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Abstract

Semi-supervised clustering is the task of clus-
tering data points into clusters where only a
fraction of the points are labelled. The true
number of clusters in the data is often un-
known and most models require this param-
eter as an input. Dirichlet process mixture
models are appealing as they can infer the
number of clusters from the data. However,
these models do not deal with high dimen-
sional data well and can encounter difficulties
in inference. We present a novel nonparame-
teric Bayesian method to cluster data points
without the need to prespecify the number
of clusters or to model complicated densities
from which data points are assumed to be
generated from. The key insight is to use
determinants of submatrices of a kernel ma-
trix as a measure of how close together a set
of points are. We explore some theoretical
properties of the model and derive a natural
Gibbs based algorithm with MCMC hyper-
parameter learning. We test the model on
various synthetic and real world data sets.

1 INTRODUCTION

Finding clusters amongst data points has been a
key idea addressed by many researchers in machine
learning, statistics and signal processing. In practice
it is often the case that copious amounts of data can
be easily collected, but subsequent labelling of the
data is expensive and slow to obtain. Semi-supervised
learning algorithms aim to utilise information from
both labelled and unlabelled data to inform choices
about how best to partition data points or where
decision boundaries lie.

A natural approach for a Bayesian practitioner

would be to consider a generative model of the data.
This involves explicit modelling of the density which
produced the observations and averaging over possible
clusterings of the unlabelled training data. Next any
parameters of the density model can be integrated out
to produce a predictive clustering of unseen test data.

The choice of density model is integral and highly
influential on the results of the training. A non-
parametric Bayesian model is attractive in that it
can incorporate an unbounded number of parameters
and is able, in theory, to learn the correct density
model e.g. Dirichlet Process Mixture Model [Escobar
and West, 1995]. However such an approach can be
expensive as typically, when clustering, we are not
interested in the density itself whilst much effort is
spent in learning it. Adams and Ghahramani [2009]
propose a fully-Bayesian generative approach to
semi-supervised classification which avoids the need
to model complex density functions. Nonetheless this
model does require prior specification of the number of
classes and the training of a Gaussian process per class.

Discriminative models tend to be more popular
for Bayesian semi-supervised learning [Zhu, 2005].
Lawrence and Jordan [2005] construct a nonpara-
metric Bayesian model for binary semi-supervised
classification, which is extended to the multi-class
case by Rogers and Girolami [2007]. Similar Gaussian
process based discriminative models that exploit
graph-based information are suggested by Chu et al.
[2007] and Sindhwani et al. [2007]. All of these
examples also require knowledge of the total number
of classes that the data is divided into.

In this work we present a novel discriminative
nonparametric Bayesian method for clustering points
using a kernel matrix determinant based measure of
similarity between data points. It is nonparametric in
that prior mass is assigned to all possible partitions
of the data. This method is highly appropriate in



the case where a generative model is computation-
ally prohibitively expensive to train but where a
kernel between pairs of data points can be easily
computed e.g. in high dimensional data which cannot
be adequately represented on a low dimensional
manifold. Thus we bring together some of the most
attracive properties of discriminative kernel methods
(removing the need to model the input observations)
and Bayesian nonparametrics (the ability to infer the
number of clusters and kernel hyperparameters).

Our model makes use of a popular determinant
based likelihood model called the determinantal point
process (DPP) [Kulesza and Taskar, 2013]. This
is a prior on the set of all subsets of a data set
which places higher mass on subsets which contain
diverse elements. DPPs arise in classical theory
such as random matrix theory [Mehta and Gaudin,
1960, Ginibre, 1965] and quantum physics [Macchi,
1975]. They have more recently been used for human
pose estimation, search diversification and document
summarization [Kulesza and Taskar, 2010, 2011a,b].

In Section 2 we introduce the determinantal clustering
process likelhood and discuss some of its properites.
In Section 3 we explain how such a model can
be applied to semi supervised clustering problems
and develop a Gibbs based inference scheme with
MCMC hyperparameter updates. We consider related
research in Section 4 and describe the novel features
of the DCP amongst other algorithms. Experimental
performance of the model is outlined in Section 5 and
finally conclusions are discussed in Section 6.

2 THE DETERMINANTAL
CLUSTERING MODEL

Consider data points X = {xn}Nn=1 which live in a
space X . We assume that xi 6= xj whenever i 6= j
without loss of generality (since we can assign any
pair of points which violate this condition to the same
cluster). In this work we typically consider the case
X = RD, but the ideas can easily be extended to more
general spaces. Suppose further that we are given a
positive definite kernel function, k, which depends on
hyperparameters belonging to a space Θ, such that
k : X × X ×Θ→ R.

For a given set of hyperparameters, θ ∈ Θ and
ordered subsets A,B ⊆ X of sizes NA, NB , define the
NA ×NB Gram matrix Kθ

A,B as

Kθ
A,B(i, j) = k(xai , xbj , θ), (1)

where xai is the ith element in A and xbj is the jth

element in B. For notational convenience we write

Kθ
A,A as Kθ

A.

Let S be the set of all partitions of X. Hence
an element S ∈ S is a set of subsets of X such that
for any S, S′ ∈ S, S ∩ S′ = ∅ and

⋃
S∈S S = X. We

introduce the notion of a determinantal clustering
process (DCP) for a given kernel function k and
hyperparameters θ ∈ Θ, defined as a probability
measure on the set S with density function

p(S ∈ S|θ) ∝
∏
S∈S

det
(
Kθ
S

)−1
. (2)

Note that whilst DPPs have been extensively used as
priors over subsets to encourage diversity [Kulesza and
Taskar, 2013], we use the inverse of the determinant
as a measure of similarity amongst points in a cluster
which has very different properties which we discuss
in the next section.

2.1 PROPERTIES OF THE DCP

(a) (b)

Figure 1: In (a) the volume represents the determinant

of
(

10 1 2
1 10 1
2 1 10

)
whilst the in (b) the volume represents

the determinant of
(

10 8 7
8 10 8
7 8 10

)
. The more similar the

rows of the matrix are, the smaller the determinant is.

Note that for any S ∈ S ∈ S the matrix Kθ
S is positive

definite implying that det(Kθ
S) > 0. The determinan-

tal clustering process probability measure (Eq. (2))
therefore places positive mass on every S ∈ S. This
is a crucial property which is highly attractive in a
clustering task as it removes the need to prespecify the
number of clusters the data should be partitioned into.

The geometric interpretation of the determinant
of an M × M matrix is the volume spanned by its
rows. A small determinant implies the rows are
‘similar’ to each other, whilst conversely a large
determinant implies ‘dissimilarity’ amongst the rows.
This phenomenon is illustrated in Figure 1. The
reciprocal of the determinant is therefore a natural
measure of similarity between data points.



Taking the product of such reciprocal determi-
nants is a simple yet natural way to amalgamate the
score for each cluster into a global score for a given
partition. It also permits very simple sampling and
inference which is discussed later.

Notice that unlike many popular clustering methods
e.g. k-means or mixtures of Gaussians, the DCP does
not assume that each cluster has a mean about which
points occur with elliptically symmetrically. Such
methods are often highly sensitive to initialisation
and outliers which can be avoided by using a DCP
type cluster scoring method. We explore this idea
further in the Experiments section.

2.1.1 Relation to Gaussian Clustering in
Feature Space

Suppose φ : X → RP is a non linear feature mapping
for some P ∈ N. Given data x1, ..., xN ∈ X , let Φ be
the P × N matrix with nth column equal to φ(xn).
Now imagine that each row of Φ is an independent
draw from a multivariate Gaussian with mean 0 and
covariance Σ. The probability of Φ is given by

L(Φ|Σ) ∝ 1√
det(Σ)

exp
(
− 1

2
Trace(ΦΣ−1Φ>)

)
. (3)

The maximum likelihood estimator of Σ is Σ̂ =
Φ>Φ. Note that Σ̂ is a kernel matrix with Σ̂m,n =
φ(xm)>φ(xn). Finally it is easy to show that

L(Φ|Σ̂) ∝ 1√
det(Φ>Φ)

exp
(
− 1

2
Trace(Φ(Φ>Φ)−1Φ>)

)
∝ det(Φ>Φ)−1/2. (4)

The points φ(x1), ..., φ(xN ) are close together
if and only if the covariance between points
φ(x1)p, ..., φ(xN )p is small for each p ∈ {1, ..., P}. This
is the case exactly when det(Φ>Φ) is small. The prob-
ability of Φ is therefore large when φ(x1), ..., φ(xN )
are close together.

Suppose we partition the data and fit a Gaus-
sian with the maximum likelihood covariance matrix
to each partition. The resulting likelihood would be
proportional to a product of terms like in Eq 4. This
expression is identical to the DCP likelihood where
we simply set K = Φ>Φ and temper the likelihood
(which is discussed in Section 2.2). The DCP does
not require explicit specification of the feature map
φ and works entirely on the kernel matrix. Note
that clustering the columns of Φ leads to an entirely
different process; Gaussian mixture modelling in
feature space [Wang et al., 2003].

2.1.2 A Simple Example

Consider the delta kernel function

k(i, j, θ) =

{
θ if xi = xj ,

0 otherwise.
(5)

Recall that xi 6= xj for i 6= j, therefore for any A ⊆ X
of size NA, Kθ

A = θINA
where INA

is an NA × NA
identity matrix and det(Kθ

A) = θNA . In fact for any
partition S ∈ S, p(S ∈ S|θ) ∝ θN which is indepen-
dent of S. For this choice of kernel, the DCP there-
fore places uniform mass over the set of all partitions.
This is what we would expect intuitively since the ker-
nel suggests that points are only similar to themselves
and dissimilar to everything else.

2.1.3 Discouraging Singleton Clusters

A potential concern with such a model is that it may
favour a large number of very small clusters. A similar
problem was observed by Wu and Leahy [1993] when
proposing a clustering scheme based on a minimum
cut method, where leaf nodes tended to belong to their
own clusters. We show that such a drawback does not
exist under a DCP framework. A proof of the following
can be found in Gentle [2007].

Lemma 1. Suppose K, a symmetric positive definite
matrix, is written in black matrix form,

K =

(
A CT

C B

)
,

then det(K) = det(A) det(B − CA−1CT ).

For a kernel function k and hyperparameters θ ∈ Θ,
consider a set A ⊂ X and x ∈ X\A. By applying
Lemma 1, note that

det
(
Kθ
A∪{x}

)
= det

(
Kθ
A

)
det
(
Kθ
{x} −Kθ

{x},AK
θ
A

−1
Kθ
A,{x}

)
= det

(
Kθ
A

)
×
(
Kθ
{x} −Kθ

{x},AK
θ
A

−1
Kθ
A,{x}

)
≤ det

(
Kθ
A

)
×
(
Kθ
{x}
)

= det
(
Kθ
A

)
det
(
Kθ
{x}
)
,

where we use the fact that the determinant of a scalar
is the scalar and the inequality comes from the fact

that yKθ
A

−1
yT > 0 for any non-zero vector y by posi-

tive definiteness. We trivially deduce that

det
(
Kθ
A∪{x}

)−1 ≥ det
(
Kθ
A

)−1
det
(
Kθ
{x}
)−1

and hence that the DCP would always prefer to add a
singleton to an existing cluster rather than to assign



it to a new one.

It is important to appreciate that such a result
does not necessarily hold when comparing the union
of two sets each of size greater than 1 i.e. for A,B ⊂ X
disjoint each containing more than 1 element, it may
be the case that

det
(
Kθ
A∪B

)−1
< det

(
Kθ
A

)−1
det
(
Kθ
B

)−1
.

If this were never possible the DCP would be a poor
model as, we could show inductively, that its mode
would be at the clustering where all points are clus-
tered together for any set of data points X.

2.1.4 Choosing a Kernel Function

The behaviour of the DCP is entirely encoded in the
functional form of the kernel and its parameters. This
is entirely analogous to the fact that the behaviour
of a support vector machine or a function drawn
from a Gaussian process prior with mean 0 is entirely
encoded in its covariance kernel function.

Many classes of positive definite kernel functions
and more information about Gaussian processes can
be found in Rasmussen and Williams [2006]. The
squared exponential kernel is a common choice of
kernel and is defined by

k(x, x′, {l, σ}) = σ2 exp
(
−1

2
(x−x′)>Diag(l)−1(x−x′)

)
,

(6)
where Diag(l) is a diagonal matrix with li as the ith

diagonal entry. For any N × N positive definite ma-
trix K, det(αK) = αN det(K). Since the DCP is a
probability measure the constant multiplier becomes
redundant hence we can set σ = 1 without losing any
modelling flexibility.

2.2 Using a ‘Temperature’ Parameter

The addition of a temperature parameter to the DCP
likelihood adds another layer of flexibility to the clus-
tering process. Consider

p(S ∈ S|θ) ∝
∏
S∈S

det
(
Kθ
S

)−τ
, (7)

where τ ∈ R+. This parameter has the effect of de-
termining how peaked or flat the density is analogous
to the temperature parameter in simulated annealing.
Here, a large τ will make the density highly peaked
at the mode whilst a small τ will encourage a uniform
density over all partitions.

2.2.1 Kernel Hyperparameters

In some types of data analysis a user may actually
know a good, application specific choice of kernel

function and hyperparameters they wish to use. In
such a case the DCP may be used as a prior over all
possible clusterings directly with no further parameter
learning required.

In most cases kernel hyperparameters are un-
known apriori and have to be learned from data. We
proceed under this assumption. In particular, we
consider the case of observing many data points only
some of which have been labelled. This is developed
further in Section 3.1.2.

3 SEMI SUPERVISED
CLUSTERING WITH DCP

Unlike for a classification problem, the ‘name’ of a
particular cluster is irrelevant. For example, consider
the clustering {{1, 4}, {2, 3}}. Whether we call the
set {1, 4} ‘cluster 1’ or ‘cluster 2’ is arbitrary, the
important information is that 1 and 4 belong to the
same cluster whilst 2 and 3 belong to another one.

We therefore can encode the relevant informa-
tion about the clustering of points in X using a binary
indicator matrix C, where for xi, xj ∈ X

C(xi, xj) =

{
1 if xi, xj in the same cluster,

0 otherwise.
(8)

Moreover notice that every partition S ∈ S will have
a unique such binary matrix representation which we
denote CS.

In the semi-supervised setting we assume that
some portion of our data set is labelled. Let Z ⊂ X
be the set of observed points for which we have labels,
i.e. we observe the binary indicator matrix ĈZ defined
on pairs of inputs xi, xj ∈ Z.

For a given kernel function and hyperparameters
θ ∈ Θ our DCP likelihood function becomes

p(S ∈S|ĈZ , θ, τ) (9)

∝
∏
S∈S

det
(
Kθ
S

)−τ ∏
x,y∈Z

I
(
CS(x, y) = ĈZ(x, y)

)
,

where I(.) is an indicator which takes value 1 when its
argument is true and 0 otherwise. This second product
encodes all the observed labels into the DCP model.

3.1 INFERENCE

Assuming a given parameterized kernel function, we
describe a Gibbs based sampling method for allocating
unlabelled data points to clusters and a MCMC step
for learning kernel hyperparameters.



3.1.1 Sampling clusters

Suppose the sampler is currently at a particular par-
tition S = {S1, ..., SM} for some integer M ≤ N .
Further suppose that for each cluster Sm, we have

Kθ
Sm

−1
stored in memory. We wish to update the

cluster location of point x ∈ X\Z given the cluster-
ing of the remaining points. Without loss of gener-
ality, suppose x ∈ SM and let S\{x} = {S1, ..., SM ′}
where M ′ = M − 1 if SM = {x} and M ′ = M oth-
erwise. In the latter case, we remove x from SM and

update Kθ
SM

−1
using the following lemma (proof found

in Gentle [2007]).

Lemma 2. Suppose we know K−1A for some non-
empty set A. If we add an element x ∈ X\A to the
set A, we have

K−1A∪{x} =

(
U V
V T 1

w

)
,

where

w = K{x} −K{x},AK−1A KA,{x},

U = K−1A +
1

w
K−1A KA,{x}K{x},AK

−1
A ,

V = − 1

w
K−1A KA,{x}.

We now must assign x to a particular cluster. For
m ∈ {1, ...,M ′},

p(x ∈Sm|S\{x}, θ, τ) =
p({S1, .., Sm ∪ {x}, .., SM ′}|θ, τ)

p({S1, ..., SM ′}|θ, τ)

∝
det
(
Kθ
Sm∪{x}

)−τ
det
(
Kθ
Sm

)−τ
∝
(
Kθ
{x} −Kθ

{x},Sm
Kθ
Sm

−1
Kθ
Sm,{x}

)−τ
, (10)

and for m = M ′ + 1,

p(x ∈ Sm|S\{x}, θ, τ) =
p({S1, ..., SM ′ , {x}}|θ, τ)

p({S1, ..., SM ′}|θ, τ)

∝ det
(
Kθ
{x}
)−τ

∝ Kθ
{x}
−τ
. (11)

We therefore allocate x to an existing cluster or a
new cluster using a discrete uniform sample with

these computed probabilities and update Kθ
Sm

−1
us-

ing Lemma 2. This procedure is repeated for each
x′ ∈ X\Z.

Note the conceptual similarity between this sampler
and the collapsed Gibbs sampler for Dirichlet process
mixtures; for each data point, the sampler decides
whether to assign it to an existing (10) or new (11)
cluster.

3.1.2 Sampling Kernel Hyperparameters and
Temperature

Given a particular partition of the data S ∈ S, we wish
to update the kernel hyperparameters and the temper-
ature parameter using MCMC. We take ψ = (θ, τ) to
represent all these parameters in the proceeding dis-
cussion. Assume a prior density p(ψ) over the param-
eter space Θ×R+. The posterior density for ψ is given
by

p(ψ|S) =
p(S|ψ)p(ψ)∫
p(S|ψ′)p(ψ′)dψ′ . (12)

We conjecture that the normalising constant of the
DCP is analytically intractable. Whilst this is difficult
to prove formally, we believe it to be true in part due
to the sheer size of the set S, known as the N th Bell
number [Wilf, 2006].

Consequently, we say that the posterior density is
doubly intractable as the integral in the denominator
is intractable and the likelihood in the numerator
has an intractable normalising constant. A typical
Metropolis-Hastings MCMC step would require the
ability to compute the numerator of this posterior
exactly.

To combat this issue we appeal to the Exchange
Sampling algorithm of Murray et al. [2006] where we
generate auxiliary data to avoid the need to compute
normalising constants for the likelihood. Given that
the current hyperparameters are set to ψ ∈ Θ × R+,
suppose we have a proposal distribution q(ψ → ψ′).
The Single Variable Exchange Algorithm says to
sample ψ′ ∼ q(ψ → ψ′) and then to sample an
auxiliary data set S′ ∼ p(S′|ψ′) (note that this can be
done using the Gibbs based method of Section 3.1.1).
The acceptance probability is set to

a = min

(
1,
q(ψ → ψ′)p(S|ψ′)
q(ψ′ → ψ)p(S|ψ)

× p(S′|ψ)

p(S′|ψ′)

)
. (13)

Notice the normalising constants for the observed data
likelihoods cancel with those of the auxiliary data like-
lihoods removing the need to compute them explicitly.
Murray et al. [2006] show that using such an accep-
tance probability, the Markov chain converges to the
required posterior in the limit.

4 RELATED WORK

It is natural to question the relationship between
determinantal clustering and spectral clustering
[Shi and Malik, 2000]. Whilst both methods have
similar matrix based inputs, their processes are
fundamentally different. Spectral clustering maps
this similarity matrix to its eigenspace and then



performs a simple clustering algorithm e.g. k-means.
Similarly kernel k-means [Dhillon et al.] maps the
data to some feature space and performs k-means
in this new space. In both examples, the kernel
matrix is used to map inputs to a latent feature
space before performing a simple clustering algo-
rithm. This is not the case for the determinantal
clustering process. The DCP simply uses the kernel
to ensure positive definiteness so that determinants
can be used as a measure of the size of a cluster.
The DCP also does not require the prespecification
of the number of clusters and learns this from the data.

The Dirichlet Process Gaussian Mixture Model
(DPGMM) is a popular nonparametric Bayesian tool
for clustering e.g. . This model assumes that each
cluster is generated by an independent Gaussian
distribution whose parameters are learnt from the
data. Such a model requires modelling the joint
distribution of all the data which can be difficult in
high dimensions. Conversely the DCP requires just
the ability to compute a kernel function between pairs
of inputs.

There are plenty of flexible discriminative nonparam-
eteric Bayesian models for multi-class classification
problems based on transformed Gaussian processes
[Lawrence and Jordan, 2005, Sindhwani et al., 2007,
Chu et al., 2007, Rogers and Girolami, 2007, Adams
and Ghahramani, 2009]. However, these all require
knowledge of the number of classes apriori and are
inappropriate for clustering tasks where the number
of clusters is unknown.

Nonparametric clustering in spectral space is possible
using the similarity-dependent Chinese restaurant
process [Socher et al., 2011] or by combining the ideas
of the DP-means algorithm [Kulis and Jordan, 2012]
and kernel k-means to get a hard clustering which is
able to infer the number of clusters.

5 EXPERIMENTS

We implement determinantal clustering on both syn-
thetic and real data sets to demonstrate its properties.
To provide a benchmark of results we compare the
performance of the DCP with three other popular
clustering methods: k-means, spectral clustering [Shi
and Malik, 2000] and DPGMM [Escobar and West,
1995]. The DPGMM is a generative nonparametric
Bayesian model whilst the other two methods require
pre-specification of the number of clusters.

Two clustering metrics are computed to reflect
the quality of clusterings sampled by these algo-

rithms: adjusted rand index (ARI) Hubert and
Arabie [1985] and normalized mutual information
(NMI) [Manning et al., 2008]. Both are popular met-
rics for unsupervised clustering tasks. In cases where
classes of data are actually known, we may use classi-
fication metrics such as precision and recall, however,
we assume that we do not have this knowledge and
only are interested in pairwise relationships between
points. The ARI takes its maximum value at 1 for a
perfect match in clustering, 0 represents a clustering
which is equivalent in score to a random clustering
and the ARI can also take negative values. The NMI
is also maximized at 1 for a perfect clustering, but
cannot take negative values. In our experiements,
we compare these scores for the unlabelled test data
points.

5.1 SYNTHETIC DATA

We illustrate two useful properties of the DCP over
other clustering methods in this section. One common
underlying assumption of clustering models is that
data from a particular cluster are distributed ellipti-
cally symmetrically about some single cluster mean.
Under this paradigm, the further away you are from a
cluster mean, the less likely a point is to belong to that
cluster. In many instances such an assumption is not
a valid one and can lead to poor results. In the syn-
thetic experiments we assume that the number of clus-
ters is known. We use the squared exponential kernel
for spectral and determinantal clustering learning the
hyperparameters using cross validation and MCMC re-
spectively. When computing clustering metrics for the
DCP or DPGMM we sample partitions from the poste-
rior and average scores over samples. For k-means and
spectral clustering we average scores over a number of
alternative initializations.

5.1.1 Clusters with Overlapping Boundaries

Consider the 2 cluster problem illustrated in Fig-
ure 2(a). Each cluster was generated from a two-
dimensional Gaussian distribution and a few points
were added near the boundary of the clusters which
are not necessarily closer to their own cluster mean
than the other cluster mean. In this experiment all
the points other than the ones in squares were given
labels and the task was to predict the cluster assign-
ment of these points.

The performance of all models on the synthetic exper-
iments is shown in Table 1. All models other than
the DCP struggle with this type of data, especially
k-means and spectral clustering since both procedures
assign points to the clusters whose mean they are clos-
est to. The DPGMM does slightly better as it allocates



Table 1: Results of Synthetic Experiments

DCP DPGMM k-means Spectral

Overlap
ARI 0.051 0.006 -0.007 -0.004
NMI 0.143 0.062 0.044 0.046

Multi
Modal

ARI 0.213 -0.052 -0.127 -0.103
NMI 0.382 0.176 0.150 0.122

points probabilistically, but the DCP is the outright
winner. This is precisely due to the use of volume
spanned by all points as opposed to distance from one
point when determining clusters. Moving 1 point over
a boundary may severely penalise the squared distance
from the mean without affecting the cluster volume as
adversarially. In this sense, the DCP is a more robust
model.

5.1.2 Multi-Modal Clusters

Clusters of data points may actually be multimodal in
their feature spaces. In such a case choosing a model
which assumes elliptical symmetry about a single point
is a poor choice. In Figure 2(b) we consider 2 clus-
ters where the first is drawn from a mixture of two
Gaussians and the second is drawn from a mixture of
3 Gaussians. Again, all points but the ones in black
squares are labelled and the task was to predict the
cluster assignments of these points.

Notice that an entire Gaussian mixture in the second
cluster is unobserved. From the results in Table 1 we
see that DPGMM, k-means and spectral clustering all
perform poorly. Both DPGMM and k-means struggle
because of their initialised cluster means. The hid-
den mixture component is roughly equidistant from
these means, so during prediction roughly half of these
points are assigned to one cluster and half to the other.
Spectral clustering struggles as the learnt kernel pa-
rameters are essentially overfit to the training data.
The performance of DCP is significantly better than
these other models again reflecting the potential ben-
efits of a volume based cluster size metric.

5.2 REAL WORLD DATA

5.2.1 Wheat Kernels

This data set due to Charytanowicz et al. [2010] is a
collection of geometric properties of 3 types of wheat
kernels: Kama, Rosa and Canadian. The properties
are real valued and include the wheat kernels’ area,
perimeter, compactness, length, width, asymmetry co-
efficient and length of kernel groove. We randomly
select 20 examples from each type of wheat kernel to
construct our data set. In this experiment we observe
6 labelled data points (3 from each of 2 randomly se-
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Figure 2: Synthetic datasets. Points to be predicted
have dark squares.

lected wheat types) and leave 5 data points from each
wheat type as unobserved test points. The remaining
39 points are observed but unlabelled. The task was
to predict the cluster assignments of the 15 test points.
The results of the experiments are shown in Table 2.

In this experiment the DPGMM outperforms other
methods. Since the data is 7-dimensional, a mixture
of Gaussians is still a powerful technique to use. For
k-means and spectral clustering, the number of clus-
ters has to be prespecified. Notice that there are only
2 clusters in the training data and that for k = 2 both
models are poor choices. For k = 3, spectral clustering
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Figure 3: Results of the Car Lane Occupancy data experiments. We show (a) ARI and (b) NMI for each method
varying the number of labelled training points. In (c)-(h) we plot the DCP posterior sampled number of clusters
for 5, 10, 15, 20, 25 and 30 labelled points respectively.



Table 2: Results of Wheat Kernel Experiments

k-means Spectral
DCP DPGMM k = 2 k = 3 k = 2 k = 3

ARI 0.696 0.773 0.355 0.513 0.397 0.707
NMI 0.767 0.834 0.510 0.608 0.527 0.778

does well, but only marginally better than the DCP.

5.2.2 Car Lane Occupancy Data

This data was collated by Cuturi [2011] from the Cali-
fornian Department of Transportation PEMS website.
The data describes occupancy rates between 0 and
1 of San Francisco bay area freeways every 10 min-
utes of every day for 15 months. A total of 963 road
detectors were used. Hence for each day we have a
144×963 = 138672 long feature vector. The task is to
cluster data from different days of the week together.

Since this data is extremely high dimensional, using a
DPGMM is simply infeasible. In our experiments we
extract data points every 2 hours rather than every 10
minutes, leaving our data 11566 dimensional and still
beyond the capability of the DPGMM model. How-
ever, we are still able to compute a kernel between
these feature vectors. In this experiment we consider
a 1 parameter squared exponential kernel which has a
shared lengthscale parameter across all dimensions.

First we select 6 days of the week: Saturday, Sunday
and 4 weekdays. For each day we randomly select 20
data points and set aside 5 from each group as unseen
test points; this gives 90 training and 30 test points.
We vary the number of labelled points and try to pre-
dict the test points. In the ith experiment we assume
5× i of the training points are labelled and belong in
equal numbers to i different clusters. Therefore not
only do we vary the number of labels, we also vary
the number of observed cluster labels. The results are
shown in Figure 3.

Spectral clustering results were generally poor here
and this seems to be due to low flexibility of the kernel
which only has 1 parameter. Despite the DCP using
the same type of kernel function, it has significantly
better results. This is due to the increased flexibility
offered by the temperature parameter. The posterior
sampler seemed to have a mode at around 4 for this
data, which suggests that the 1 parameter kernel func-
tion was not sufficient in differentiating clusters.

We observe good performance from the k-means algo-
rithm, in particular when we set k to the true value
of 6. It should be noted that for k = 5 however, the
DCP has competitive performance versus k-means as
the number of labels increase, suggesting that when

the number of clusters is truly unknown the DCP can
be a powerful tool.

The sampled number of clustered under the DCP
framework appears slightly multimodal at first. The
peak at 2 is due to the process partitioning the week-
end against the weekdays. This feature is most pro-
nounced when labels from 2 clusters are observed in
Figure 3(b) (one label was for a weekday the other for
a weekend day). In Figure 3(f) there is no posterior
mass on 1, 2 or 3 clusters and this is because labels for
4 clusters are observed so there is 0 likelihood of the
data having less than 4 clusters.

6 CONCLUSIONS AND FUTURE
WORK

In this work we have presented a novel kernel-based
nonparameteric Bayesian approach to learning clus-
ters in data. The key insight involves the use of kernel
matrix determinants to score how close together sub-
sets of data points are to each other. We discuss some
elegant properties of the process and demonstrate its
performance against other popular clustering methods.

Using a volume based cluster measurement proved
beneficial for clusters which were not necessarily
spread symmetrically about some mean point. A non-
parametric Bayesian approach was shown to be fruitful
when labelled data was scarce, whilst spectral clus-
tering tended to overfit the kernel hyperparameters
in cross validation, especially when the labelled data
came from a small number of clusters in relation to
the total number of clusters in the data set.

One drawback of such a model is that the computa-
tional cost of one cycle of Gibbs updates is O(N3) since
each update requires matrix multiplication which is up
to O(N2). An interesting research direction may be to
use existing theory in matrix approximations to im-
prove on this cost. Having a non-analytic normalising
constant in the DCP likelihood adds another layer of
difficulty in inference; exchange sampling is expensive.
In future work it may be worth approximating this
constant or using a variational method which makes
hyperparameter learning relatively easy.

The remarkable property of this model is the fact that
it overcomes the typically difficult task of dealing with
complex high dimensional data. As long as any sensi-
ble positive definite kernel can be computed between
pairs of data points, the determinantal clustering pro-
cess can infer interesting properties about the data.
This feature, combined with not having to prespecify
the number of clusters makes the DCP a great con-
tender for analysing complex data sets such as biolog-
ical sequences, images, text and other multimedia.
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