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Abstract

We show how, and under which conditions,
the equilibrium states of a first-order Ordi-
nary Differential Equation (ODE) system can
be described with a deterministic Structural
Causal Model (SCM). Our exposition sheds
more light on the concept of causality as ex-
pressed within the framework of Structural
Causal Models, especially for cyclic models.

1 Introduction

Over the last few decades, a comprehensive theory for
acyclic causal models was developed (e.g., see (Pearl,
2000; Spirtes et al., 1993)). In particular, different,
but related, approaches to causal inference and mod-
eling have been proposed for the causally sufficient
case. These approaches are based on different start-
ing points. One approach starts from the (local or
global) causal Markov condition and links observed in-
dependences to the causal graph. Another approach
uses causal Bayesian networks to link a particular fac-
torization of the joint distribution of the variables to
causal semantics. The third approach uses a structural
causal model (sometimes also called structural equa-
tion model or functional causal model) where each ef-
fect is expressed as a function of its direct causes and
an unobserved noise variable. The relationships be-
tween these aproaches are well understood (Lauritzen,
1996; Pearl, 2000).

Over the years, several attempts have been made
to extend the theory to the cyclic case, thereby en-
abling causal modeling of systems that involve feed-
back (Spirtes, 1995; Koster, 1996; Pearl and Dechter,
1996; Neal, 2000; Hyttinen et al., 2012). However, the
relationships between the different approaches men-
tioned before do not immediately generalize to the
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cyclic case in general (although partial results are
known for the linear case and the discrete case). Nev-
ertheless, several algorithms (starting from different
assumptions) have been proposed for inferring cyclic
causal models from observational data (Richardson,
1996; Lacerda et al., 2008; Schmidt and Murphy, 2009;
Itani et al., 2010; Mooij et al., 2011).

The most straightforward extension to the cyclic case
seems to be offered by the structural causal model
framework. Indeed, the formalism stays intact when
one simply drops the acyclicity constraint. However,
the question then arises how to interpret cyclic struc-
tural equations. One option is to assume an under-
lying discrete-time dynamical system, in which the
structural equations are used as fixed point equations
(Spirtes, 1995; Dash, 2005; Lacerda et al., 2008; Mooij
et al., 2011; Hyttinen et al., 2012), i.e., they are used as
update rules to calculate the values at time t+ 1 from
the values at time t, and then one lets t→∞. Here we
show how an alternative interpretation of structural
causal models arises naturally when considering sys-
tems of ordinary differential equations. By considering
how these differential equations behave in an equilib-
rium state, we arrive at a structural causal model that
is time independent, yet where the causal semantics
pertaining to interventions is still valid. As opposed
to the usual interpretation as discrete-time fixed point
equations, the continuous-time dynamics is not defined
by the structural equations. Instead, we describe how
the structural equations arise from the given dynamics.
Thus it becomes evident that different dynamics can
yield identical structural causal models. This interpre-
tation sheds more light on the meaning of structural
equations, and does not make any substantial distinc-
tion between the cyclic and acyclic cases.

It is sometimes argued that inferring causality
amounts to simply inferring the time structure con-
necting the observed variables, since the cause always
preceeds the effect. This, however, ignores two im-
portant facts: First, time order between two variables



does not tell us whether the earlier one caused the later
one, or whether both are due to a common cause. This
paper addresses a second counter argument: a variable
need not necessarily refer to a measurement performed
at a certain time instance. Instead, a causal graph may
formalize how intervening on some variables influences
the equilibrium state of others. This describes a phe-
nomenological level on which the original time struc-
ture between variables disappears, but causal graphs
und structural equations may still be well-defined. On
this level, also cyclic structural equations get a natural
and well-defined meaning.

For simplicity, we consider only deterministic systems,
and leave the extension to stochastic systems with pos-
sible confounding as future work.

2 Ordinary Differential Equations

Let I := {1, . . . , D} be an index set of variable labels.
Consider variables Xi ∈ Ri for i ∈ I, where Ri ⊆ Rdi .
We use normal font for a single variable and boldface
for a tuple of variables XI ∈

∏
i∈I Ri with I ⊆ I.

2.1 Observational system

Consider a dynamical system D described by D cou-
pled first-order ordinary differential equations and an
initial condition X0 ∈ RI :1

Ẋi(t) = fi(XpaD(i)), Xi(0) = (X0)i ∀i ∈ I (1)

Here, paD(i) ⊆ I is the set of (indices of) parents2

of variable Xi, and each fi : RpaD(i) → Ri is a (suf-
ficiently smooth) function. This dynamical system is
assumed to describe the “natural” or “observational”
state of the system, without any intervention from
outside. We will assume that if j ∈ paD(i), then fi
depends on Xj (in other words, fi should not be con-
stant when varying Xj). Slightly abusing terminology,
we will henceforth call such a dynamical system D an
Ordinary Differential Equation (ODE).

The structure of these differential equations can be
represented as a directed graph GD, with one node for
each variable and a directed edge from Xi to Xj if and

only if Ẋj depends on Xi.

2.1.1 Example: the Lotka-Volterra model

The Lotka-Volterra model (Murray, 2002) is a well-
known model from population biology, modeling the
mutual influence of the abundance of prey X1 ∈ [0,∞)
(e.g., rabbits) and the abundance of predators X2 ∈

1We write Ẋ := dX
dt

.
2Note that Xi can be a parent of itself.
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Figure 1: (a) Graph of the Lotka-Volterra model (2);
(b) Graph of the same ODE after the intervention
do(X2 = ξ2), corresponding with (5).

[0,∞) (e.g., wolves):{
Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = −X2(θ22 − θ21X1)

{
X1(0) = a

X2(0) = b
(2)

with all parameters θij > 0 and initial condition satis-
fying a ≥ 0, b ≥ 0. The graph of this system is depicted
in Figure 1(a).

2.2 Intervened system

Interventions on the system D described in (1) can be
modeled in different ways. Here we will focus on “per-
fect” interventions: for a subset I ⊆ I of components,
we force the value of XI to attain some value ξI ∈ RI .
In particular, we will assume that the intervention is
active from t = 0 to t =∞, and that its value ξI does
not change over time. Inspired by the do-operator in-
troduced by Pearl (2000), we will denote this type of
intervention as do(XI = ξI).

On the level of the ODE, there are many ways of re-
alizing a given perfect intervention. One possible way
is to add terms of the form κ(ξi −Xi) (with κ > 0) to
the expression for Ẋi, for all i ∈ I:

Ẋi(t) =

{
fi(XpaD(i)) + κ(ξi −Xi) i ∈ I
fi(XpaD(i)) i ∈ I \ I,

Xi(0) = (X0)i

(3)

This would correspond to extending the system by
components that monitor the values of {Xi}i∈I and
exert negative feedback if they deviate from their tar-
get values {ξi}i∈I . Subsequently, we let κ → ∞ to
consider the idealized situation in which the interven-
tion completely overrides the other mechanisms that
normally determine the value of XI . Under suitable
regularity conditions, we can let κ → ∞ and obtain
the intervened system Ddo(XI=ξI):

Ẋi(t) =

{
0 i ∈ I
fi(XpaD(i)) i ∈ I \ I,

Xi(0) =

{
ξi i ∈ I
(X0)i i ∈ I \ I

(4)



A perfect intervention changes the graph GD associ-
ated to the ODE D by removing the incoming arrows
on the nodes corresponding to the intervened vari-
ables {Xi}i∈I . It also changes the parent sets of inter-
vened variables: for each i ∈ I, paD(i) is replaced by
paDdo(XI=ξI

)(i) = ∅.

2.2.1 Example: Lotka-Volterra model

Let us return to the example in section 2.1.1. In this
context, consider the perfect intervention do(X2 = ξ2).
This intervention could be realized by monitoring the
abundance of wolves very precisely and making sure
that the number equals the target value ξ2 at all time
(for example, by killing an excess of wolves and in-
troducing new wolves from some reservoir of wolves).
This leads to the following intervened ODE:{

Ẋ1 = X1(θ11 − θ12X2)

Ẋ2 = 0

{
X1(0) = a

X2(0) = ξ2
(5)

The corresponding intervened graph is illustrated in
Figure 1(b).

2.3 Stability

An important concept in our context is stability, de-
fined as follows:

Definition 1 The ODE D specified in (1) is called
stable if there exists a unique equilibrium state X∗ ∈
RI such that for any initial state X0 ∈ RI , the system
converges to this equilibrium state as t→∞:

∃!X∗∈RI ∀X0∈RI : lim
t→∞

X(t) = X∗.

One can weaken the stability condition by demanding
convergence to and uniqueness of the equilibrium only
for a certain subset of all initial states. For clarity of
exposition, we will use this strong stability condition.

We can extend this concept of stability by considering
a certain set of perfect interventions:

Definition 2 Let J ⊆ P(I).3 The ODE D specified
in (1) is called stable with respect to J if for all I ∈ J
and for all ξI ∈ RI , the intervened ODE Ddo(XI=ξI)

has a unique equilibrium state X∗do(XI=ξI)
∈ RI such

that for any initial state X0 ∈ RI with (X0)I = ξI ,
the system converges to this equilibrium as t→∞:

∃!X∗
do(XI=ξI )

∈RI ∀X0∈RIs.t.
(X0)I=ξI

: lim
t→∞

X(t) = X∗do(XI=ξI)
.

3For a set A, we denote with P(A) the power set of A
(the set of all subsets of A).

This definition can also be weakened by not demand-
ing stability for all ξI ∈ RI , but for smaller subsets
instead. Again, we will use this strong condition for
clarity of exposition, although in a concrete example to
be discussed later (see Section 2.3.2), we will actually
weaken the stability assumption along these lines.

2.3.1 Example: the Lotka-Volterra model

The ODE (2) of the Lotka-Volterra model is not sta-
ble, as discussed in detail by Murray (2002). Indeed,
it has two equilibrium states, (X∗1 , X

∗
2 ) = (0, 0) and

(X∗1 , X
∗
2 ) = (θ22/θ21, θ11/θ12). The Jacobian of the

dynamics is given by:

∇f(X) =

(
θ11 − θ12X2 −θ12X1

θ21X2 −θ22 + θ21X1

)
In the first equilibrium state, it has a positive and
a negative eigenvalue (θ11 and −θ22, respectively),
and hence this equilibrium is unstable. In the sec-
ond equilibrium state it has two imaginary eigenval-
ues, ±i

√
θ11θ22. One can show (Murray, 2002) that

the steady state of the system is an undamped oscilla-
tion around this equilibrium.

The intervened system (5) is only generically stable,
i.e., for most values of ξ2: the unique stable equilib-
rium state is (X∗1 , X

∗
2 ) = (0, ξ2) as long as θ11−θ12ξ2 6=

0. If θ11− θ12ξ2 = 0, there exists a family of equilibria
(X∗1 , X

∗
2 ) = (c, ξ2) with c ≥ 0.

2.3.2 Example: damped harmonic oscillators

The favorite toy example of physicists is a system
of coupled harmonic oscillators. Consider a one-
dimensional system of D point masses mi (i =
1, . . . , D) with positions Qi ∈ R and momenta Pi ∈ R,
coupled by springs with spring constants ki and equi-
librium lengths li, under influence of friction with fric-
tion coefficients bi, with fixed end positions Q = 0 and
Q = L (see also Figure 2).

We first sketch the qualitative behavior: there is a
unique equilibrium position where the sum of forces
vanishes for every single mass. Moving one or several
masses out of their equilibrium position stimulates vi-
brations of the entire system. Damped by friction,
every mass converges to its unique and stable equilib-
rium position in the limit of t → ∞. If one or several

m1 m2 m3 m4

k0 k1 k2 k3 k4

Q = 0 Q = L

Figure 2: Mass-spring system for D = 4.
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(b) GDdo(Q2=ξ2,P2=0)

Figure 3: Graphs of the dynamics of the mass-spring
system for D = 4. (a) Observational situation (b)
Intervention do(Q2 = ξ2, P2 = 0).

masses are fixed to positions different from their equi-
librium points, the positions of the remaining masses
still converge to unique (but different) equilibrium po-
sitions. The structural equations that we derive later
will describe the change of the unconstrained equilib-
rium positions caused by fixing the others.

The equations of motion for this system are given by:

Ṗi = ki(Qi+1 −Qi − li)

− ki−1(Qi −Qi−1 − li−1)− bi
mi

Pi

Q̇i = Pi/mi

where we define Q0 := 0 and QD+1 := L. The graph
of this ODE is depicted in Figure 3(a). At equilibrium
(for t → ∞), all momenta vanish, and the following
equilibrium equations hold:

0 = ki(Qi+1 −Qi − li)− ki−1(Qi −Qi−1 − li−1)

0 = Pi

which is a linear system of equations in terms of theQi.
There are D equations for D unknowns Q1, . . . , QD,
and one can easily check that it has a unique solution.

A perfect intervention on Qi corresponds to fixat-
ing the position of the i’th mass. Physically, this is
achieved by adding a force that drives Qi to some
fixed location, i.e., the intervention on Qi is achieved
through modifying the equation of motion for Ṗi. To
deal with this example in our framework, we consider
the pairs Xi := (Qi, Pi) ∈ R2 to be the elementary
variables. Consider for example the perfect interven-
tion do(X2 = (ξ2, 0)), which effectively replaces the
dynamical equations Q̇2 and Ṗ2 by Q̇2 = 0, Ṗ2 = 0

and their initial conditions by (Q0)2 = ξ2, (P0)2 = 0.
The graph of the corresponding ODE is depicted in
Figure 3(b). Because of the friction, also this inter-
vened system converges to a unique equilibrium that
does not depend on the initial value.

This holds more generally: for any perfect interven-
tion on (any number) of pairs Xi of the type do(Xi =
(ξi, 0)), the intervened system will converge towards a
unique equilibrium because of the damping term. In-
terventions that result in a nonzero value for any mo-
mentum Pi while the corresponding position is fixed
are physically impossible, and hence will not be consid-
ered. Concluding, we have seen that the mass-spring
system is stable with respect to perfect interventions
on any number of position variables, which we model
mathematically as a joint intervention on the corre-
sponding pairs of position and momentum variables.

3 Equilibrium equations

In this section, we will study how the dynamical equa-
tions give rise to equilibrium equations that describe
equilibrium states, and how these change under perfect
interventions. This is an intermediate representation
on our way to structural causal models.

3.1 Observational system

At equilibrium, the rate of change of any variable is
zero, by definition. Therefore, an equilibrium state of
the observational system D defined in (1) satisfies the
following equilibrium equations:

0 = fi(XpaD(i)) ∀i ∈ I. (6)

This is a set of D coupled equations with unknowns
X1, . . . , XD. The stability assumption (cf. Defini-
tion 1) implies that there exists a unique solution X∗

of the equilibrium equations (6).

3.2 Intervened system

Similarly, for the intervened system Ddo(Xi=ξi) defined
in (4), we obtain the following equilibrium equations:{

0 = Xi − ξi ∀i ∈ I
0 = fj(XpaD(j)) ∀j ∈ I \ I

(7)

If the system is stable with respect to this interven-
tion (cf. Definition 2), then there exists a unique so-
lution X∗do(XI=ξI)

of the intervened equilibrium equa-

tions (7).

Note that we can also go directly from the equilib-
rium equations (6) of the observational system D to
the equilibrium equations (7) of the intervened system



Ddo(XI=ξI), simply by replacing the equilibrium equa-
tions “0 = fi(XpaD(i))” for i ∈ I by equations of the
form “0 = Xi − ξi”. Indeed, note that the modified
dynamical equation

Ẋi = fi(XpaD(i)) + κ(ξi −Xi)

yields an equilibrium equation of the form

0 = fi(XpaD(i)) + κ(ξi −Xi)

which, in the limit κ → ∞, reduces to 0 = Xi − ξi.
This seemingly trivial observation will turn out to be
quite important.

3.3 Labeling equilibrium equations

If we would consider the equilibrium equations as a
set of unlabeled equations {Ei : i ∈ I}, where Ei de-
notes the equilibrium equation “0 = fi(XpaD(i))” (or
“0 = Xi− ξi” after an intervention) for i ∈ I, then we
will not be able to correctly predict the result of inter-
ventions, as we do not know which of the equilibrium
equations should be changed in order to model the
particular intervention. This information is present in
the dynamical system D (indeed, the terms “Ẋi” in
the l.h.s. of the dynamical equations in (1) indicate
the targets of the intervention), but is lost when con-
sidering the corresponding equilibrium equations (6)
as an unlabeled set (because the terms “Ẋi” have all
been replaced by zeroes).

This important information can be preserved by la-
beling the equilibrium equations. Indeed, the labeled
set of equilibrium equations E := {(i, Ei) : i ∈ I}
contains all information needed to predict how equi-
librium states change on arbitrary (perfect) interven-
tions. Under an intervention do(XI = ξI), the equi-
librium equations are changed as follows: for each in-
tervened component i ∈ I, the equilibrium equation Ei
is replaced by the equation Ẽi defined as “0 = Xi−ξi”,
whereas the other equilibrium equations Ej for j ∈ I\I
do not change. If the dynamical system is stable with
respect to this intervention, this modified system of
equilibrium equations describes the new equilibrium
obtained under the intervention. We conclude that
the information about the values of equilibrium states
and how these change under perfect interventions is
encoded in the labeled equilibrium equations.

3.4 Labeled equilibrium equations

The previous considerations motivate the following
formal definition of a system of Labeled Equilibrium
Equations (LEE) and its semantics under interven-
tions.

Definition 3 A system of Labeled Equilibrium
Equations (LEE) E for D variables {Xi}i∈I with I :=
{1, . . . , D} consists of D labeled equations of the form

Ei : 0 = gi(XpaE(i)
), i ∈ I, (8)

where paE(i) ⊆ I is the set of (indices of) parents of
variable Xi, and each gi : RpaE(i)

→ Ri is a function.

The structure of an LEE E can be represented as a
directed graph GE , with one node for each variable
and a directed edge from Xi to Xj (with j 6= i) if and
only if Ei depends on Xj .

A perfect intervention transforms an LEE into another
(intervened) LEE:

Definition 4 Let I ⊆ I and ξI ∈ RI . For the perfect
intervention do(XI = ξI) that forces the variables XI

to take the value ξI , the intervened LEE Edo(XI=ξI) is
obtained by replacing the labeled equations of the origi-
nal LEE E by the following modified labeled equations:

0 =

{
Xi − ξi i ∈ I
gi(XpaE(i)

) i ∈ I \ I.
(9)

We define the concept of solvability for LEEs that mir-
rors the definition of stability for ODEs:

Definition 5 An LEE E is called solvable if there ex-
ists a unique solution X∗ to the system of (labeled)
equations {Ei}. An LEE E is called solvable with re-
spect to J ⊆ P(I) if for all I ∈ J and for all ξI ∈ RI ,
the intervened LEE Edo(XI=ξI) is solvable.

As we saw in the previous section, an ODE induces an
LEE in a straightforward way. The graph GED of the
induced LEE ED is equal to the graph GD of the ODE
D. It is immediate that if the ODE D is stable, then
the induced LEE ED is solvable. As we saw at the end
of Section 3.2, our ways of modeling interventions on
ODEs and on LEEs are compatible. We will spell out
this important result in detail.

Theorem 1 Let D be an ODE, I ⊆ I and ξI ∈ RI .
(i) Applying the perfect intervention do(XI = ξI) to
the induced LEE ED gives the same result as construct-
ing the LEE corresponding to the intervened ODE
Ddo(XI=ξI):

(ED)do(XI=ξI) = EDdo(XI=ξI )
.

(ii) Stability of the intervened ODE Ddo(XI=ξI)

implies solvability of the induced intervened LEE
EDdo(XI=ξI )

, and the corresponding equilibrium and so-
lution X∗do(XI=ξI)

are identical. �



3.4.1 Example: damped harmonic oscillators

Consider again the example of the damped, coupled
harmonic oscillators of section 2.3.2. The labeled equi-
librium equations are given explicitly by:

Ei :


0 = ki(Qi+1 −Qi − li)

− ki−1(Qi −Qi−1 − li−1)

0 = Pi

(10)

4 Structural Causal Models

In this section we will show how an LEE representation
can be mapped to the more popular representation of
Structural Causal Models, also known as Structural
Equation Models (Bollen, 1989). We follow the ter-
minology of Pearl (2000), but consider here only the
subclass of deterministic SCMs.

4.1 Observational system

The following definition is a special case of the more
general definition in (Pearl, 2000, Section 1.4.1):

Definition 6 A deterministic Structural Causal
Model (SCM) M on D variables {Xi}i∈I with
I := {1, . . . , D} consists of D structural equations of
the form

Xi = hi(XpaM(i)), i ∈ I, (11)

where paM(i) ⊆ I \ {i} is the set of (indices of) par-
ents of variable Xi, and each hi : RpaM(i) → Ri is a
function.

Each structural equation contains a function hi that
depends on the components of X in paM(i). We think
of the parents paM(i) as the direct causes of Xi (rel-
ative to XI) and the function hi as the causal mech-
anism that maps the direct causes to the effect Xi.
Note that the l.h.s. of a structural equation by defini-
tion contains only Xi, and that the r.h.s. is a function
of variables excluding Xi itself. In other words, Xi is
not considered to be a direct cause of itself. The struc-
ture of an SCM M is often represented as a directed
graph GM, with one node for each variable and a di-
rected edge from Xi to Xj (with j 6= i) if and only if hi
depends on Xj . Note that this graph does not contain
“self-loops” (edges pointing from a node to itself), by
definition.

4.2 Intervened system

A Structural Causal Model M comes with a specific
semantics for modeling perfect interventions (Pearl,
2000):

Definition 7 Let I ⊆ I and ξI ∈ RI . For the perfect
intervention do(XI = ξI) that forces the variables XI

to take the value ξI , the intervened SCM Mdo(XI=ξI)

is obtained by replacing the structural equations of the
original SCM M by the following modified structural
equations:

Xi =

{
ξi i ∈ I
hi(XpaM(i)) i ∈ I \ I.

(12)

The reason that the equations in a SCM are called
“structural equations” (instead of simply “equations”)
is that they also contain information for modeling in-
terventions, in a similar way as the labeled equilibrium
equations contain this information. In particular, the
l.h.s. of the structural equations indicate the targets
of an intervention.4

4.3 Solvability

Similarly to our definition for LEEs, we define:

Definition 8 An SCM M is called solvable if there
exists a unique solution X∗ to the system of structural
equations. An SCM M is called solvable with respect
to J ⊆ P(I) if for all I ∈ J and for all ξI ∈ RI , the
intervened SCM Mdo(XI=ξI) is solvable.

Note that each (deterministic) SCM M with acyclic
graph GM is solvable, even with respect to the set of
all possible intervention targets, P(I). This is not
necessarily true if directed cycles are present.

4.4 From labeled equilibrium equations to
deterministic SCMs

Finally, we will now show that under certain stability
assumptions on an ODE D, we can represent the in-
formation about (intervened) equilibrium states that
is contained in the corresponding set of labeled equi-
librium equations ED as an SCM MED .

First, given an LEE E , we will construct an induced
SCMME , provided certain solvability conditions hold:

Definition 9 If the LEE E is solvable with respect to
{I \ {i}}i∈I , it is called structurally solvable.

If the LEE E is structurally solvable, we can pro-
ceed as follows. Let i ∈ I and write Ii := I \

4In Pearl (2000)’s words: “Mathematically, the distinc-
tion between structural and algebraic equations is that the
latter are characterized by the set of solutions to the entire
system of equations, whereas the former are characterized
by the solutions of each individual equation. The implica-
tion is that any subset of structural equations is, in itself,
a valid model of reality—one that prevails under some set
of interventions.”



{i}. We define the induced parent set paME (i) :=
paE(i) \ {i}. Assuming structural solvability of E , un-
der the perfect intervention do(XIi = ξIi), there is a
unique solution X∗do(XIi

=ξIi )
to the intervened LEE,

for any value of ξIi ∈ RIi . This defines a function
hi : RpaME

(i) → Ri given by the i’th component

hi(ξpaME (i)
) :=

(
X∗do(XIi

=ξIi )

)
i
. The i’th structural

equation of the induced SCM ME is defined as:

Xi = hi(XpaME
(i)).

Note that this equation is equivalent to the labeled
equation Ei in the sense that they have identical solu-
tion sets {(X∗i ,X∗paME (i))}. Repeating this procedure

for all i ∈ I, we obtain the induced SCM ME .

This construction is designed to preserve the impor-
tant mathematical structure. In particular:

Lemma 1 Let E be an LEE, I ⊆ I and ξI ∈ RI

and consider the perfect intervention do(XI = ξI).
Suppose that both the LEE E and the intervened LEE
Edo(XI=ξI) are structurally solvable. (i) Applying the
intervention do(XI = ξI) to the induced SCM ME
gives the same result as constructing the SCM corre-
sponding to the intervened LEE Edo(XI=ξI):

(ME)do(XI=ξI) =MEdo(XI=ξI )
.

(ii) Solvability of the intervened LEE Edo(XI=ξI)

implies solvability of the induced intervened SCM
MEdo(XI=ξI )

and their respective solutions X∗do(XI=ξI)

are identical.

Proof. The first statement directly follows from the
construction of the induced SCM. The key observa-
tion regarding solvability is the following. From the
construction above it directly follows that ∀i ∈ I:

∀XpaE (i)∈RpaE (i)
:

0 = gi(XpaE(i)
) ⇐⇒ Xi = hi(XpaE(i)\{i}).

This trivially implies:

∀X∈RI∀i∈I : 0 = gi(XpaE(i)
) ⇐⇒ Xi = hi(XpaME

(i)).

This means that each simultaneous solution of all la-
beled equations is a simultaneous solution of all struc-
tural equations, and vice versa:

∀X∈RI :
([
∀i∈I : 0 = gi(XpaE(i)

)
]

⇐⇒
[
∀i∈I : Xi = hi(XpaME

(i))
])
.

The crucial point is that this still holds if an interven-
tion replaces some of the equations (by 0 = Xi − ξi
and Xi = ξi, respectively, for all i ∈ I). �

4.5 From ODEs to deterministic SCMs

We can now combine all the results and definitions so
far to construct a deterministic SCM from an ODE
under certain stability conditions. We define:

Definition 10 An ODE D is called structurally sta-
ble if for each i ∈ I, the ODE D is stable with respect
to {I \ {i}}i∈I .

Consider the diagram in Figure 4. Here, the labels of
the arrows correspond with the numbers of the sec-
tions that discuss the corresponding mapping. The
downward mappings correspond with a particular in-
tervention do(XI = ξI), applied at the different levels
(ODE, induced LEE, induced SCM). Our main result:

Theorem 2 If both the ODE D and the intervened
ODE Ddo(XI=ξI) are structurally stable, then: (i) The
diagram in Figure 4 commutes.5 (ii) If furthermore,
the intervened ODE Ddo(XI=ξI) is stable, the induced
intervened SCM MEDdo(XI=ξI )

has a unique solution

that coincides with the stable equilibrium of the inter-
vened ODE Ddo(XI=ξI).

Proof. Immediate from Theorem 1 and Lemma 1. �

Note that even though the ODE may contain self-
loops (i.e., the time derivative Ẋi could depend on
Xi itself, and hence i ∈ paD(i)), the induced SCM
MED does not contain self-loops by construction (i.e.,
i 6∈ paMED

(i)). Somewhat surprisingly, the structural

stability conditions actually imply the existence of self-
loops (because if Xi would not occur in the equilibrium
equation (ED)i, its value would be undetermined and
hence the equilibrium would not be unique).

Whether one prefers the SCM representation over the
LEE representation is mainly a matter of practical con-
siderations: both representations contain all the neces-
sary information to predict the results of arbitrary per-
fect interventions, and one can easily go from the LEE
representation to the SCM representation. One can
also easily go in the opposite direction, but this can-
not be done in a unique way. For example, one could
rewrite each structural equation Xi = hi(XpaM(i)) as
the equilibrium equation 0 = hi(XpaM(i)) − Xi, but
also as the equilibrium equation 0 = h3i (XpaM(i))−X3

i

(in both cases, it would be given the label i).

In case the dynamics contains no directed cycles (not
considering self-loops), the advantage of the SCM rep-
resentation is that it is more explicit. Starting at
the variables without parents, and following the topo-
logical ordering of the corresponding directed acyclic

5This means that it does not matter in which direction
one follows the arrows, the end result will be the same.



ODE
D

LEE
ED

SCM
MED

3.3 4.4

intervened ODE
Ddo(XI=ξI)

intervened LEE
EDdo(XI=ξI )

intervened SCM
MEDdo(XI=ξI )

3.3 4.4

2.2 3.2 4.2

Figure 4: Each of the arrows in the diagram corresponds with a mapping that is described in the section that
the label refers to. The dashed arrows are only defined under structural solvability assumptions on the LEE
(or structural stability assumptions on the inducing ODE). If the ODE D and intervened ODE Ddo(XI=ξI) are
structurally stable, this diagram commutes (cf. Theorem 2).

graph, we directly obtain the solution of an SCM by
simple substitution in a finite number of steps. When
using the LEE representation, one needs to solve a set
of equations instead. In the cyclic case, one needs to
solve a set of equations in both representations, and
the difference is merely cosmetical. However, one could
argue that the LEE representation is slightly more nat-
ural in the cyclic case, as it does not force us to make
additional (structural) stability assumptions.

4.5.1 Example: damped harmonic oscillators

Figure 5 shows the graph of the structural causal
model induced by our construction. It reflects the
intuition that at equilibrium, (the position of) each
mass has a direct causal influence on (the positions
of) its neighbors. Observing that the momentum vari-
ables always vanish at equilibrium (even for any per-
fect intervention that we consider), we can decide that
the only relevant variables for the SCM are the posi-
tion variables Qi. Then, we end up with the following
structural equations:

Qi =
ki(Qi+1 − li) + ki−1(Qi−1 + li−1)

ki + ki+1
. (13)

5 Discussion

In many empirical sciences (physics, chemistry, biol-
ogy, etc.) and in engineering, differential equations
are a common modeling tool. When estimating sys-
tem characteristics from data, they are especially use-
ful if measurements can be done on the relevant time
scale. If equilibration time scales become too small

X1 X2 X3 X4

Figure 5: Graph of the structural causal model in-
duced by the mass-spring system for D = 4.

with respect to the temporal resolution of measure-
ments, however, the more natural representation may
be in terms of structural causal models. The main
contribution of this work is to build an explicit bridge
from the world of differential equations to the world of
causal models Our hope is that this may aid in broad-
ening the impact of causal modeling.

Note that information is lost when going from a dy-
namical system representation to an equilibrium repre-
sentation (either LEE or SCM), in particular the rate
of convergence toward equilibrium. If time-series data
is available, the most natural representation may be
the dynamical system representation. If only snapshot
data or equilibrium data is available, the dynamical
system representation can be considered to be overly
complicated, and one may use the LEE or SCM rep-
resentation instead.

We have shown one particular way in which structural
causal models can be “derived”. We do not claim
that this is the only way: on the contrary, SCMs can
probably be obtained in several other ways and from
other representations as well. A recent example is the
derivation of SCMs from stochastic differential equa-
tions (Sokol and Hansen, 2013). Other related work
on differential equations and causality is (Voortman
et al., 2010; Iwasaki and Simon, 1994).

We intend to extend the basic framework described
here towards the more general stochastic case. Un-
certainty or “noise” can enter in different ways: via
uncertainty about (constant) parameters of the dif-
ferential equations, via uncertainty about the initial
condition (in the case of constants of motion) and via
latent variables (in the case of confounding).
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