normalization). The defini-
tion of the joint possibility of a state and an obser-
vation (minimum of the belief in state and observa-
tion possibilities) imply that the joint possibility of s1

h

and the obtained observation, is smaller than βh(s1
h).

The possibilistic counterpart of the belief update equa-
tion (3) then ensures that the next belief is either
more skeptic about s1

h if the observation is more re-
liable and confirms the prior belief (π

(
oh | sv, s1

h, a
)

is smaller than βh(s1
h)); or changes to the opposite be-

lief if the observation is more reliable and contradicts
the prior belief (π

(
oh | sv, s2

h, a
)

is smaller than both

βh(s1
h) and π

(
oh | sv, s1

h, a
)
); or yet simply remains

unchanged if the observation is not more informative
than the current belief. The probabilistic belief update
does not have these capabilities to directly change to
the opposite belief and to disregard less reliable ob-
servations: the robot then proceed towards the wrong
target because it is initially far away and thus badly
observes targets. When it is close to this target, it
gets good observations and gradually modifies its be-
lief which becomes true enough to convince it to go
towards the right target. However it has to cross a re-
mote area away from targets: this yet gradually mod-
ifies its belief, which becomes wrong, and the robot
finds itself in the same initial situation: it loses thus
a lot of time to get out of this loop. We can observe
that the total reward increases for high probabilities
of misperceiving Pbad: this is because this high error
leads the robot to reach the wrong target faster, thus
to entirely know that the true target is the other one.

Now if we set Pbad = 0.8 and evaluate the total re-
ward at execution for different wrong initial beliefs,
we get Figure 3.b with the same parameters: we com-
pare here the possibilistic model and the probabilistic
one when the initial belief is strongly oriented towards
the wrong hidden states (i.e. the agent strongly be-
lieves that target 1 is B whereas it is A in reality).
Note that the possibilistic belief of the good target de-
creases when the necessity of the bad one increases.
This figure shows that the possibilistic model yields
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Figure 3: Comparison of the total reward gathered at
execution for possibilistic and probabilistic models.

higher rewards at execution if the initial belief is wrong
and the observation function is imprecise.

6 Conclusion and perspectives

We have proposed a Value Iteration algorithm for pos-
sibilistic MDPs, which can produce optimal station-
ary policies in infinite horizon contrary to previous
methods. We have provided a complete proof of con-
vergence that relies on the existence of intermediate
“stay” actions that vanish for non goal states in the
final optimal policy. Finally, we have extended this al-
gorithm to a new Mixed-Observable possibilistic MDP
model, whose complexity is exponentially smaller than
possibilistic POMDPs, so that we could compare π-
MOMDPs with their probabilistic counterparts on re-
alistic robotic problems. Our experimental results
show that possibilistic policies can outperform prob-
abilistic ones when the observation function yields im-
precise results.

Qualitative possibilistic frameworks can however be in-
appropriate when some probabilistic information is ac-
tually available: POMDPs with Imprecise Parameters
(POMDPIP) [7] and Bounded-parameter POMDPs
(BPOMDP) [8] integrate the lack of knowledge by con-
sidering spaces of possible probability distributions.
When such spaces can not be extracted or when a qual-
itative modeling suffices, π-POMDPs can be a good
alternative, especially as POMDPIPs and BPOMDPs
are extremely difficult to solve in practice. Yet, we
plan to compare our π-MOMDP model with these im-
precise probabilistic POMDPs in a near future.

The pessismistic version of π-MDPs can be easily con-
structed, but the optimality of the policy returned by
the associated value iteration algorithm seems hard to
prove, essentially because it is not enough to construct
a maximizing trajectory, as the proof of section A does.
The works [16, 10] could help us to get results about
pessimistic π-MDP in order to solve unsafe problems.

A Proof of Theorem 3

This appendix demonstrates that Algorithm 1 returns
the maximum value of Equation (5) and an optimal
policy. Note that the policy is optimal regardless of



the initial state. We recall that ∃a ∈ A such that
∀s ∈ S, π (s′ | s, a ) = 1L if s′ = s, and 0L otherwise.
The existence of this action a makes the maximum
value of the criterion non-decreasing with respect to
the horizon size:

Lemma 1. ∀s ∈ S, ∀p > 0, u∗p(s) 6 u∗p+1(s).

Proof. Let s0 ∈ S. u∗p+1(s0)

= max
∆p+1

max
τ∈Tp+1

min

{
p

min
i=0

π (si+1 | si, δi(si) ) , µ(sp+1)

}
.

Consider the particular trajectories τ ′ ∈ T ′p+1 ⊂ Tp+1

such that τ ′ = (s1, . . . , sp, sp), and particular policies
(δ′) ∈ ∆′p+1 ⊂ ∆p+1 such that (δ′) = (δ0, . . . , δp−1, δ).
It is obvious that u∗p+1(s0) >

max
(δ′)∈∆′p+1

max
τ ′∈T ′p+1

min

{
p

min
i=0

π (si+1 | si, δi(si) ) , µ(sp+1)

}
.

But note that the right part of this in-
equality can be rewritten as max

(δ)∈∆p

max
τ∈Tp

min
{

minp−1
i=0 π (si+1 | si, δi(si) ) , π (sp | sp, a ) , µ(sp)

}
= u∗p(s0) since π (sp | sp, a ) = 1L.

The meaning of this lemma is: it is always more possi-
ble to reach a state s from s0 in at most p+1 steps than
in at most p steps. As for each s ∈ S, (u∗p(s))p∈N 6 1L,
Lemma 1 insures that the sequence (u∗p(s))p∈N con-
verges. The next lemma shows that the convergence
of this sequence occurs in finite time.

Lemma 2. For all ∀s ∈ S, the number of iterations of
the sequence (u∗p(s))p∈N up to convergence is bounded
by #S ×#L.

Proof. Recall first that values of the possibility and
preference distributions are in L which is finite and to-
tally ordered: we can write L={0L, l1, l2, . . . , 1L} with
0L < l1 < l2 < . . . < 1L. If two successive functions u∗k
and u∗k+1 are equal, then ∀s ∈ S sequences (u∗(s))p>k
are constant. Indeed this sequence can be defined by
the recursive formula

u∗p(s) = max
a∈A

max
s′∈S

min
{
π (s′ | s, a ) , u∗p−1(s′)

}
.

Thus if ∀s ∈ S, u∗p(s) = u∗p−1(s) then the next iteration
(p+ 1) faces the same situation (u∗p+1(s) = u∗p(s) ∀s ∈
S). The slowest convergence can then be described as
follows: for each p ∈ N only one s ∈ S is such that
u∗p+1(s) > u∗p(s). Moreover, for this s, if u∗p(s) = li,
then u∗p+1(s) = li+1. We can conclude that for p >
#L ×#S, the sequence is constant.

First note that the variable u∗(s) of Algorithm 1 is
equal to u∗p(s) after the pth iteration. We conclude
that u∗ converges to the maximal value of the criterion
for an (#L×#S)-size horizon and can not be greater:

the function u∗ returned is thus optimal with respect
to Equation (5) and is computed in a finite number of
steps.

In the following, we prove the optimality of the policy
(δ∗) returned by Algorithm 1. For this purpose, we will
construct a trajectory of size smaller than #S which
maximizes min {Π (τ | s0, (δ) ) ,M(τ)} with policy
(δ∗). The next two lemmas are needed for this con-
struction and require some notations.

Let s0 ∈ S and p be the smallest integer such that
∀p′ > p, u∗p′(s0) = u∗(s0), where u∗ is here the optimal
value of the infinite horizon criterion of Equation (5)
(variable u∗(s) of Algorithm 1 does not increase after p
iterations). Equation (2) can be used to return an op-
timal policy (not stationary) denoted by (δ(s0)) ∈ ∆p.

With this notation: ∀s ∈ S, δ∗(s) = δ
(s)
0 (s). Consider

now a trajectory τ = (s1, s2, . . . , sp) which maximizes

min
{

minp−1
i=0 π

(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}
. This

trajectory is called optimal trajectory of minimal size
from s0.

Lemma 3. Let τ = (s1, . . . , sp) be an optimal trajec-
tory of minimal size from s0.
Then, ∀k ∈ {1, . . . , p− 1}, u∗(s0) 6 u∗(sk).

Proof. Let k ∈ {1, . . . , p− 1}.

u∗(s0) = min

{
p−1

min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}
6 min

{
p−1

min
i=k

π
(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}
6 u∗p−k(sk) 6 u∗(sk) since (u∗p)p∈N is non-decreasing
(Lemma 1).

Lemma 4. Let τ = (s1, . . . , sp) be an optimal trajec-
tory of minimal size from s0 and k ∈ {1, . . . , p− 1}.
If u∗(s0) = u∗(sk), then δ∗(sk) = δ

(s0)
k (sk).

Proof. Suppose that u∗(s0) = u∗(sk). Since u∗(s0) 6
u∗p−k(sk) 6 u∗(sk) (Lemma 3), we obtain that
u∗p−k(sk) = u∗(sk). The criterion in sk is thus
optimized within a (p − k)-horizon. Moreover a
shorter horizon is not optimal: ∀m ∈ {1, . . . , p − k},
u∗p−k−m(sk) < u∗(sk) i.e. with a (p − k − m)-size
horizon the criterion in sk is not maximized. Indeed
if the contrary was true, the criterion in s0 would be
maximized within a (p−m)-size horizon: the policy

δ′ = (δ
(s0)
0 , δ

(s0)
1 , . . . , δ

(s0)
k−1, δ

(sk)
0 , . . . , δ

(sk)
p−k−m−1)∈∆p−m

would be optimal. Indeed, u∗(s0)

= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−k(sk)

}
= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗(sk)

}



Then let τ = (s1, . . . , sp−k−m) ∈ Tp−k−m be
an optimal trajectory of minimal size from sk.
Setting s0 = sk, τ thus maximizes u∗(sk) =

min

{
p−k−m−1

min
i=0

π
(
si+1 | si, δ(sk)

i (si)
)
, µ(sp−k−m)

}
.

If (s′1, . . . , s
′
p−m) = (s1, . . . , sk−1, s0, . . . , sp−k−m),

u∗(s0) = min

{
p−m−1

min
i=0

π
(
s′i+1

∣∣ s′i, δ′i(si)) , µ(s′p−m)

}
i.e. ∃p′ < p such that u∗(s0) = u∗p′(s0): it contradicts
the assumption that (s1, . . . , sp) is an optimal tra-
jectory of minimum size. Thus p − k is the smallest
integer such that u∗p−k(sk) = u∗(sk): we finally

conclude that δ∗(sk) (:= δ
(sk)
0 (sk)) = δ

(s0)
k (sk).

Theorem 4. Let (δ∗) be the policy returned by Algo-
rithm 1; ∀s0 ∈ S, there exists p∗ 6 #S and a trajec-
tory (s1, . . . , sp∗) such that

u∗(s0) = min

{
p∗−1

min
i=0

π (si+1 | si, δ∗(si) ) , µ(sp∗)

}
:

i.e. δ∗ is an optimal policy.

Proof. Let s0 be in S and τ be an optimal trajectory
of minimal size p from s0. If ∀k ∈ {1, . . . , p− 1},
δ∗(sk) := δ

(sk)
0 (sk) = δ

(s0)
k (sk) then the criterion

in s0 is maximized with (δ∗) since it is maximized
with (δ(s0)) and the optimality is shown. If not,
let k be the smallest integer ∈ {1, . . . , p− 1} such

that δ
(sk)
0 (sk) 6= δ

(s0)
k (sk). Lemmas 3 and 4 ensure

that u∗(sk) > u∗(s0). Definition of k ensures that
u∗(sk) > u∗(si) ∀i ∈ {0, . . . , k − 1}.

Reiterate beginning with s
(1)
0 = sk: let p(1) be the

number of iterations until variable u∗(s(1)) of the
algorithm converges (the smallest integer such that

u∗(s(1)
0 ) = u∗

p(1)
(s

(1)
0 )). Let τ (1) ∈ Tp(1) which max-

imizes min{minp
(1)−1
i=0 π(si+1|si, δ(s

(1)
0 )

i (si)), µ(s
(1)
p )}

(τ (1) is an optimal trajectory of minimal size

from sk = s
(1)
0 ). We select k(1) in the same

way as previously and reiterate beginning with

s
(2)
0 = s

(1)

k(1)
which is such that u∗(s(1)

k(1)
) > u∗(s(1)

0 ),

and u∗(s(1)

k(1)
) > u∗(s(1)

i ) ∀i ∈ {0, . . . , k(1) − 1}
etc... Lemma 5 below shows that all selected states
(s0, . . . , sk−1, s

(1)
0 , . . . , s

(1)

k(1)−1
, s

(2)
0 . . . , s

(2)

k(2)−1
, s

(3)
0 , . . .),

are different. Thus this selection process ends since
#S is a finite set. The total number of selected states
is denoted by p∗ = k+

∑q−1
i=1 k

(i) + p(q) with q > 0 the
number of new selected trajectories. Then the policy

(δ′) = (δ0, . . . , δk−1, δ
(s

(1)
0 )

0 , . . . , δ
(s

(1)
0 )

k(1)−1
, . . . , δ

(s
(q)
0 )

p(q)
)

corresponds to (δ∗) over τ ′ = (s′1, . . . , s
′
p∗)

= (s0, s1, . . . , sk−1, s
(1)
0 , . . . , s

(1)

k(1)−1
, . . . , s

(m)

p(q)−1
) and

this policy is optimal because u∗(s0) = u(s0, (δ
∗)):

u∗(s0) = min

{
k−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) , u∗p−k(sk)

}
6 min

{
k−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) , u∗(sk)

}
= min

{
k(1)−1
min
i=0

π
(
s′i+1

∣∣ s′i, δ′(s′i)) , u∗p(1)−k(1)(sk(1))
}

. . . 6 min

{
min

i=0,...,p∗−1
π
(
s′i+1

∣∣ s′i, δ′(s′i)) , µ(s′p∗)

}
The “6” signs are in fact “=” since otherwise
we would find a policy such that u(s0, (δ

′)) >
u∗(s0). Thus (δ∗) is optimal: u∗(s0) =

min
{

minp
∗−1
i=0 π

(
s′i+1

∣∣ s′i, δ∗(s′i)) , µ(s′p∗)
}

Lemma 5. The process described in the previous proof
in order to construct a trajectory maximizing the cri-
terion with (δ∗) always selects different system states.

Proof. First, two equal states in the same selected
trajectory τ (m) would contradict the hypothesis that

p(m) is the smallest integer such that u∗
p(m)(s

(m)
0 ) =

u∗(s(m)
0 ). Indeed let k and l be such that 0 6 k <

l 6 p(m) and suppose that s
(m)
k = s

(m)
l . For clar-

ity in the next calculations, we omit “(m)”: p =

p(m) and ∀i ∈ {0, . . . , l}, si = s
(m)
i . u∗p−k(sk) =

min
{

minl−1
i=k π

(
si+1 | si, δ(s0)

i (si)
)
, u∗p−l(sl)

}
6 u∗p−l(sl) = u∗p−l(sk). However u∗p−k(sk) > u∗p−l(sk)
(non-decreasing sequence).
We finally get u∗p−k(sk) = u∗p−l(sk), thus

u∗(s0) = min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−k(sk)

}
= min

{
k−1
min
i=0

π
(
si+1 | si, δ(s0)

i (si)
)
, u∗p−l(sl)

}
=min

{
min

i=0,...,k−1,l,...,p−1
π
(
si+1 | si, δ(s0)

i (si)
)
, µ(sp)

}
Consequently, a (p(m) − l + k)-sized horizon is good
enough to reach the optimal value: it is a contradic-
tion. Finally, if we suppose that a state s appears
two times in the sequence of selected states, then
this state belongs to two different selected trajecto-
ries τ (m) and τ (m′) (with m′ < m). Lemma 3 and

the definition of k(m′) which implies that u∗(s(m′+1)
0 )

is strictly greater than the criterion’s optimal values

in each of the states s
(m′)
0 , . . . , s

(m′)
k(m′)−1

requires that

u∗(s(m)
0 ) 6 u∗(s) < u∗(s(m′+1)

0 ). It is a contradiction

because u∗(s(m′+1)
0 ) 6 u∗(s(m)

0 ) since m′ < m.
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