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Abstract

We propose a method for learning cyclic
causal models from a combination of obser-
vational and interventional equilibrium data.
Novel aspects of the proposed method are its
ability to work with continuous data (without
assuming linearity) and to deal with feedback
loops. Within the context of biochemical re-
actions, we also propose a novel way of mod-
eling interventions that modify the activity of
compounds instead of their abundance. For
computational reasons, we approximate the
nonlinear causal mechanisms by (coupled) lo-
cal linearizations, one for each experimental
condition. We apply the method to recon-
struct a cellular signaling network from the
flow cytometry data measured by Sachs et al.
(2005). We show that our method finds evi-
dence in the data for feedback loops and that
it gives a more accurate quantitative descrip-
tion of the data at comparable model com-
plexity.

1 Introduction

A central question that arises in many empirical sci-
ences is how to discover cause-effect relationships be-
tween variables from measured data. Knowledge of
causal relationships is essential in order to predict how
a system will react to interventions that perturb the
system from its natural state (Pearl, 2000), which is
very useful for many practical applications. An exam-
ple from biology is the problem of predicting in silico
how a signaling pathway in a cell will react in vitro
when it is treated with a certain chemical compound.
The ability to reliably make such causal predictions
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can be a powerful tool for practical applications like
drug design.

A concrete example is the multivariate proteomics
data set measured and analyzed by Sachs et al. (2005).
Using flow cytometry, abundances of 11 biochemi-
cal compounds (phosphorylated proteins and phospho-
lipid components) were measured in single human im-
mune system cells under various experimental pertur-
bations. Sachs et al. (2005) reconstructed the underly-
ing “signaling network” by learning Bayesian networks
from the data. Their reconstruction turned out to be
very close to the “well-established consensus network”
that had been obtained by manually combining results
from many different experiments, an effort that had
taken about two decades.

The consensus network contains 18 expected causal
relationships. Sachs et al. (2005) found two new un-
expected causal relations (and experimentally verified
one of them) and obtained one reversed relationship.
However, they did not recover three of the 18 expected
causal relationships. Sachs et al. (2005) hypothesized
that these three missing causal relationships are all in-
volved in feedback loops. As Bayesian networks are
acyclic by definition, this could explain why they were
not found by their method. Additional support for
this hypothesis can be found by simple inspection of
the data, which already shows strong evidence for the
presence of feedback loops. In later work (Itani et al.,
2010), the authors proposed a heuristic method for
causal discovery that takes into account the possibility
of feedback. An alternative approach to dealing with
cycles was proposed by Schmidt and Murphy (2009).

A common feature of the causal discovery methods
that have been applied so far on this protein data set
is that they all work with discretized data: although
the raw measurements are continuous-valued, the data
is preprocessed by discretization into three coarse cat-
egories (low, medium and high abundance). We argue
that discretization of the data as a preprocessing step
should be avoided if possible, as this throws away much



of the information in the data that could be useful for
causal discovery. Recently, several methods have been
proposed for causal discovery from continuous-valued
observational data by exploiting independence of the
estimated noise with the input (Shimizu et al., 2006;
Hoyer et al., 2009; Zhang and Hyvärinen, 2009; Pe-
ters et al., 2011). Similar ideas have also been studied
in the cyclic case (Lacerda et al., 2008; Mooij et al.,
2011). More recently, cyclic methods that can deal
with hidden common causes and with a combination
of observational and experimental data have been pro-
posed (Eberhardt et al., 2010; Hyttinen et al., 2012).

However, none of these methods are directly applica-
ble to the (Sachs et al., 2005) data set, among others
because they model interventions in a different way.
Most interventions performed by Sachs et al. (2005)
change the activity of a compound, not its abundance,
and therefore the standard formalism for interventions
(Pearl, 2000) is not applicable. Sachs et al. (2005)
and Itani et al. (2010) propose two different ways of
modeling these interventions that both exploit the fact
that the data has been discretized. Eaton and Murphy
(2007) consider different possible intervention types
and learn the interventions from the data, instead of
using the biological background knowledge in (Sachs
et al., 2005). Eaton and Murphy (2007) conclude that
the data can be best explained by assuming that most
interventions are not as specific as originally assumed
by Sachs et al. (2005), but act on multiple compounds
simultaneously (also known as “fat-hand” interven-
tions). In this work, we offer an alternative explana-
tion, where we assume that interventions are specific
(i.e., act only on a single compound), but where most
interventions change the activity of that compound
(i.e., the way in which it influences the equilibrium dis-
tributions of its direct effects). In addition, feedback
loops may increase the impact of an intervention.

The goal of this work is to develop a practical method
for analyzing data sets such as the protein data col-
lected by Sachs et al. (2005). The method we pro-
pose here does not start by throwing away informa-
tion (by discretizing the data as a preprocessing step),
but works directly with the original continuous-valued
measurements. As we expect feedback loops to play
a prominent role in biological networks, we also drop
the assumption of acyclicity. Another feature of our
method that distinguishes it from many existing ap-
proaches is that we will not assume linearity of the
causal mechanisms but allow for nonlinearities. Fi-
nally, we propose a natural and in our opinion more
realistic way of modeling activity interventions.

2 Modeling assumptions

In this section we describe our modeling assumptions
in detail. First of all, the data form a “snapshot” of
a dynamical process: for each individual cell we have
one multivariate measurement done at a single point
in time. Therefore, we will assume that the cells have
reached equilibrium when the measurements are per-
formed (an assumption called “homeostasis” in biol-
ogy). This is an approximation, but a necessary one
in the light of the absence of time-series data.

2.1 Structural Causal Models

We will assume that the equilibrium data can be de-
scribed by a Structural Causal Model (SCM) (Pearl,
2000), also known as Structural Equation Model
(SEM) (Bollen, 1989). In particular, for D observed
variables x1, . . . , xD (corresponding in our case to the
abundances of the biochemical compounds), the model
consists of D structural equations

xi = fi(xpa(i), εi) i = 1, . . . , D (1)

where pa(i) ⊆ {1, . . . , D} \ {i} is the set of parents
(direct causes) of xi, fi is the causal mechanism de-
termining the value of the effect xi in terms of its direct
causes xpa(i) and a disturbance variable εi represent-
ing all unobserved other causes of xi. In addition, an
SCM specifies a joint probability density p(ε) on the
disturbance variables ε1, . . . , εD. Following Sachs et al.
(2005), we will make the assumption of causal suffi-
ciency, which means that we exclude the possibility
of confounders (i.e., hidden common causes of two or
more observed variables). In other words, we assume
that the disturbance variables are jointly independent:
p(ε) =

∏n
i=1 p(εi). Without loss of generality, we will

additionally assume that E(ε) = 0 and Var(ε) = I.

The structure of a causally sufficient SCM M can
be visualized with a directed graph GM with vertices
{x1, . . . , xD} and edges xj → xi if and only if fi de-
pends on xj , i.e., if j ∈ pa(i). As we do not exclude
the possibility of feedback loops, the graph GM is not
necessarily acyclic, but may contain directed cycles.
We will assume that for each joint value ε of the dis-
turbance variables, there exists a unique solution x(ε)
of the D structural equations (1). Note that this as-
sumption is automatically satisfied in the acyclic case,
but that it induces additional constraints in the cyclic
case. This assumption implies that the distribution
p(ε) induces a distribution p(x) on the observed vari-
ables. This induced distribution is called the obser-
vational distribution of the SCM. In addition, we will
assume that the mapping ε 7→ x is invertable. In that



case, the observational density is given explicitly by:

p(x) = p
(
ε(x)

) ∣∣∣∣det
dε

dx

∣∣∣∣ =

(
D∏
i=1

p(εi)

)∣∣∣∣det
dε

dx

∣∣∣∣ . (2)

2.2 Interventions

The SCM literature typically considers “perfect inter-
ventions”, which are modeled as follows (Pearl, 2000).
Under an intervention “do(xi = ξi)” that forces the
variable xi to attain the value ξi, the SCM is adapted
by replacing the structural equation for xi with the
equation xi = ξi, while leaving the other aspects of
the SCM invariant. In particular, the distribution on
the disturbance variables p(ε) stays the same; how-
ever, because one of the structural equations changed,
the induced distribution on the observed variables x
changes into the interventional distribution, with den-
sity p

(
x |do(xi = ξi)

)
. In the cyclic case, we also need

to assume that under the relevant interventions, there
exists a unique solution x(ε) of the (modified) struc-
tural equations for each value of ε; otherwise, the in-
duced (interventional) distribution will be ill-defined.

These “perfect interventions” correspond in the case
of the signaling network data with interventions that
change the abundance of a compound. However, many
of the interventions actually performed by (Sachs
et al., 2005) do not directly change the abundance, but
rather its activity, i.e., the extent to which it influences
abundances of other compounds. In their original pa-
per, (Sachs et al., 2005) model these “activity interven-
tions” in the following way: if the activity of compound
i is inhibited, the actual measurements of xi are re-
placed with the value “low”, whereas if compound i is
activated, the actual measurements of xi are replaced
with the value “high”. Not only does this approach
throw away data, it also depends on the discretization
of the data. In later work, (Itani et al., 2010) model
these interventions in a different way: they split the
variable xi into two parts, xi and xinti , where xinti is
assigned the value corresponding to the intervention
(either “low” in case of an inhibitor or “high” in case of
an activator), and xi represents the abundance of com-
pound i measured in the interventional experiment. In
the modified graph corresponding to the intervention,
the outgoing arrows from xi now become outgoing ar-
rows of xinti instead, and all incoming arrows go into
xi. This approach no longer throws away data, but it
still requires a coarse discretization of the data.

Instead, we propose to model these activity interven-
tions as follows: if an intervention changes the ac-
tivity of compound i, we adapt the SCM by allow-
ing the children1 j of compound i to change their

1The children of i are all j such that i ∈ pa(j).

causal mechanism fj(xpa(j), εj) into a different func-

tion f̃j(xpa(j), εj), whereas the other aspects of the
SCM (including its structure) remain invariant. In our
context, this new causal mechanism f̃j is unknown and
we learn it from the data. In particular, we do not use
the background knowledge provided by Sachs et al.
(2005) that specifies whether an activity intervention
is an inhibitor or an activator.

2.3 Approximating causal mechanisms

So far, we have not assumed linearity, and in theory we
could proceed by modeling the causal mechanisms as
nonparametric nonlinear functions, e.g., as Gaussian
Processes (Rasmussen and Williams, 2006). For com-
putational reasons, however, we linearize the causal
mechanisms in the SCM locally around their average
input (〈Xpa(i)〉, 0):2

fj(xpa(j), εj) ≈
D∑
i=1

Bijxi + µj + αjεj

where we introduced the matrix B ∈ RD×D and vec-
tors µ,α ∈ RD×1, defined by:

Bij :=
∂fj
∂xi

∣∣∣∣∣
(〈Xpa(j)〉,0)

, αj :=
∂fj
∂εj

∣∣∣∣∣
(〈Xpa(j)〉,0)

,

µj := fj
(
〈Xpa(j)〉, 0

)
−

∑
i∈pa(j)

∂fj
∂xi

∣∣∣∣∣
(〈Xpa(j)〉,0)

〈Xi〉.

Note that the structure of the matrix B reflects the
graph structure GM of the model: it has zeroes on the
diagonal, and Bij is the (linearized) direct effect of xi
on xj , which can only be nonzero if i ∈ pa(j).

This means that for a single experimental condition,
we assume the following linearized structural equa-
tions:

xj = xTB·j + µj + αjεj .

For an i.i.d. sample of N data points arranged in the
matrix X ∈ RN×D and latent disturbance variables
E ∈ RN×D, these can be written in matrix notation:

X(I −B) = 1Nµ
T +EαT . (3)

Under some upstream intervention, the average input
(〈Xpa(i)〉, 0) of the causal mechanism fi for compound
i may change. If the change is large with respect to the
curvature of fi, we may need to relinearize fi around
the new average input under the intervention (even
though the nonlinear function fi itself may have re-
mained unchanged, see also Figure 2(a)). This will be
discussed in detail in section 2.5.

2We denote the empirical mean of a variable x by 〈X〉.
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c Intervention type
1 none (observational)
2 activity of x1
3 activity of x2
4 abundance of x3
5 abundance of x1

mic(G) =

 1 1 1 1 2
1 2 1 1 1
1 2 1 3 1
1 1 2 1 1

 Mi(G) =

 1
2
3
2



Figure 1: Example of a graph G, experimental meta-
data, and the corresponding mechanism labels mic(G).
As an example, m32(G) = 2 because the second ex-
perimental condition, an activity intervention on x1,
changes the causal mechanism of x3. In the third con-
dition, the causal mechanism of x3 is identical to that
in the first condition, so m33(G) = m31(G) = 1.

2.4 Likelihood

Assuming that all disturbance variables εi have the
same probability density p(εi) = p0, the likelihood of
i.i.d. dataX for a single experimental condition follows
directly from expressions (2) and (3):

p(X |B,µ,α) =

N∏
n=1

[
|det(I −B)| ·

D∏
i=1

1

αi
p0

(
(X(I −B))ni − µi

αi

)]
.

(4)

We will consider two choices for the noise density,
Gaussian noise p0(e) = 1√

2π
exp(− 1

2e
2) and super-

Gaussian noise that is often used in the Indepen-
dent Component Analysis (ICA) literature, p0(e) =
1/
(
π cosh(e)

)
. Note that in the acyclic case, det(I −

B) = 1, and therefore the likelihood factorizes over
variables. This simplification does not occur in the
cyclic case, as the likelihoods of different variables may
become coupled through the determinant.

Combining data from different experimental condi-
tions c = 1, . . . ,K is straightforward:

p
(
(X)Kc=1 | (B(c),µ(c),α(c))Kc=1

)
=

K∏
c=1

p(X(c) |B(c),µ(c),α(c)),

where the superscript “(c)” labels data and parameters
corresponding to the c’th experimental condition.

2.5 Parameter priors

We denote all parameters of the linearized SCM cor-
responding to experimental condition c by Θ(c) :=

X
pa(i)

X
i

f
i

condition A

condition B

(a)

X
pa(i)

X
i

f
i

condition A

condition B

(b)

Figure 2: (a) Even though some causal mechanism
fi(xpa(i), εi) stays invariant, its linearization around
the new equilibrium may have changed. (b) In this
case, even a nonlinear causal mechanism cannot fit
the data well. Another structure, assigning different
causal mechanisms to conditions A and B, may better
fit the data.

(B(c),µ(c), logα(c)), and the subset of parameters cor-

responding only to the causal mechanism f
(c)
i of the

i’th compound as Θ
(c)
i := (B

(c)
·i , µ

(c)
i , logα

(c)
i ). Us-

ing the Bayesian approach to multi-task learning, we
couple these K learning problems by imposing a prior
p
(
Θ(1), . . . ,Θ(K) | G

)
on the parameters that embod-

ies our assumption that these parameters should be re-
lated in specific ways, conditional on the hypothetical
causal structure G of the SCM. The hypothetical struc-
ture G always constrains the structure ofB in the sense

that if i 6∈ paG(j), B
(c)
ij = 0 for all c = 1, . . . ,K. We

consider various choices to couple the nonzero parame-
ters of the B(c), and the location and scale parameters
µ(c) and α(c), across experimental conditions.

For each compound i, the prior introduces couplings

between Θ
(c)
i for all conditions c which have the same

causal mechanism (i.e., if f
(c′)
i = f

(c)
i ). An interven-

tion may change fi into another function f̃i; whether
or not such a mechanism change happens, depends
on the experimental condition c and on the hypo-
thetical causal structure G (remember that an abun-
dance intervention on compound i changes its causal
mechanism fi and an activity intervention on com-
pound i changes the causal mechanisms of its children
{fj}j∈chG(i)). Let the causal mechanism for compound

i in condition c be given by f
(c)
i = φi,mic(G), where

the label mic(G) ∈ {1, 2, . . . ,Mi(G)} depends on the
causal structure G (see also Figure 1). Here, Mi(G)
is the total number of different causal mechanisms for
compound i needed to account for all experimental
conditions. We take a prior that couples parameters
corresponding to the same causal mechanisms:

p(Θ | G) =

D∏
i=1

Mi(G)∏
m=1

p
(
(Θ

(c)
i )mic(G)=m | G

)
.



Note that this prior couples parameters Θ
(c)
i with

Θ
(c′)
i only if mic(G) = mic′(G).

We will consider two different choices for the factors
p
(
(Θ

(c)
i )mic(G)=m | G

)
, corresponding to different de-

grees of approximation of the fact that the parameters

{Θ(c)
i }Kc=1 correspond with linearizations of the latent

nonlinear causal mechanisms {φi,m}Mi(G)
m=1 .

2.5.1 Linear mechanisms prior

This prior assumes that no relinearizations of the de-
scendants of an intervention node are required. In
other words, if one or more causal mechanisms change
as a result of some intervention, the input distributions
of the descendant variables are assumed to change not
too much, such that their linearization remains ap-
proximately the same. We can then use hard equality
constraints:

p
(
(Θ

(c)
i )mic(G)=m | G

)
=

∫
p(Θm

i )

K∏
c=1

mic(G)=m

δ(Θ
(c)
i −Θm

i ) dΘm
i

with

p
(
Θm
i = (b, µ, a)

)
= N (b |0D, λ2diag(Gi,·))N (µ | 0, τ)N (a | 0, τ)

where a = logα and where we let τ →∞, which yields
a flat prior over the location µi and Jeffrey’s prior over
the scale αi. We have a single hyperparameter λ for

penalizing the nonzero components of b = B
(c)
·i .

2.5.2 Nonlinear mechanisms prior

The previous prior does not deal well with the sit-
uation in Figure 2(a). Here, condition A could be
the baseline (observational condition), and condition
B could be an intervention that changes something up-
stream of xi, but keeps the mechanism fi unchanged.
Because the upstream intervention may lead to a
change in input distribution of the parents xpa(i), relin-
earization of fi around a new average input is desirable
in general. Therefore, we introduce a prior that allows
for downstream relinearizations. We have tried a prior
that allows all descendants of an intervention target in

condition c 6= 1 to pick parameters Θ
(c)
i independent

of the baseline parameters Θ
(1)
i in the observational

setting c = 1. That prior does yield better results in
the acyclic case than the prior in Section 2.5.1, but
in the cyclic case it leads to “cheating” in the sense
that the prior strongly encourages to introduce one big
directed cycle that connects all the variables. Then,
each variable is a descendant of each other variable,

and can pick new (independent) parameters in each
experimental condition, effectively completely decou-
pling all experimental conditions.

The solution we propose here is a compromise that
replaces the hard equality constraints of the prior
in section 2.5.1 by soft constraints. The idea is to

model each causal mechanism f
mic(G)
i (xpa(i), εi) as

a Gaussian Process (GP) and interpret the parame-

ters (B
(c)
·i , µ

(c)
i , α

(c)
i ) as pseudo-data for the GP (Solak

et al., 2003). They note that for Gaussian Process
regression, one is not necessarily restricted to using
pairs of input and output, but one can combine this
data with data regarding the derivative of the output
with respect to some input dimension, at a given in-
put location. In our case, the “data” are actually the

linearized parameters (B
(c)
·i , µ

(c)
i , α

(c)
i ), which are cou-

pled to the real data via the likelihood (4). We use an
isotropic squared exponential covariance function:

k
(
(xpa(i), εi), (x̃pa(i), ε̃i)

)
= σ2

out exp

(
−

(xpa(i) − x̃pa(i))
2

2σ2
in

)
exp

(
− (εi − ε̃i)2

2σ2
in

)
and add a small “jitter” term for numerical stability
purposes (i.e., we add σ2

jitterI to the kernel matrix K).
Similar to the prior in 2.5.1, this GP prior couples
different c for the same i. As the determinant factor
in the likelihood couples different i for the same c,
we cannot simply use the trick of Solak et al. (2003)
(who use the posterior distribution of the biases and
slopes of Bayesian linear regressions as pseudo-data),
but have to apply a more global approximation scheme
(see Section 2.6).

This prior deals well with the situation in Figure 2(a),
as the pseudo-data corresponding to the two local lin-
ear models would have a high probability under this
GP prior. On the other hand, the GP prior strongly
penalizes situations such as in Figure 2(b), in line with
our intuition that the same causal mechanism fi can-
not be a good model for the data of both condition A
and B in that case.

2.6 Structure priors and scoring structures

We use an approximate Bayesian approach to calculate
the posterior probability of a putative causal graph G,
given the data and prior assumptions. In principle,
exact Bayesian scoring would yield automatic regular-
ization (if our assumption that there is no confounding
holds true). However, as the posterior distribution is
intractable, we have to approximate it. Given a hypo-
thetical causal structure G, we numerically optimize
the posterior with respect to the parameter and em-
ploy the Laplace approximation (Laplace, 1774) to get



an approximation of the evidence (marginal likelihood)
for that structure.

The number of possible causal graphs G grows very
quickly as a function of the number of variables: for
the Sachs et al. (2005) data, which has D = 11 vari-
ables, there are about 3.1 × 1022 different directed
acyclic graphs (DAGs) and 2D

2−D ≈ 1.2 × 1033 di-
rected graphs. Even though calculating the evidence
for a single structure is doable, exhaustive enumeration
or scoring is clearly hopeless. Therefore, we use greedy
optimization methods (local search) in the hope to find
the important modes of the posterior over causal struc-
tures. We use simple priors over structures: a flat prior
over directed graphs, a flat prior over acyclic graphs,
and flat priors over all graphs (either acyclic or all di-
rected graphs) that have at most n edges.

If exact Bayesian inference were feasible, we could ei-
ther select the best scoring structure, or average over
structures according to their evidence, in order to ob-
tain predictions. However, as we are using approx-
imate inference, we will also use stability selection
(Meinshausen and Bühlmann, 2010) to assess the sta-
bility of posterior edge probabilities.

3 Application on real-world data

In this section, we describe the results of our proposed
method on the flow cytometry data set.

3.1 Properties of the data

The data published by Sachs et al. (2005) is a good
test case for causal discovery methods for several rea-
sons. First, the high quality of the data:3 each sample
is a multivariate measurement in a single cell (usually,
only population averages are measured), the number of
data points is large (about 104 in total), and the mea-
surement noise seems to be relatively low. Further-
more, knowledge about the “ground truth” is avail-
able, which helps verification of results. Finally, good
results have already been demonstrated with acyclic
causal discovery methods, but the data is interesting
for our purposes as it shows evidence of feedback rela-
tionships.

Figure 3(a) shows a subset of the data as a heat map.
Table 1 describes the biological background knowledge
about the different experimental conditions: which
reagent has been added, and what is the known effect
of this reagent? We used a subset of 8 of the avail-

3However, we did discover an error in the published
data: the first 848 measurements of RAF and MEK in the
third experimental condition (AKT-inhibitor) are identical
to those in the seventh condition (LY294002). We informed
the authors about this and decided to ignore this issue here.

able 14 experimental conditions. Figure 3(b) shows
whether the interventional distributions are signifi-
cantly different from the observational distribution, for
each variable and each experimental condition. Fig-
ure 4 shows two scatter plots of the data in two differ-
ent experimental conditions. Note the almost perfect
linear relationship between log-abundance of Raf and
Mek in condition 5, which implies that the measure-
ment noise (i.e., the noise added by the measurement
device) must be relatively small. This also shows a
strong dependence between Raf and Mek, which is ex-
pected from the consensus network (where Raf is a
direct cause of Mek). On the other hand, note the
absence of dependence between Mek and Erk. Assum-
ing the consensus (Mek causes Erk) to be true, this is
an example of a faithfulness violation. The data ac-
tually shows more such faithfulness violations, which
makes causal discovery challenging (but not necessar-
ily impossible, since we do have interventional data).
Furthermore, note that the intervention on Mek (con-
dition 5) changes the Raf concentration. So, assuming
that the consensus that Raf causes Mek is true, this
is an example of feedback. Another example of feed-
back is that changing the activity of Mek results in a
change of abundance of Mek itself.4 Finally, the fig-
ure shows one more aspect of the data: it is censored
by the detection limit of the measurement device (i.e.,
all abundances lower than some threshold θ = 1 are
assigned the value θ).

Table 1: Experimental metadata: conditions we used
for inferring the causal structure. The information
about the type of intervention is used as background
knowledge for causal discovery.

c Reagent Intervention
1 - none (observational)
2 Akt-inhibitor inhibits AKT activity
3 G0076 inhibits PKC activity
4 Psitectorigenin inhibits PIP2 abundance
5 U0126 inhibits MEK activity
6 LY294002 changes PIP2/PIP3 mechanisms
7 PMA activates PKC activity
8 β2CAMP activates PKA activity

3.2 Results

The consensus network and the reconstruction by
Sachs et al. (2005) are illustrated in Figure 5.

We experimented with several different combinations
of structure and parameter priors. We used hyperpa-
rameter λ = 10 for the linear mechanisms prior (Sec-
tion 2.5.1), and σin = σout = 10 for the nonlinear

4An alternative explanation of these observations could
be non-specificity of the intervention reagents (Eaton and
Murphy, 2007).
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Figure 3: (a) Subset of the data from Sachs et al.
(2005). Color corresponds with log-abundance (red
is high, blue is low); columns correspond with com-
pounds (phosphorylated proteins and phospholipids);
numbered subsets correspond with different experi-
mental conditions (see also Table 1); lines within a row
correspond with data samples (i.e., individual cells).
(b) Negative log p-value of the Kolmogorov-Smirnov
two-sample test, comparing the data of condition c (on
the vertical axis) with the observational data (condi-
tion c = 1). Color indicates how significantly different
the two distributions are (red meaning that the differ-
ence is extremely significant).
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Figure 4: Scatter plot of log abundances of Mek vs.
Raf (left) and Erk vs. Mek (right). Blue: condition 1
(no intervention); Red: condition 5 (MEK inhibitor).

mechanisms prior (Section 2.5.2), with σjitter = 0.01.
Using smaller values of the jitter did not yield sig-
nificantly different results, but increased computa-
tion time considerably. Figure 6 shows how the log-
evidence depends on n, the maximum number of edges.
Each point in the plot is the result of a new greedy
optimization from a different random starting point.
Especially for higher numbers of edges, local maxima
over structures are present, but we often seem to find
the global maximum with only a few restarts of the
local search procedure. Our stability selection results
with a constraint on the maximum number of edges
are shown in Figure 5(c) (with acyclicity constraint)
and Figure 7 (cycles allowed).

In the strongly regularized acyclic case (Figure 5(c))
the precise form of the multitask prior is not very
relevant: almost identical results are obtained with
the (non)linear prior and/or (non-)Gaussian noise (not
shown). The selected edges are very robust. Notice
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Figure 5: (a) Consensus network, according to Sachs
et al. (2005); (b) Reconstruction of the signaling net-
work by Sachs et al. (2005), in comparison with the
consensus network; (c) Our best acyclic reconstruc-
tion with at most 17 edges. Black edges: expected.
Blue edges: unexpected, novel findings. Red dashed
edges: missing.
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Figure 6: Negative log-evidence as a function of the
maximum number of edges. Each point is a local op-
timum with respect to structures.

that our reconstruction shows less similarity with the
consensus network than the reconstruction of Sachs
et al. (2005) (cf. Figure 5(b)). However, when looking
more closely at the unexpected edges in our acyclic
reconstruction, one sees that they actually explain
the data quite well. For example, our finding that
Mek causes Raf (instead of vice versa) is consistent
with the strong change in Raf abundance due to the
Mek inhibitor (condition 5, see also Figure 4 and Fig-
ure 3(b)).5 Similarly, the other unexpected edges in
our reconstruction can all be understood qualitatively
by combining the information in Figure 3(b) with that
in Table 1.

When allowing for cycles, the dependence on the prior
is more noticeable (see Figure 7). Nevertheless, there is
reasonable agreement between the results for different
priors. We see evidence for three two-cycles: Mek�
PKC, Akt�Erk and Mek�PKA. When regularizing
less strongly by increasing n (the number of edges), re-

5Given this strong effect, it is surprising that Sachs et al.
(2005) do find the opposite arrow. Presumably this is due
to the fact that they are using information about the sign
of the activity intervention (i.e., whether it is an activator
or an inhibitor).
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Figure 7: Stability selection results with a constraint on the number of edges, for various priors. Edge thickness
and intensity reflect the probability of selecting that edge in the stability selection procedure.

Table 2: Negative log-evidences of our estimated struc-
tures (with max. 17 edges) for various structure and
parameter priors in comparison with the negative log-
evidences of the consensus structure and optimal struc-
ture found by Sachs et al. (2005) with the same param-
eter prior. All values are in units of 103.

Structure & Parameter Prior Consensus Sachs This work
Acyclic, linear, Gaussian 96.5 92.0 83.7
Cyclic, linear, Gaussian 96.6 92.1 80.4
Acyclic, nonlinear, Gaussian 87.8 81.8 77.7
Cyclic, nonlinear, Gaussian 87.8 81.8 76.6
Cyclic, nonlinear, non-Gaussian 85.4 79.2 72.9

sults become more prior dependent. There also seems
to be some evidence for a two-cycle PIP2�PLCg.

In the acyclic case, parameter estimates conditional
on graph structure are very robust. In the cyclic case,
this no longer holds, and parameters can often not be
estimated reliably from the data (as can be concluded
from their posterior variance according to the Laplace
approximation, but also from the lack of robustness of
their estimates and the occurence of local maxima of
the posterior parameter distribution). Empirically, we
observed that the structure of the estimated graph is
much more robust, though.

In Table 2 we compare the scores of some of our struc-
tures with the score of the consensus structure and
that of the reconstruction by Sachs et al. (2005). Un-
surprisingly, our scores are always at least as good (be-
cause they result from an optimization of scores over
structures, whereas the other structures are fixed), but
in all cases, the improvement is considerable.

4 Discussion

Performing a proper causal analysis of the (Sachs
et al., 2005) data is a challenging task for various rea-
sons. First of all, time-series data are absent, so we can
only work under the equilibrium assumption. Both

confounders and feedback loops are expected to be
present. Most of the interventions cannot be appropri-
ately modeled with the standard formalism, the “do-
operator” (Pearl, 2000), but need to be modeled in an-
other way. Furthermore, assumptions about the speci-
ficity of interventions may be unrealistic. Finally, sev-
eral strong faithfulness violations seem to be present.
This work addresses several of these issues.

Our analysis confirms the hypothesis that several feed-
back loops are present in the underlying system. We
showed that our method gives a more accurate quan-
titative description of the data at comparable model
complexity compared to existing methods. An in-
teresting question from the causal point of view is
whether or not our method also gives more accurate
predictions for the effects of unseen interventions. We
hope to address this question in the future. However,
it is likely that it can only be answered definately by
carrying out additional validation experiments.

We observed empirically that in the cyclic case, the
parameters are often not identifiable, even though the
structure is. This observation has important impli-
cations for the ability to make predictions for unseen
interventions: even though reliable qualitative predic-
tions seem possible (e.g., “an intervention on xi has
(no) effect on xj”), quantitative predictions depend
strongly on the parameter estimates. As the parame-
ters cannot be estimated reliably from this data, the
quantitative predictions will be unreliable as well. This
does not mean that making such quantitative predic-
tions is hopeless in principle, though. Indeed, the al-
ternative conclusion could simply be that more exper-
imental data is needed in order to do so reliably.

In future work, we plan to compare our local lineariza-
tion approach with other approximations, e.g., FITC
(Snelson and Ghahramani, 2006). Also, a way to take
into account the information about the sign of the ac-
tivity intervention may further improve the results. Fi-
nally, we hope to find collaborators for experimental



validation of our findings.
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