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Abstract

This paper is devoted to fair optimization
in Multiobjective Markov Decision Processes
(MOMDPs). A MOMDP is an extension of
the MDP model for planning under uncer-
tainty while trying to optimize several re-
ward functions simultaneously. This applies
to multiagent problems when rewards define
individual utility functions, or in multicrite-
ria problems when rewards refer to different
features. In this setting, we study the deter-
mination of policies leading to Lorenz-non-
dominated tradeoffs. Lorenz dominance is a
refinement of Pareto dominance that was in-
troduced in Social Choice for the measure-
ment of inequalities. In this paper, we in-
troduce methods to efficiently approximate
the sets of Lorenz-non-dominated solutions of
infinite-horizon, discounted MOMDPs. The
approximations are polynomial-sized subsets
of those solutions.

1 INTRODUCTION

Planning under uncertainty is a central problem in de-
veloping intelligent autonomous systems. This prob-
lem is often represented by a Markov Decision Process
(MDP) that provides a general formal framework for
optimizing decisions in dynamic systems [2, 11]. Appli-
cations of MDPs occur in contexts such as robotics, au-
tomated control, economics, and manufacturing. The
MDP model is characterized by a set of possible states,
a set of possible actions enabling transitions from
states to states, a reward function that gives the im-
mediate reward generated by any admissible action a
is any state s, and a transition function that gives, for
any state-action pair (a, s), the resulting probability
distribution over states. In such problems, the aim is
to identify an optimal policy, i.e., a sequence of de-

cision rules giving, at any stage of the process, and
in any state, the action that must be selected so as
to maximize the expected discounted reward over the
long run.

However, there are various planning contexts in which
the value of a policy must be assessed with respect to
different point of views (individual utilities, criteria)
and is not necessarily representable by a single reward
function. This is the case in multiagent planning prob-
lems [3, 9] where every agent may have its own value
system and its own reward function. This is also the
case of multiobjective problems [1, 15, 4], for example
path-planning problems under uncertainty when dis-
tance, travel time, and energy consumption are to be
minimized simultaneously.

In such problems, resorting to n distinct reward func-
tions is natural, so as to express utilities of actions
with respect to the different objectives. Hence, MDPs
are generalized into MOMDPs (Multiobjective Markov
Decision Processes) by extending the reward function
to map a state-action pair to a reward vector which
assigns a scalar reward for each objective. The value
function will also be vector-valued, and the Bellman
equation will continue to define the value of a policy
in all states [27]. Note that a policy that maximizes
on one objective will not necessarily do the same for
another. Some policies will favor one objective, some
another objective, and some will be balanced towards
all objectives. Even when the reward functions could
be aggregated linearly, keeping them separate enables
a better control of tradeoffs and better recommenda-
tion possibilities. This explains the current interest
for multiobjective (multicriteria or multiagent) exten-
sions of Markov Decision Processes in the literature
[15, 4, 3, 9, 16].

When several objectives must be optimized simulta-
neously, most of the studies on Markov Decision Pro-
cesses concentrate on the determination of the entire
set of Pareto optimal feasible tradeoffs, i.e., reward
vectors (corresponding to feasible policies) that can-



not be improved on one objective without being down-
graded on another objective. However, when random-
ized policies are allowed, there are infinitely many such
policies. Furthermore, when only deterministic poli-
cies are allowed, there are instances of MDPs in which
the size of the Pareto set grows exponentially with the
number of states, thus making its exact determination
intractable.

In practical cases however, there is generally no need
to determine the entire set of Pareto-optimal feasible
tradeoffs, but only a reduced sample of solutions repre-
sentative of the diversity of feasible tradeoffs. For this
reason, some authors propose to work on the determi-
nation of a polynomially sized approximation of the
Pareto set covering within a given threshold all feasi-
ble tradeoffs [19]. When richer preference information
is available, an alternative approach consists in opti-
mizing a scalarizing function measuring the value of
any feasible reward vector [25]. In multicriteria op-
timization, the scalarizing function can be any pref-
erence aggregation function monotonically increasing
with Pareto dominance or any measure of the distance
to a given target in the space of criteria (reference
point approach, [28]). In multiple agents problems, the
scalarizing function can be any Social Welfare Func-
tion aggregating individual rewards.

In this paper we propose a third approach that con-
sists in focusing the search on Lorenz-optimal trade-
offs, i.e., Pareto-optimal tradeoffs achieving a fair shar-
ing of rewards among objectives. Lorenz dominance
(L-dominance for short) is a partial preference order
refining Pareto-dominance while including an idea of
fairness in preferences. It is used for the measure-
ment of inequalities in mathematical economics [24],
for example to compare income distributions over a
population. In our context, it can be used to compare
reward vectors by inspecting how they distribute re-
wards over components. L-dominance is grounded on
an axiomatic principle stating that any policy modifi-
cation that induces a reward transfer reducing inequal-
ities in the satisfaction of objectives will improve the
solution. Within the Pareto-set, the subset of Lorenz-
optimal solutions deserve special attention because it
includes all tradeoffs of interest provided a balanced
reward vector is sought. Moreover, the definition of
Lorenz dominance does not require any specific pref-
erence information (neither weights nor target trade-
offs), beyond the fact that there is a preference for fair
solutions.

The paper is organized as follows: in Section 2 we
introduce basic concepts for MOMDPs, Pareto opti-
mality and Lorenz optimality. Section 3 presents ap-
proximate optimality concepts for multiobjective prob-
lems and establishes preliminary results concerning the

construction of minimal approximation of L-optimal
tradeoffs. In Section 4, we describe a general method
based on linear programming to approximate the set of
L-optimal solutions in the case of n objectives (n ≥ 2)
and a greedy algorithm to find approximation of min-
imal cardinality in the bi-objective case. Finally, in
Section 5 we describe numerical tests on random in-
stances of MDPs showing the efficiency of the proposed
approaches.

2 BACKGROUND

2.1 MARKOV DECISION PROCESSES

A Markov Decision Process (MDP) is a tuple
〈S,A, p, r〉 where: S is a finite set of states, A is a fi-
nite set of actions, p : S×A×S → [0, 1] is a transition
function giving, for each state and action the proba-
bility of reaching a next state, and r : S × A → R
is a reward function giving the immediate reward for
executing a given action in a given state [22].

Solving an MDP amounts to finding a policy, i.e., de-
termining which action to choose in each state, which
maximizes a performance measure. In this paper, we
focus on the expected discounted total reward as the
performance measure. A policy π is called determin-
istic if it can be defined as a function from states
to actions, i.e., π : S → A. A policy π is called
randomized if for each state, it defines a probabil-
ity distribution over actions, i.e., π : S × A → [0, 1]
where ∀s,

∑
a π(s, a) = 1. Note that a determinis-

tic policy is a special case of randomized policy, i.e.,
∀s,∀a, π(s, a) ∈ {0, 1}. The expected discounted total
reward for a randomized policy π in a state s can be
obtained as a solution of the following equation:

V π(s) =
∑
a∈A

π(s, a)[r(s, a) + γ
∑
s′

p(s, a, s′)V π(s′)].

(1)
Function V π : S → R is called the value function of π.

A policy whose value function is maximum in every
state is an optimal policy. In (infinite horizon, dis-
counted) MDPs, an optimal deterministic policy is
known to exist. Such an optimal policy can be found
using linear programming or dynamic programming
techniques such as value iteration or policy iteration
[22].

2.2 MULTIOBJECTIVE MDP

A Multiobjective MDP (MOMDP) is defined as an
MDP with the reward function replaced by r:S ×
A → Rn where n is the number of criteria, r(s, a) =
(r1(s, a), . . . , rn(s, a)) and ri(s, a) is the immediate re-
ward for objective i. Now, a policy π is valued by a



value function V π : S → Rn, which gives the expected
discounted total reward vector in each state and can
be computed with a vectorial version of (1) where ad-
ditions and multiplications are componentwise.

Although MOMDPs can be used to solve some cen-
tralized planning problems involving multiple agents,
it should not be confused with Multiagent MDPs
(MMDPs) introduced in [3], which are models for coor-
dinating agents having independent actions but a com-
mon reward function. In MOMDPs, actions are not
necessarily “distributed” over agents and rewards are
valued by vectors (one per agent) whereas in MMDPs,
there is a single common objective and a consensus
in the evaluation of states; moreover actions are dis-
tributed over agents.

To compare the value of policies in a given state s,
the basic model adopted in most previous studies [8,
26, 27] is Pareto dominance (P-dominance for short).
The weak Pareto-dominance is defined as follows:
∀v, v′ ∈ Rn, v %P v′ ⇔ ∀i = 1, . . . , n, vi ≥ v′i where
v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
n) and Pareto-

dominance as: v �P v′ ⇔ v %P v′ and not(v′ %P v).
For a set X ⊂ Rn, a vector v ∈ X is said to be P-
dominated if there is another vector v′ ∈ X such that
v′ �P v; vector v is said to be P-optimal is there is no
vector v′ such that v′ �P v. For a set X ⊂ Rn, the
set of Pareto-optimal vectors of X, called Pareto set,
is PND(X) = {v ∈ X : ∀v′ ∈ X, not v′ �P v}.

In MOMDPs, for a given probability distribution µs
over initial states, a policy π is preferred to a policy
π′ if

∑
s µsV

π(s) �P
∑
s µsV

π′
(s). Standard meth-

ods for MDPs can be extended to solve MOMDPs by
finding Pareto-optimal policies. We recall the linear
programming approach [26].

max zi =
∑
s∈S

∑
a∈A

ri(s, a)xsa i = 1, . . . , n

(P0)
∑
a∈A

xsa − γ
∑
s′∈S

∑
a∈A

xs′ap(s
′, a, s) = µs ∀s ∈ S

xsa ≥ 0 ∀s ∈ S,∀a ∈ A

Recall that there is a one-to-one mapping between
variables (xsa) satisfying constraints of P0 and ran-
domized policies π (i.e., π(s, a) = xsa/

∑
a xsa) and∑

s∈S
∑
a∈ARi(s, a)x(s, a) =

∑
s µsV

π
i (s) for all i =

1, . . . , n. More specifically, the constraints of P0 de-
fine a polytope whose extreme points are deterministic
policies. For a deterministic policy, in every state s,
xsa is non-null only for one action a. Thus, solving this
multiobjective linear program amounts to optimizing
the objective function

∑
s∈S µsV (s), called the value

vector and interpreted as the expectation of a vector
value function V w.r.t. probability distribution µs.

Following [7], one could add the following constraints

to this linear program, obtaining then a mixed linear
program with 0, 1 variables, to restrict the search to
deterministic policies only:∑

a∈A
dsa ≤ 1 ∀s ∈ S

(1− γ)xsa ≤ dsa ∀s ∈ S, ∀a ∈ A
dsa ∈ {0, 1} ∀s ∈ S, ∀a ∈ A.

(2)

As Pareto dominance is a partial relation, there gener-
ally exist many Pareto-optimal policies. In fact, in the
worst case, it may happen that the number of Pareto-
optimal value vectors corresponding to deterministic
policies is exponential in the number of states as shown
in the following example, adapted from [10].

Example 1 Let N > 0. Consider the following deter-
ministic MOMDP represented in Figure 1. It has N+1
states. In each state, two actions (Up or Down) are
possible except in the absorbing state N . The rewards
are given next to the arcs representing the two actions.
Here, we can take γ = 1 as state N is absorbing. In
this example, there are 2N+1 stationary determinis-
tic policies. Stationary deterministic policies that only
differ from one another on the choice of the action in
the last state N have the same value functions as the
reward and the transition in those states for both ac-
tions are identical. In the initial state 0, the remaining
policies induce 2N different valuation vectors, of the
form (x, 2N − 1 − x) for x = 0, 1, . . . , 2N − 1. Those
different vectors are in fact all Pareto-optimal as they
are on the line x+ y = 2N − 1.

This example suggests that computing all Pareto-
optimal solutions is not feasible in the general case.
Moreover, deciding whether there exists a determin-
istic policy whose value vector P-dominates a given
vector is known to be NP-hard [4, 23].

In this paper, we want to determine a subset of the
Pareto set containing only policies that fairly dis-
tribute rewards among agents. The aim of gener-
ating well-balanced solutions has been tackled with
scalararizing functions such as max-min [18, 12], aug-
mented Tchebycheff norm [21] or WOWA of regrets
[16]. However, each of these criteria focuses on a very
specific idea of fairness and can only be justified when
we have a very precise preferential information. A
more cautious approach is to rely on Lorenz domi-

0 1 . . . N-1 N

(0, 1)

(1, 0)

(0, 2)

(2, 0)

(0, 2N−1)

(2N−1, 0)

(0, 2N )

(2N , 0)

Figure 1: An instance where all deterministic policies
have distinct Pareto-optimal value vectors



nance that is a partial order, leaving room for various
optimally fair solutions. Let us now introduce more
precisely the notions of Lorenz dominance and Lorenz
optimality.

Lorenz dominance relies on a cautious idea of fairness,
namely the transfer principle: Let v ∈ Rn+ such that
vi > vj for some i, j. Then for all ε > 0 such that
ε ≤ vi − vj , any vector of the form v − εei + εej is
preferred to v, where ei (resp. ej) is the vector whose
ith (resp. jth) component equals 1, all others being 0.

This principle captures the idea of fairness as fol-
lows: If vi > vj for some value vector v ∈ Rn+,
slightly improving component vj to the detriment of
vi while keeping the sum unchanged would produce
a better distribution of rewards, and consequently a
more suitable solution. Such transfers reducing in-
equalities are named admissible transfers also known
as Pigou-Dalton transfers in Social Choice Theory. For
example, value vector (10, 10) should be preferred to
(14, 6) because there is an admissible transfer of size
4. Note that using a similar transfer of size greater
than 8 would be counterproductive because it would
increase inequalities in satisfaction. This explains why
the transfers must have a size ε ≤ vi − vj .

The transfer principle provides arguments to discrimi-
nate between vectors having the same average rewards.
When combined with Pareto monotonicity (compat-
ibility of preference with P-dominance), it becomes
more powerful. For example, consider value vectors
(11, 11) and (12, 9) respectively, we can remark that
on the one hand, (11, 11) is better than (11, 10) due to
Pareto dominance and (11, 10) is better than (12, 9)
thanks to the Transfer Principle. Hence, we are able
to conclude that (11, 11) is better than (12, 9) by tran-
sitivity. In order to better characterize those vectors
that can be compared using improving sequences based
on P-dominance and admissible transfers, we recall the
definition of Lorenz vectors and Lorenz dominance (for
more details see e.g. [14, 24]):

Definition 1 For all v ∈ Rn+, the Lorenz Vector as-
sociated to v is the vector:

L(v) = (v(1), v(1) + v(2), . . . , v(1) + v(2) + . . .+ v(n))

where v(1) ≤ v(2) ≤ . . . ≤ v(n) represents the compo-

nents of v sorted by increasing order. The kth compo-
nent of L(v) is Lk(v) =

∑k
i=1 v(i).

Definition 2 Hence, the Lorenz dominance relation
(L-dominance for short) on Rn+ is defined by:

∀v, v′ ∈ Rn+, v %L v′ ⇐⇒ L(v) %P L(v′)

Its asymmetric part is defined by:

v �L v′ ⇐⇒ L(v) �P L(v′).

Within a set X, any element v is said to be L-
dominated when v′ �L v for some v′ in X, and L-
optimal when there is no v′ in X such that v′ �L v.
The set of L-optimal elements in X, called the Lorenz
set, is denoted LND(X). In order to establish the link
between Lorenz dominance and preferences satisfying
the combination of P-Monotonocity and the transfer
principle we recall a result of [5]:

Theorem 1 For any pair of vectors v, v′ ∈ Rn+, if
v �P v′, or if v is obtained from v′ by a Pigou-Dalton
transfer, then v �L v′. Conversely, if v �L v′, then
there exists a sequence of admissible transfers and/or
Pareto-improvements to transform v′ into v.

This theorem establishes Lorenz dominance as the
minimal transitive relation (with respect to inclusion)
satisfying compatibility with P-dominance and the
transfer principle. As a consequence, the subset of
L-optimal value vectors appears as a very natural so-
lution concept in fair optimization problems. A conse-
quence of Theorem 1 is that v �P v′ implies v �L v′.
Hence, L-dominance is a refinement of P-dominance
and the set of L-optimal vectors is included in the set
of P-optimal vectors.

The number of Lorenz-optimal tradeoffs is often sig-
nificantly smaller than the number of Pareto-optimal
tradeoffs. For instance in Example 1, while there
is an exponential number of Pareto-optimal policies,
with distinct value vectors, there are only two Lorenz-

optimal policies with value vectors (b 2
N−1
2 c, d 2

N−1
2 e)

and (d 2
N−1
2 e, b 2

N−1
2 c). Unfortunately, there exist in-

stances where the number of Lorenz-optimal value vec-
tors corresponding to deterministic policies is exponen-
tial in the number of states, as shown in the following
example adapted from [20].

Example 2 Let N > 0. Consider the following deter-
ministic MOMDP represented in Figure 2, which is an
adaptation of Example 1. It has N + 1 states. In each
state, two actions (Up or Down) are possible except in
the absorbing state N . The rewards are given next to
the arcs representing the two actions. Here, we can
take γ = 1 as state N is absorbing.

0 1 2 . . . N

(0, 2N+1 + 2)

(0, 2N+1 + 2)

(0, 21)

(20, 0)

(0, 22)

(21, 0)

(0, 2N−1)

(2N−2, 0)

Figure 2: An instance where all deterministic policies
have distinct Lorenz-optimal value vectors

From state 1, all the possible value vectors are in the
set {

(
x, 2(2N−1 − 1 − x)

)
|x = 0, 1, 2, . . . , 2N−1 − 1}.

Then, from the initial state s0, the possible value vec-



tors are in {
(
x, 3×2N −2x

)
|x = 0, 1, 2, . . . , 2N−1−1}.

The set of Lorenz vectors is then {
(
x, 3× 2N − x

)
|x =

0, 1, 2, . . . , 2N−1−1}, implying that all the Lorenz vec-
tors are Pareto-optimal.

This example shows that, although more discriminat-
ing than Pareto dominance, Lorenz dominance might
leave many solutions incomparable. Therefore, on
large instances, it may be infeasible to determine all
Lorenz non-dominated solutions. Moreover, in deter-
ministic MOMDPs, deciding whether there exists a
policy whose value vector L-dominates a fixed vector
is NP-hard [20].

3 APPROXIMATION OF PARETO
AND LORENZ SETS

3.1 ε-COVERING OF NON-DOMINATED
ELEMENTS

The examples provided at the end of Section 2 show
that, even if we restrict ourselves to deterministic poli-
cies and two objectives, the set of P-optimal trade-
offs and the set of L-optimal tradeoffs may be very
large. Their cardinality may grow exponentially with
the number of states. Hence one cannot expect to
find efficient algorithms to generate these sets exactly.
This suggests that relaxing the notion of L-dominance
(resp. P-dominance) to approximate the Lorenz set
(resp. the Pareto set) with performance guarantees
on the approximation would be a good alternative in
practice. We first recall some definitions used to ap-
proximate dominance and optimality concepts in mul-
tiobjective optimization. We then investigate the con-
struction of an approximation of the set of L-optimal
tradeoffs. First, we consider the notion of ε-dominance
defined as follows [19, 13]:

Definition 3 For any ε > 0, the ε-dominance rela-
tion is defined on value vectors of Rn as follows:

x %εP y ⇔ [∀i ∈ N, (1 + ε)xi ≥ yi].

Hence we can define the notion of approximation of
the Pareto set as follows:

Definition 4 For any ε > 0 and any set X ⊆ Rn of
bounded value vectors, a subset Y ⊆ X is said to be
an ε-covering of PND(X) if ∀x ∈ PND(X), ∃y ∈ Y :
y %εP x.

For example, on the left part of Figure 3, the five black
points form an ε-covering of the Pareto set. Indeed,
dotted lines define 5 cones delimiting the areas where
value vectors are ε-dominated by a black point. One
can see that the union of these cones covers all feasi-
ble value vectors. Of course, a given set X of feasible

Figure 3: ε-coverings of the Pareto set

tradeoffs may include multiple ε-covering sets, set X
is itself an ε-covering of X. In practice, we are in-
terested in finding an ε-covering the size of which is
polynomially bounded.

The strength of the ε-covering concept is derived from
the following result of Papadimitriou and Yannakakis
[19]: for any fixed number of criteria n > 1, for any
finite ε > 0 and any set X of bounded value vectors
such that 0 < xi ≤ K for all i ∈ N , there exists in
X an ε-covering of the Pareto set PND(X) the size of
which is polynomial in log K and 1/ε. The result can
be simply explained as follows: to any reward vector
x ∈ Zn, we can assign vector ϕ(x) the components of
which are ϕ(xi) = d log xi

log(1+ε)e. Due to the scaling and

rounding operation, the number of different possible
values for ϕ is bounded on each axis by dlogK/ log(1+
ε)e. Hence the cardinality of set ϕ(X) = {ϕ(x), x ∈
X} is upper bounded by dlogK/ log(1 + ε)en.

This can easily be illustrated using the right part of
Figure 3 representing a logarithmic grid in the space of
criteria. Any square of the grid represents a different
class of value vectors having the same image through
ϕ. Any vector belonging to a given square covers any
other element of the square in terms of %εP . Hence,
choosing one representative in each square, we cover
the entire set X. If n > 2, squares become hypercubes.
The size of the covering is bounded by the number of
hypercubes in the hypergrid which is dlogK/ log(1 +
ε)en. The covering can easily be refined by keeping
only the elements of PND(ϕ(X)) due to the following
proposition:

Proposition 1 ∀x, y ∈ X,ϕ(x) %P ϕ(y)⇒ x %εP y.

Hence, remarking that for any fixed x1, . . . , xn−1 there
is no more than one Pareto-optimal element in vec-
tors {ϕ(x1, . . . , xn−1, z), z ∈ R} the ε-covering set will
include at most dlogK/ log(1 + ε)en−1 elements. In
Example 1 where n = 2, if we consider the instance
with 21 states, the Pareto set contains more than one
million elements (220) whereas dlog 220/ log 1.1e = 146
elements are sufficient to cover this set with a tolerance



of 10% (ε = 0.1).

Similarly, we can define the notion of approximation
of the Lorenz set as follows:

Definition 5 For any ε > 0 and any set X ⊆ Rn of
bounded value vectors, a subset Y ⊆ X is said to be
an ε-covering of LND(X) if ∀x ∈ LND(X) ∃y ∈ Y :
y %εL x, i.e. L(y) %εP L(x).

In other words, Y is a ε-covering of LND(X) if L(Y ) =
{L(y), y ∈ Y } is a ε-covering PND(L(X)).

Hence, assuming that an algorithm A generates an ε-
covering of P-optimal elements in any set X, there
are two indirect ways of constructing an ε-covering
of LND(X). The first way consists of computing
L(X) = {L(x), x ∈ X} and then calling A to deter-
mine an ε-covering of PND(L(X)). This approach is
easily implementable when the set of feasible trade-
offs X is given explicitly. Unfortunately, in the case
of MOMDPs as in many other optimization problems,
the feasible set X is only implicitly known. We show in
Section 4 how this approach can be modified to over-
come the problem in MOMDPs. A second way consists
of first computing an ε-covering Y of PND(X) with A
and then determine L(Y ) and PND(L(Y )). This yields
an ε-covering of LND(X) as shown by:

Proposition 2 For any set X of vectors, if Y is
an ε-covering of PND(X), then PND(L(Y )) is an ε-
covering of LND(X).

Proof: For any x ∈ PND(X), there is a y ∈ Y such
that y %εP x. Hence (1 + ε)y %P x and L((1 + ε)y) %P
L(x) by Theorem 1. Since L((1 + ε)y) = (1 + ε)L(y)
we obtain (1 + ε)L(y) %P L(x). Also, there is z ∈
PND(L(Y )) such that L(z) %P L(y) and therefore (1+
ε)L(z) %P (1 + ε)L(y). Hence by transitivity we get
(1 + ε)L(z) %P L(x) and therefore L(z) %εP L(x) �

The general result of Papadimitriou and Yannakakis
[19] holds for MOMDPs, as shown by Chatterjee et al.
[4]. For any MOMDP 〈S,A, p, r〉 with discount factor
γ ∈ (0, 1), for all ε > 0, there exists an ε-covering of
Pareto-optimal tradeoffs whose size is polynomial in
|S| (the number of states), |γ|, |R| (an upper bound
on rewards), and 1/ε, and exponential in n. Moreover,
there exists an algorithm to construct an ε-covering of
the Pareto set in time polynomial in |S|, |γ|, |R|, and
1/ε and exponential in n. This algorithm is based on a
systematic inspection of the squares of the grid given in
Figure 1, using linear programming techniques. Hence
when the number of criteria is fixed, Proposition 2 can
be used to show the existence of a fully polynomial
approximation scheme (fptas) for the set of L-optimal
tradeoffs:

Proposition 3 For any fixed number of criteria n >
1, for any MOMDP 〈S,A, p, r〉 involving n criteria and
a discount factor γ ∈ (0, 1), for all ε > 0, there ex-
ists an ε-covering of Lorenz-optimal tradeoffs whose
size is polynomial in |S|, |γ|, |R|, and 1/ε. More-
over, there exists an algorithm to construct an ε-
covering of Lorenz-optimal tradeoffs in time polyno-
mial in |S|, |γ|, |R|, and 1/ε.

Proof: For any fixed n > 1, we know that an ε-
covering of the Pareto set Y of size polynomial in
|S|, |γ|, |R|, and 1/ε can be computed in time poly-
nomial in |S|, |γ|, |R|, and 1/ε. Moreover, we have
PND(L(Y )) ⊆ L(Y ) and |L(Y )| ≤ |Y |, therefore
|PND(L(Y ))| is polynomial in |S|, |γ|, |R|, and 1/ε.
Moreover, L(Y ) can be derived from Y in polynomial
time and then PND(L(Y )) is obtained from L(Y ) in
polynomial time using pairwise comparisons. Proposi-
tion 2 concludes the proof since PND(L(Y )) is known
to form an ε-covering of L-optimal solutions. �

Proposition 2 suggests a two-phase approach: first ap-
proximate the Pareto set and then derive an approx-
imation of the Lorenz set. In the next section we in-
vestigate more direct methods to construct an approx-
imation of the set of Lorenz-optimal tradeoffs.

4 DIRECT CONSTRUCTIONS OF
ε-COVERING OF LORENZ SET

4.1 GENERAL PROCEDURE

We now present a direct procedure for constructing an
ε-covering of the Lorenz set (of bounded size), with-
out first approximating the Pareto set. This procedure
relies on the observation made in the previous sec-
tion: let X be the set of feasible tradeoffs and L(X)
its image through the Lorenz transformation. Then
PND(L(X)), the set of P-optimal vectors in L(X) is
an ε-covering of the Lorenz set.

Hence to any feasible tradeoff x ∈ X, we can assign

a vector ψ(x) where ψ(x)i = d logLi(x)
log(1+ε) e. Function ψ

defines a logarithmic hypergrid on L(X) rather than
on X. Any hypercube defined by ψ in the hypergrid
represents a class of value vectors that all have the
same image through ψ. Any Lorenz vector L(x) be-
longing to a given hypercube covers any other Lorenz
vector L(y) of the same hypercube in terms of %εP .
Hence, the original vectors x, y are such that x %εL y.
Moreover the following property holds:

Proposition 4 ∀x, y ∈ X,ψ(x) %P ψ(y)⇒ x %εL y.

Thus, we can use P -optimal ψ vectors to construct
an ε-covering of the Lorenz set. Besides, due to the



scaling and rounding operations, the number of dif-
ferent possible values for ψ is bounded on the ith

axis by dlog iK/ log(1 + ε)e, where K is an upper
bound such that 0 < xi ≤ K . Hence the car-
dinality of set ψ(X) = {ψ(x), x ∈ X} is upper
bounded by Πn

i=1dlog(iK)/ log(1+ε)e. Moreover, since
Li(x) ≤ Li+1(x) we have ψ(x)i ≤ ψ(x)i+1 for all
i = 1, . . . , n. Therefore, when a ψ(x) does not meet
this constraint the corresponding hypercube is nec-
essarily empty and does not need to be inspected.
Thus the number of hypercubes that must be in-
spected is at most Πn

i=1dlog(iK)/ log(1 + ε)e/n! ≤
Πn
i=1di logK/ log(1 + ε)e/n! ≤ Πn

i=1idlogK/ log(1 +
ε)e/n! = dlogK/ log(1 + ε)en. Hence, by choosing one
representative in each of these hypercubes, we cover
the entire set L(X). The size of the covering is there-
fore bounded by Πn

i=1dlog(iK)/ log(1 + ε)e/n!, which
is smaller than dlogK/ log(1 + ε)en. Let us consider
the following example:

Example 3 If K = 10000, n = 3 and ε =
0.1, the grid scanned in the Lorenz space in-
cludes Πn

i=1dlog(iK)/ log(1 + ε)e/n! = 186, 935 hy-
percubes whereas the grid for the Pareto set includes
dlogK/ log(1 + ε)en = 941, 192 hypercubes (5 times
more).

Thus, this approach is expected to be faster than
the two-phase method presented in the previous sec-
tion. This is confirmed by tests provided in Section
5. Moreover the resulting covering set can be reduced
in polynomial time so as to keep only the elements
of PND(ψ(X)). If any hypercube can be inspected
in polynomial time, this direct approach based on the
grid defined in the Lorenz space provides a fptas for
the set of L-optimal value vectors in MOMDPs. Let
us show now how hypercubes can be inspected using
linear programming.

Let z be the set of feasible value vectors (z1, . . . , zn)
defined by P0 introduced in Section 2. We consider
the following optimization problem designed to test
whether there exists a feasible z whose Lorenz vec-
tor L(z) P-dominates a given reference vector η ∈ Rn
representing the lower corner of an hypercube in the
Lorenz space.

maxLn(z)

(Pη) Lk(z) ≥ ηk, k = 1, . . . , n− 1,

z ∈ Z.

The objective of this optimization program is linear in
variables zi since Ln(z) =

∑n
i=1 zi. However, none of

the constraints is linear since Lk(z) is the sum of the
k greatest components of z which requires sorting the
components for every z. Fortunately, for any fixed z,
the kth Lorenz component Lk(z) can be defined as the

solution of the following linear program [17]:

min

n∑
i=1

aikzi

(PLk
)

{ ∑n
i=1 aik = k

aik ≤ 1 i = 1 . . . n.

aik ≥ 0 i = 1 . . . n.

This does not directly linearize the constraints of Pη
because PLk

is a minimization problem and conse-
quently

∑n
i=1 aikzi ≥ ηk does not imply that Lk(z) ≥

ηk. Fortunately, by duality theorem, Lk(x) is also the
optimal value of the dual problem of PLk

:

max ktk −
n∑
i=1

bik

(DLk
)

{
tk − bik ≤ zi i = 1 . . . n

bik ≥ 0 i = 1 . . . n.

Since DLk
is a maximization problem, imposing con-

straint krk −
∑n
i=1 bik ≥ ηk together with the con-

straints of DLk
implies that Lk(z) ≥ ηk. Hence we

obtain the following linear reformulation of Pη:

max

n∑
k=1

zk

(LPη)

 ktk −
∑n
i=1 bik ≥ ηk, k = 1 . . . n− 1

tk − bik ≤ zi, i, k = 1 . . . n
z ∈ Z.
bik ≥ 0 i, k = 1 . . . n.

Finally, if Z is the set of feasible value vectors
of program P0 (see Section 2), then for any p =
(p1, . . . , pn) ∈ Nn, one can test whether there exists
a randomized policy, the Lorenz vector of which P-
dominates vector: ηpε = ((1 + ε)p1 , . . . , (1 + ε)pn) by
solving program LP ′η below with η = ηpε and checking
that the objective at optimum is greater or equal to
(1 + ε)pn .

max

n∑
k=1

zk

(LP ′η)


zk =

∑
s∈S

∑
a∈A

rk(s, a)xsa, k = 1 . . . n

ktk −
∑n
i=1 bik ≥ ηk, k = 1 . . . n− 1

tk − bik ≤ zi, i, k = 1 . . . n

bik ≥ 0 i, k = 1 . . . n

xsa ≥ 0 ∀s ∈ S,∀a ∈ A

Hence the whole logarithmic hypergrid in the Lorenz
space can be entirely inspected using a polynomial
number of calls to LP ′

ηpε
. One needs at most one

call per integer valued vector p ∈ Nn−1 such that



Figure 4: Grid in the Lorenz space

pi ≤ di logK/ log(1 + ε)e and p1 ≤ p2 ≤ . . . ≤ pn−1.
These vectors p are enumerated in lexicographic order.

This systematic inspection can be significantly sped up
due to the following observation illustrated in Figure 4:
let L(z) be the optimal Lorenz vector obtained by solv-
ing LP ′

ηpε
(represented by a triangle in Figure 4). Then

none of the hypercubes corresponding to an η vector
such that L(z) %P η %P ηpε (white points in Figure
4) needs to be inspected because vectors falling in this
area (colored in grey on Figure 4) are ε-dominated by
L(z). Hence calls to LP ′η for such η can be skipped to
go directly to the next non-dominated η vectors in the
grid (grey points in Figure 4).

This procedure provides an ε-covering of L-optimal
randomized pure policies. Whenever we want to re-
strict the search to deterministic policies, a similar pro-
cedure applies, we just need to add constraints given
in Equation (2) as explained in Section 2. In this case,
program LPηpε becomes a mix-integer linear program.

4.2 MINIMAL ε-COVERINGS: THE
BIOJECTIVE CASE

The grid used to partition the entire space in the above
procedure enables to avoid many unnecessary redun-
dancies in the construction of a covering set because
we keep at most one feasible policy in each hypercube.
However, this procedure does not ensure that a cov-
ering of minimal cardinality will be found. In this
subsection, we propose a greedy approach to gener-
ate an ε-approximation of minimal cardinality for the
Lorenz set (and the Pareto set). The principle of this
approach relies on a general scheme proposed in [6] for
finding a minimal covering of the Pareto set in general
biobjective optimization problems. Considering two
objective functions z1 and z2, the construction con-
sists in solving a sequence of optimization problems
alternating two complementary subproblems:

Restrict-1(α1). For any given value α1, we want to
maximize z2 subject to the constraint z1 ≥ α1. The
procedure returns the optimal value vector or answers
no when no such solution exists.

Restrict-2(α2). For any given value α2, we want to
maximize z1 subject to the constraint z2 ≥ α2. The
procedure returns the optimal value vector or answers
no when no such solution exists.

Hence, the greedy construction of an ε-covering starts
with the initial call v0 =Restrict-2(0). Then we com-
pute the following alternated sequences for n ≥ 1:

un = Restrict-1(vn−1/(1 + ε))

vn+1 = Restrict-2((1 + ε)un).

We let n increase until the feasible domain of Restrict
becomes empty. Point v0 optimizes objective 1 but
does not enter into the covering set. Instead we use u1
which is, by construction, more “central” while still
covering v0. Then, we obtain v1 as the rightmost
Pareto-optimal point on the z1 axis that is not covered
by u1. Like v0, v1 does not enter into the covering. In-
stead we include u2 that improves z2 while covering
v1 and so on. The resulting set {u1, . . . , uq} provides
an ε-covering set of minimal cardinality. This proce-
dure makes only 2q calls to Restrict. Further details
on this greedy approach and its optimality for general
biobjective problems are given in [6].

The specification of procedures Restrict-1 and
Restrict-2 to construct an ε-covering of the Pareto set
of minimal cardinality in biobjective MDPs is straight-
forward from P0. For constructing an ε-covering of
minimal cardinality for the Lorenz set in biobjective
MDPs we solve Restrict-i(αi) using program LP ′i (αi),
for i=1,2, where LP ′i (αi) is a convenient adaptation of
LP ′η defined as follows:

max z3−i

LP ′i (αi)


zk =

∑
s∈S

∑
a∈A

rk(s, a)xsa, k = 1, 2

iti − b1i − b2i ≥ αi,
tk − bjk ≤ zj , j, k = 1, 2

bik ≥ 0 i, k = 1, 2

xsa ≥ 0 ∀s ∈ S, ∀a ∈ A.

Hence, Restrict-i(αi) can be solved in polynomial time
for randomized policies. Whenever we want to restrict
the search to deterministic policies, we just have to
add constraints given in Equation (2). In that case
program LP ′i is a MIP which cannot be expected to
be solved in polynomial time. It is still easily solvable
by current solvers, as is shown in the next section.

5 EXPERIMENTAL RESULTS

We tested the different methods presented in this
paper on random instances of MOMDPs. The re-
wards on each objective were randomly drawn from
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Figure 5: ε approximation of Pareto and Lorenz sets

ε 0.05 0.1 0.15 0.2
L(PNDε) 265.7 169.4 126.7 101.7
LNDε 5.4 4.8 4.4 4.2

Table 1: Computation times of ε-covers

{0, 1, . . . , 99}. All the experiments were run on stan-
dard PCs with 8Gb of memory and an IntelCore 2 Duo
3.33GHz GHz processor. All LPs were solved using
Gurobi 5.0. All the experimental results are averaged
over 10 runs with discount factor γ set to 0.9.

First, we illustrate how the size of ε-covers can be re-
duced using the greedy approach both for Pareto and
Lorenz. In this first series of experiments, all the in-
stances are biojective MDPs. We set the number of
states to 200 and the number of actions to 5. Parame-
ter ε was set to 0.01. Figure 5 shows the value vectors
in the objective space. PNDε (resp. LNDε) is ε-cover
of PND (resp. LND), min PNDε and min PNDε are
the minimal ε-cover sets.

In the second series of experiments, we present the
computation times (expressed in seconds) for com-
puting the different ε-covers. In these experiments,
the number of states is set to 50, the number of ac-
tions to 5 and the number of objectives to 3, and
ε ∈ {0.05, 0.1, 0.15, 0.2}. The results are presented in
Table 1 and shows that the direct approach is the most
efficient. The longer computation time for the indirect
method is mainly due to the determination of the ap-
proximate Pareto set.

To show the effectiveness of our approach, we com-
puted the ε-covers for the graph presented in Exam-
ple 2 with N = 30. The size of the ε-covers are given
in Table 2.

6 CONCLUSION

We have proposed, compared and tested several ef-
ficient procedures for approximating (with perfor-

ε 0 0.05 0.1 0.15 0.2
PNDε 230 361 194 135 104
L(PNDε) 230 16 8 6 4
min PNDε 230 15 8 5 4
L(min PNDε) 230 9 5 3 3
LNDε 230 17 9 6 5
min LNDε 230 4 2 2 1

Table 2: Sizes of ε-covers for the graph in Example 2

mance guarantee) the set of Lorenz-optimal elements
in MOMDPs. For randomized policies, the proce-
dures presented are fully polynomial approximation
schemes. Moreover for the bi-objective case, we pre-
sented a greedy approach which constructs, in polyno-
mial time, for any given ε > 0, an ε-approximation of
minimal cardinality of the set of Lorenz optimal trade-
offs. A similar approach works also for the Pareto set.
We have shown how to modify this approach to deter-
mine covering sets using only deterministic policies.
This has a computational cost since we have to solve
MIPs instead of LPs. However, the numerical tests
performed show that the approach remains efficient
for deterministic policies on reasonably large instances.
Moreover, the direct approximation of Lorenz-optimal
elements enable to address larger problems than those
requiring prior approximation of the Pareto set. Note
that beside the restrict procedure, the approach is
quite generic and could probably easily be adapted to
other multiobjective problems.

These tools provide useful information for selecting
optimal actions and policies in dynamic systems. By
playing with threshold ε we can increase or decrease on
demand the size of our sample of solutions and provide
more or less contrasted tradeoffs to cover the Pareto
set or the Lorenz set. This approach could also be used
to approximate f -optimal tradeoffs for any scalarizing
function f monotonic with respect to Pareto or Lorenz
dominance.

Beside the application to aggregation functions, an-
other research direction would be to look for proce-
dures to construct minimal covering sets for MOMDPs
involving more than two objectives. To the best of our
knowledge this remains an open problem.
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