
Solving Limited-Memory Influence Diagrams Using Branch-and-Bound Search

Arindam Khaled and Eric A. Hansen
Dept. of Computer Science and Eng.

Mississippi State University
Mississippi State, MS 39762

{ak697, hansen}@cse.msstate.edu

Changhe Yuan
Dept. of Computer and Information Science

Queens College/CUNY
Queens, NY 11367

changhe.yuan@qc.cuny.edu

Abstract

A limited-memory influence diagram (LIMID)
generalizes a traditional influence diagram by
relaxing the assumptions of regularity and no-
forgetting, allowing a wider range of decision
problems to be modeled. Algorithms for solving
traditional influence diagrams are not easily gen-
eralized to solve LIMIDs, however, and only re-
cently have exact algorithms for solving LIMIDs
been developed. In this paper, we introduce an
exact algorithm for solving LIMIDs that is based
on branch-and-bound search. Our approach is re-
lated to the approach of solving an influence di-
agram by converting it to an equivalent decision
tree, with the difference that the LIMID is con-
verted to a much smaller decision graph that can
be searched more efficiently.

1 Introduction

An influence diagram (ID) is a compact graphical model of
a decision problem under uncertainty [5]. In its traditional
form, an ID satisfies the assumptions of regularity and no
forgetting, which means that decisions are temporally or-
dered and each decision is conditioned on all relevant previ-
ous observations and decisions. Lauritzen and Nilsson [8]
introduced a more general model, called a limited-memory
influence diagram (LIMID), that allows the regularity and
no-forgetting assumptions to be relaxed in order to model
a wider range of decision problems. In particular, relax-
ing the regularity assumption allows modeling of coopera-
tive multi-agent decision problems where one agent is not
aware of some or all decisions of another agent. (Note
that Howard and Matheson [5] call the regularity assump-
tion the single decision maker condition.) Relaxing the no-
forgetting assumption allows a decision to be conditioned
on a limited number of relevant previous observations and
decisions, allowing tradeoffs between the quality of a deci-
sion strategy and the complexity of finding it.

Algorithms for solving traditional IDs, such as the join tree
algorithm [6], make use of the regularity and no-forgetting
assumptions. Thus they cannot be easily generalized to
solve LIMIDs. The first algorithm developed to solve
LIMIDs, due to Nilsson and Lauritzen [14], is an iterative
solution procedure, called single policy updating, that only
finds an exact solution under very limited conditions on the
structure of the ID; in general, it converges to a locally-
optimal solution. The first exact and general algorithm for
solving LIMIDs, developed by de Campos and Ji [1], re-
formulates a LIMID as a credal network inference problem
that can be solved by mixed integer programming. Maua
and de Campos [11, 10] recently developed a more effi-
cient exact algorithm for solving LIMIDs based on variable
elimination, called multiple policy updating.

In this paper, we introduce another exact algorithm for
solving LIMIDs. Our approach builds on the work of
Yuan et al. [24], who describe a branch-and-bound search
algorithm for solving a traditional ID and show that it
can outperform other approaches to solving IDs for multi-
stage decision problems. We adopt the same branch-and-
bound approach, but with some important differences. The
branch-and-bound algorithm for solving a traditional ID is
a tree-search algorithm in which each path through the de-
cision tree represents perfect memory of a particular his-
tory of decisions and observations, in keeping with the no-
forgetting assumption of a traditional ID. By contrast, our
branch-and-bound algorithm for solving LIMIDs searches
in a much smaller search graph in which different paths
to the same node of the graph represent different histories
where the differences are not “remembered.” By collaps-
ing the search tree into a smaller search graph in which
fewer histories are distinguished, the branch-and-bound ap-
proach can solve the optimization problem for LIMIDs
much more efficiently. That is, the new graph-search tech-
niques we introduce leverage the opportunities for faster
strategy computation provided by the LIMID model. We
also develop new techniques for probabilistic inference and
bounds computation in the search graph that further en-
hance this approach to solving LIMIDs. Experimental re-
sults demonstrate the effectiveness of this approach.

2 Background

We begin with a review of limited-memory influence di-
agrams and previous work on solving influence diagrams
using branch-and-bound search.

2.1 Influence diagrams

An influence diagram (ID) represents a decision prob-
lem by a directed acyclic graph with three types of
nodes: chance nodes, decision nodes, and utility nodes.
The chance nodes represent random variables, X =
{X1, . . . , Xn}, where each random variable Xi ∈ X
has an associated domain of possible values, dom(Xi).
The decision nodes represent decision variables, D =
{D1, . . . , Dm}, where each decision variable Di ∈ D
has an associated domain of possible values, dom(Di),
called actions. For both random variables and decision
variables, all domains are assumed to be non-empty and
finite. The utility nodes represent (local) utility functions,
U = {U1, . . . , Ul}, that express a decision maker’s prefer-
ences. By convention, an ID shows chance nodes as circles,
decision nodes as squares, and utility nodes as diamonds.

The edges of the graph characterize dependencies among
nodes and have a different meaning depending on their des-
tination. Incoming edges to a chance node indicate prob-
abilistic dependence. As in a Bayesian network, each ran-
dom variable Xi ∈ X has an associated conditional prob-
ability table P (Xi|π(Xi)), where π(Xi) denotes the set
of parent variables of Xi and dom(π(Xi)) denotes the
set of possible instantiations (or states) of the parent vari-
ables. Incoming edges into decision nodes are informa-
tional, and the parent variables π(Di) of a decision variable
Di ∈ D, called the information variables of the decision,
are the variables whose values are known to the decision
maker at the time the decision is made. An instantiation
of the information variables is called an information state,
and dom(π(Di)) denotes the set of all information states
for the decision variable Di. Incoming edges into utility
nodes indicate functional dependence, and a utility func-
tion Ui : Ωπ(Ui) → < maps each state of the parent vari-
ables π(Ui) to a utility value that represents the preference
of the decision maker. It is assumed that utility nodes do
not have children and the joint utility function U is addi-
tively decomposable such that U =

∑
Ui∈U Ui.

An ID is solved by finding a strategy that maximizes ex-
pected utility. A strategy s = {δDi |Di ∈ D} is a set
of policies, one for each decision variable, where a pol-
icy δDi

: dom(π(Di) → dom(Di) is a mapping from the
information states of a decision variable to the possible ac-
tions for that decision variable. A strategy s induces a joint
probability distribution Ps over X ∪D, as follows,

Ps(X∪D) = ΠXi∈XP (Xi|π(Xi))·ΠDj∈DPs(Di|π(Di)),
(1)

where

Ps(d|π(Di)) =

{
1 if δDi

(π(Di)) = d,

0 otherwise.
(2)

The expected utility of a strategy s is defined as

EU(s) =
∑

c∈(X∪D)

Ps(c)
∑
Ui∈U

Ui(π(Ui)) (3)

=
∑
Ui∈U

∑
π(Ui)

Ps(π(Ui)) · Ui(π(Ui)), (4)

where c ∈ (X ∪D) denotes a particular configuration (or
instantiation) of the variables of the ID. A strategy s∗ is
optimal if EU(s∗) ≥ EU(s) for all strategies s.

For an ID that satisfies the regularity assumption, the deci-
sion variables are temporally ordered. Suppose there are n
decision variables D1, D2, ..., Dn. The decision variables
partition the random variables in X into a collection of dis-
joint sets I0, I1, ..., In. For each k, where 0 < k < n, Ik is
the set of random variables that must be observed between
Dk andDk+1. I0 is the set of initial evidence variables that
must be observed before D1. In is the set of variables left
unobserved when decisionDn is made. Therefore, a partial
order ≺ is defined on the ID over X ∪D, as follows:

I0 ≺ D1 ≺ I1 ≺ ... ≺ Dn ≺ In. (5)

When the no-forgetting assumption is satisfied, all infor-
mation variables of earlier decisions are also information
variables of later decisions. We call these past informa-
tion variables the history, and, for convenience, we assume
that there are explicit edges (called information arcs) from
history information variables to decision variables. As the
number of variables in the history grows, however, the do-
main of the policy for each decision variable increases ex-
ponentially. Methods for structural analysis of relevance
have been developed that can distinguish requisite obser-
vations from those that are irrelevant, and remove infor-
mation arcs that are not necessary for computation of the
optimal strategy [21, 13, 8]. This preprocessing step can be
performed prior to any numerical evaluation of the LIMID.

Even if information arcs from irrelevant variables are re-
moved and only relevant information variables are con-
sidered for each decision, the domain of the policy for a
decision variable may grow exponentially in the number
of relevant information variables in the history. Limited-
memory influence diagrams [8] address this problem by al-
lowing information arcs from relevant variables to be re-
moved. When an information variable for an earlier deci-
sion is not an information variable for a later decision, it
means the no-forgetting assumption is violated. If there is
not an information arc from an earlier decision variable to
a later decision variable, it means the regularity assumption
is violated. We use the following example to illustrate the
properties of a LIMID.

(1,1)

(7,9)

Figure 1: A maze with goal state marked by starred cell.

2.2 Example

Consider a maze navigation problem that can be modeled
as an ID [4, 14, 24]. In the maze shown in Figure 1, white
cells represent spaces where navigation is possible, and
shaded cells represent walls. A robot is initially placed in
one of the white cells and its objective is to reach the goal
state marked by a star. At each stage, the robot can choose
to move to any one of its neighboring cells, or it can stay
in its current location. The effect of the robot’s attempts
to move are stochastic. It moves to the intended neighbor-
ing cell with a probability of 0.89 and fails to move with
probability 0.089. The probability of sideways movement
is 0.01 in each of two possible directions, and the proba-
bility of backward movement is 0.001. A move towards a
wall has a probability of zero to succeed, and the remain-
ing non-zero probabilities are normalized. The robot’s sen-
sors provide incomplete information about the robot’s lo-
cation. They detect neighboring walls, but since more than
one location can share the same configuration of neighbor-
ing walls, observations do not unambiguously identify the
current location. The expected utility received by the robot
corresponds to the probability of successfully reaching the
goal state by the final stage of the problem. If the robot is
in the goal state at the final stage, it receives a utility value
of 1; otherwise, it receives a value of 0.

The ID shown in Figure 2(a) represents a two-stage version
of the maze navigation problem. The random variables xi
and yi represent the coordinates of the location of the robot
at stage i. The random variables {nsi, esi, ssi, wsi} are
the sensor readings in four directions at stage i. The deci-
sion variable di represents one of the possible actions taken
by the robot at that stage. The ID shown in Figure 2(a) is a
traditional ID that satisfies the regularity and no-forgetting
assumptions. Figure 2(b) shows a LIMID for which the
no-forgetting assumption is not satisfied. In this case, a de-
cision is conditioned on all past decisions as well as the
present states of the information variables when the deci-
sion is made, but not on the information variables for any
previous stages. In other words, the robot makes decisions
based on its current sensor readings only, without consider-
ing any previous sensor readings. Although the IDs shown
in Figure 2 represent two-stage decision problems, they are
easily extended for any finite number of stages.

x_0(0)

y_0(1)

ns_0(2)

es_0(3)

ss_0(4)

ws_0(5)

x_1(7)

y_1(8)

d_0(6) d_1(13)

ns_1(9)

es_1(10)

ss_1(11)

ws_1(12)

x_2(14)

y_2(15)

u

(a)

x_0(0)

y_0(1)

ns_0(2)

es_0(3)

ss_0(4)

ws_0(5)

x_1(7)

y_1(8)

d_0(6) d_1(13)

ns_1(9)

es_1(10)

ss_1(11)

ws_1(12)

x_2(14)

y_2(15)

u

(b)

Figure 2: (a) An influence diagram with no-forgetting and
(b) a LIMID, both for the maze navigation problem.

2.3 Branch-and-bound solution method

Several exact methods have been developed to solve IDs
that satisfy the regularity and no-forgetting assumptions.
IDs were first solved by converting them to a decision
tree [5]. Subsequently, methods were developed that solve
an ID directly [19], or by converting it to some other graph-
ical form, such as a junction tree [20, 6]. For an ID that has
been converted to a decision tree, the traditional solution
method is the “average-out and fold-back” algorithm [17].
However, improved performance can be achieved using
a search algorithm that traverses the decision tree begin-
ning from the root and prunes branches with zero proba-
bility [16, 9]. The performance of this approach can be
improved further by using bounds to prune the tree, and
the results of this paper build on our earlier work on solv-
ing IDs using depth-first branch-and-bound search [24]. In
this approach, the decision tree corresponds to an AND/OR
search tree in which AND nodes correspond to informa-
tion variables (i.e., chance nodes that have informational
arcs into a decision node), OR nodes correspond to deci-
sion nodes, and leaf nodes correspond to utility nodes. A
path from the root of the search tree to a leaf node corre-
sponds to an instantiation of the information and decision
variables of the ID. When traversed by a depth-first search
algorithm, the tree is generated “on the fly” and only part of
the AND/OR tree needs to be in memory at any one time.

Two issues must be addressed to develop an effective
branch-and-bound algorithm. We need bounds to prune the
search tree and we need an efficient method for computing
posterior probabilities. As we discuss next, our approach
to both issues involves construction of a secondary ID we
call a relaxed influence diagram.

x_0(0)

y_0(1)

ns_0(2)

es_0(3)

ss_0(4)

ws_0(5)

d_0(6)

x_1(7)

y_1(8)

ns_1(9)

es_1(10)

ss_1(11)

ws_1(12)

d_1(13)

x_2(14)

y_2(15)

u

Figure 3: Relaxed ID for two-stage maze problem.

Bounds computation We need bounds on the values of
OR nodes in order to prune the AND/OR search tree. As-
suming that we are maximizing expected utility, the best
value computed so far for any branch of an OR node (i..e,
for any action) serves as a lower bound on the optimal value
of the OR node. To compute upper bounds, we adopt an
approach proposed by Nilsson and Höhle [14]. In this ap-
proach, upper bounds are computed by solving a secondary
ID that is usually much easier to solve, which we call a re-
laxed ID. The relaxed ID is created by adding information
variables to the original ID that provide the decision maker
with additional information (ensuring that the solution of
the relaxed ID is an upper bound on the solution of the
original ID), while allowing the ID to be simplified by re-
moving non-requisite arcs (ensuring that it is much easier
to solve than the original ID). Recall that an information
arc is non-requisite [8, 13] for a decision node D if

Ii ⊥ (U ∩ d(D))|D ∪ (π(D) \ {Ii}), (6)

where d(D) and π(D) are the descendants and parents
of D, respectively, and ⊥ denotes conditional indepen-
dence. A reduction of an ID is obtained by deleting all
non-requisite information arcs [14]. Ideally, we want to
add information variables that make some or all of the in-
formation arcs for each decision node non-requisite, and
also make the ID easier to solve. The optimal policy for a
decision variable,Dj , depends on a set of information vari-
ables, Nj , or else it is history-independent. This set Nj can
be described as the current state of the decision problem,
such that if the decision maker is informed of this state, it
does not need to know of any past history to find an op-
timal policy; in this respect, it fulfills the Markov property
and can be said to provide perfect information. Nj is called
a sufficient information set (SIS) of Dj [24].

Thus the relaxed ID is created in two steps. First, the
SIS for each decision is computed in reverse time order,
Dn, ..., D1, making each SIS the information variables for
its corresponding decision variable. Second, non-requisite
arcs are removed from the ID. Consider the LIMID in Fig-
ure 2(b) as an example. The SIS for d1 is found as {x1, y1}.
The SIS for d0 is computed to be {x0, y0}. By making
{x1, y1} and {x0, y0} information variables for d1 and d0,
respectively, and after removing the non-requisite arcs, a
relaxed ID is obtained which is shown in Figure 3.

R 0 1 6 7 8 0 1 5

7 8 13 14 15

0 1 4 0 1 3 0 1 2

7 8 12 7 8 11 7 8 10 7 8 9

Figure 4: Strong join tree for the relaxed ID in Figure 3.

Incremental join tree evaluation The join tree algo-
rithm, an efficient method for probabilistic inference in a
Bayesian network, also provides an efficient method for
solving an ID [6]. For optimization problems that can be
solved by depth-first branch-and-bound search, Yuan and
Hansen [23] describe an incremental version of the join tree
algorithm. First developed for a branch-and-bound algo-
rithm for solving the MAP problem, it is used in the branch-
and-bound algorithm for solving traditional IDs [24], and
we will use it to extend the branch-and-bound approach to
LIMIDs. It assumes a static ordering of the variables to be
instantiated, and leverages the observation that when only
one new variable is instantiated at a time during forward
traversal of a branch of a search tree, it is only necessary
to perform message passing once along this path in the join
tree, broken into separate steps for each instantiating vari-
able. To allow efficient backtracking, the clique and sepa-
rator potentials of the join tree that are changed during for-
ward traversal are cached in the order that they are changed.
During backtracking, the cached potentials can be used to
efficiently restore the join tree to its previous state.

A strong join tree constructed from the relaxed ID is used to
compute both probabilities and upper bounds for the AND
and OR nodes in the search graph. Figure 4 shows a strong
join tree for the relaxed ID of Figure 3. We select an order
of variable elimination from the join tree that is an exten-
sion of the elimination ordering of the ID. Note that one of
the partial orders for the LIMID shown in Figure 2(b) is

{ns0, es0, ss0, ws0} ≺ {d0} ≺ {ns1, es1, ss1, ws1}
≺ {d1} ≺ {x0, y0, x1, y1, x2, y2, u}, (7)

Any order of variable expansion for the join tree that sat-
isfies the constraints in Equation 7 can be used for incre-
mental join tree evaluation. The order suggests which vari-
able to expand/instantiate next. For example, after ns0 is
expanded, the only message that needs to be sent to obtain
P (es0|ns0) is the message from clique (0, 1, 2) to (0, 1, 3).
If the following order for the maze problem is selected

ns0, es0, ss0, ws0, d0, ns1, es1, ss1, ws1, d1, x0, y0,

x1, y1, x2, y2 (8)

then an incremental message-passing scheme can be used
in the direction of the dashed arc in Figure 4 in one down-
ward pass of the depth-first search to compute probabilities
and upper bounds.

3 AND/OR search graph

We next describe how to formulate the problem of solving
a LIMID as an AND/OR graph search problem. There are
two main differences between the depth-first-branch-and-
bound (DFBnB) algorithm for solving LIMIDs that we de-
velop in the rest of the paper, and the DFBnB algorithm
for solving traditional IDs. The first difference is that a
LIMID is solved by searching in an AND/OR graph instead
of an AND/OR tree. Since a decision maker with limited
memory is not able to distinguish all histories, the search
space for solving a LIMID is a graph in which different
paths that represent different histories can lead to the same
OR node because the differences between the histories are
not remembered. A second difference is that the message-
passing scheme used by the incremental join tree algo-
rithm to compute bounds and probabilities requires some
revisions for search in an AND/OR graph instead of an
AND/OR tree. We discuss the first difference in Section 3.1
and the second in Section 3.2.

First we review some basic concepts about the AND/OR
search space for the decision problem represented by an
ID. Recall that AND nodes represent random variables and
OR nodes represent decision variables. Any arc emitting
from an AND node has a probability attached to it; the sum
of all the probabilities associated with the arcs of an AND
node is 1.0. Each arc emitting from an OR node represents
a decision alternative. The leaf nodes of the search graph
have utility values attached to them that are derived from
the utility nodes of the ID. The valuation function for each
node is defined as follows: (a) for a leaf node, the value is
its utility value, (b) for an AND node, the value is computed
by multiplying the probability associated with each outgo-
ing arc by the utility value of the corresponding child node
and then summing these values, and (c) for an OR node,
the value is the maximum of the utility values of the child
nodes. We use this valuation function to determine the op-
timal strategy for an ID. We represent a strategy for an ID
as a strategy graph, which is a subgraph of an AND/OR
graph that is defined as follows: (a) it consists of the root of
the AND/OR graph; (b) if a non-terminal AND node is in
the strategy graph, all its children are in the strategy graph;
and (c) if a non-terminal OR node is in the strategy graph,
exactly one of its children is in the strategy graph. Given
an AND/OR graph that represents all possible histories and
strategies for an ID, the decision problem is solved by find-
ing a strategy graph with the maximum value at the root,
where the value of the strategy graph is computed based on
the valuation function.

The optimal strategy for an ID can always be found by
searching in an AND/OR tree. But the tree representation
of the problem is inefficient if it contains many repeated
subtrees that represent the same subproblem. For a LIMID,
the number of repeated subtrees will be much greater than

for a traditional ID because many different histories will
lead to the same subproblem in which a decision must be
made based on limited information that represents only part
of the history. In the following, we describe how to convert
an AND/OR tree representation of the decision problem for
a LIMID into an equivalent AND/OR graph by merging OR
nodes that are generated from different histories but repre-
sent the same subproblem.

In our approach, we (slightly) limit the class of LIMIDs we
consider by assuming the following: if a decision maker
is aware of the value of an information variable and then
“forgets” it, it cannot recall the forgotten information later
on. We call this assumption the no-recalling-forgotten-
information rule. It is difficult to imagine any realistic de-
cision problem that violates this assumption. But we make
the assumption explicit because the LIMID model does not
rule out such cases. The assumption simplifies our ap-
proach to recognizing and merging equivalent OR nodes.

We also modify the usual definition of an AND/OR graph
by introducing a special kind of AND node that allows mul-
tiple decisions to be considered in parallel if they repre-
sent scenarios that are conditionally independent given that
some variables have already been observed. We call this
new kind of node a special AND (SAND) node. We dis-
cuss SAND nodes further in Section 3.1.3.

3.1 Context-based merging of OR nodes

To construct an AND/OR graph instead of an AND/OR
tree for solving LIMIDs, the main idea is to merge multi-
ple OR nodes (i.e., decision nodes) that represent the same
decision scenario into a single OR node. Our approach
uses the concept of the context of an OR node. The con-
text of an OR node is defined as the joint state of the in-
formation variables remembered by the current decision
variable along with the states of previously observed de-
cisions that will influence the descendant utilities of this
decision. More formally, the context of an OR node is a
set CDi

= SIi−1
∪ SDi−1

∪ SDu(i−1)
, where SIi−1

, SDi−1
,

and SDu(i−1)
, respectively are the sets of states of the ran-

dom and decision variables remembered by Di, and the set
of states of the previously expanded decision variables that
will influence the descendent utilities of Di.

For example, Figure 5 shows a partial AND/OR graph for
the LIMID in Figure 2. Note that the AND/OR graph is
condensed for ease of illustration as the individual ran-
dom variables for the sensors are grouped together into one
AND layer. In our actual AND/OR graph, they correspond
to multiple AND layers. The context of the bottom-right
OR node in the Figure is {1, 1, 1, 1, 0}, where {1, 1, 1, 1}
is the set of present information states, and {0} is the last
action taken. The previous sensor readings are totally for-
gotten. That is why the two paths starting from the root
converge to this OR node.

In our context-based approach to merging OR nodes, we
distinguish three cases; sequential decisions, cooperative
decisions, and conditionally-independent decisions. We
explain the differences below.

3.1.1 Sequential decisions

ns0,es0,ss0,ws0

d0

0000

d0

1111

ns1,es1,ss1,ws1

0

ns1,es1,ss1,ws1

0

d1

0000

d1

1111 0000 1111

Figure 5: Partial AND/OR graph with merged OR nodes.

A pair of decisions is sequential if there is an obvious tem-
poral ordering between them. If all decision pairs in a
LIMID are sequential then the elimination order of Equa-
tion 5 applies. Figure 2(b) shows an example of a LIMID
where all decision pairs are sequential. Duplicate OR nodes
are detected using the definition of context provided above
and illustrated by the example in Figure 5. Contexts are
rather straightforward for sequential decisions given the
no-recalling-forgotten-information assumption. Without
this assumption, much more complex book-keeping would
be needed to keep track of contexts during the search.

Note that in Figure 5, the AND nodes contain multiple
random variables to simplify the picture. In the AND/OR
search graph created by our implementation, each random
variable is represented by a separate AND node, and they
are expanded one at a time by the search algorithm.

3.1.2 Cooperative decisions

d_1

u

d_2

d1

d2

0

d2

1

u

0

u

1

u

1

u

0

Figure 6: A LIMID with a cooperative-decision pair (left),
and its corresponding AND/OR graph (right).

We next consider the case where multiple, simultaneous de-
cisions need to be considered to evaluate a value function.
We call this case a cooperative decision because the deci-
sion makers need to cooperate to select the combination of

actions that results in an optimal utility for every possible
decision scenario. Unlike the sequential decision scenario,
there exists no obvious elimination ordering between de-
cision pairs in this case. Figure 6 shows an example of a
cooperative decision pair. In this example, if d2 is realized
after d1 in the elimination order during the generation of
the AND/OR graph, then d1 needs to be included in d2’s
context. The AND/OR graph for this LIMID is also shown
in Figure 6. Note that all the OR nodes in this graph are
unique.

3.1.3 Conditionally-independent decisions

It is possible that multiple decisions can be expanded in
parallel given that some variables have been realized. An
example is shown in Figure 7. In this example, the sets
of decisions {D1}, and {D2} can be expanded in parallel
given that the set of variables(s), {a}, has been observed.
We call this situation a conditionally-independent decision
scenario (CIDS). A CIDS can be determined from the
LIMID itself or the strong join tree of the LIMID [7, 21].

a

d_1 d_2

u_1 u_2

a

SAND_1 SAND_2

d_1 d_2 d_1 d_2

Figure 7: A LIMID with CIDS(left), and its corresponding
(partial) AND/OR graph (right).

To solve a LIMID that includes a CIDS, we introduce a
new type of node in the AND/OR graph, called a special
AND or SAND node. When it is realized that multiple deci-
sions can be made in parallel after some nodes in the search
graph have been expanded, a SAND node is introduced (in
the search graph). A SAND node is different from a regular
AND node in two ways: the total number of children for a
SAND node is the number of sets of decisions that can be
expanded in parallel, and the weight attached to each arc is
1.0. Unlike the regular AND/OR graph search where the
rest of the unexpanded nodes are considered for expansion
once a node (AND or OR) is expanded for each branch of
the AND node, each branch of the SAND node will expand
a subset of unexplored nodes for a LIMID with CIDS(s).
These subsets are determined by the elimination order of
decisions presented by the join tree: each subset will con-
tain the set of decisions and their respective information
variables that need to be expanded in sequence in the fu-
ture. For example, for the LIMID shown in Figure 7, once
variable a is expanded, a SAND node, denoted SAND1,
will be expanded. This node will have two branches – in
one branch the set of decision(s), {D1}, will be expanded;
the set {D2} will be expanded in the other branch, as illus-
trated in Figure 7.

3.1.4 Implementation

So far, we have given rules for merging OR nodes but have
not discussed their implementation. For each OR node in
the graph, we store both its context and utility value (once it
is calculated). When an OR node is ready to be generated,
its context is calculated and then checked against the con-
texts of existing OR nodes (which we store in a hash table,
described below). If a previously-generated OR node has
the same context, the new OR node is not generated. In-
stead, the existing OR node receives an additional arc from
the parent of the new OR node.

For duplicate checking, all generated OR nodes are stored
in a hash table indexed by their context. (In cases in which
we can decompose the decision problem into well-defined
stages, there can be a separate hash table for each stage of
the problem.) In our implementation, the context is repre-
sented by a string that contains the states of the variables
of that decision’s context, concatenated by commas. As
the search progresses, the context string for each decision
node can grow and potentially slow the duplication detec-
tion process.

3.1.5 Discussion

The concept of solving an ID by searching in an AND/OR
graph, instead of an AND/OR tree, is not new. In the lit-
erature on IDs, the process of converting a decision tree to
an equivalent graph in which identical subtrees are merged
is referred to as coalescence [15, 22]. Automating coa-
lescence in the decision tree framework is considered diffi-
cult and computationally expensive, however, and solutions
are sometimes hand-crafted. A context-based approach to
merging OR nodes has been proposed before, for proba-
bilistic inference in Bayesian networks [2] and solving an
ID [9]. The primary difference between our approach and
previous work is that our approach applies to LIMIDs.

Note that our approach to context-based merging does not
necessarily produce the most concise AND/OR graph. A
more concise graph could be found by directly compar-
ing probability distributions to detect duplicate OR nodes.
We define RDi

as the set of variables that is considered
for expansion once the information variables, Ii−1, for a
decision variable, Di, are expanded. Formally, RDi

=
Di ∪ Ii ∪ Di+1 ∪ ... ∪ In−1 ∪ Dn. Once the information
variable set, Ii−1, is expanded, the probability distribution
of RDi

given Di’s context, P (RDi
|CDi

), could be used
to detect duplicate decision scenarios. If multiple decision
scenarios share the same distribution then these OR nodes
can be collapsed into a single OR node, since they share
a subgraph [22]. Although comparing probability distribu-
tions in order to merge nodes could generate a more com-
pact AND/OR search graph, it is computationally expen-
sive, and an approach that relies on context-based merging
appears to be more practical.

3.2 Incremental probabilities and bounds

We next consider how to modify the incremental join
tree algorithm to compute the probabilities and bounds
needed by the AND/OR graph search algorithm for solv-
ing LIMIDs. Consider the LIMID shown in Figure 2.2(b)
as an example, and the relaxed LIMID of Figure 4. We
can use the join tree of the relaxed LIMID to compute both
the probabilities and bounds needed for the AND/OR graph
search. (We can use it to compute probabilities for the
AND nodes of the search graph because the same set of
actions transforms both the original LIMID and the relaxed
LIMID into the same Bayesian network. Adding informa-
tion arcs to create a relaxed ID only changes the expected
utility of the network.) Note that the join tree does not have
a clique that contains all four variables; they are in different
cliques. Thus we consider the expansion of these variables
one by one, generating an AND/OR graph with four layers
of AND nodes followed by a layer of OR nodes, as shown
in Figure 5.

The AND/OR search graph is generated on-the-fly during
the branch-and-bound search. To make this process effi-
cient, we follow the elimination order given by Equation
8 to generate the nodes of the search graph and calculate
probabilities. The probabilities for the AND nodes cor-
responding to variables {ns0, es0, ss0, ws0} can be calcu-
lated by sending messages in the following order of cliques:
(0, 1, 2), (0, 1, 3), (0, 1, 4), and (0, 1, 5). Given limited
memory, however, calculation of probabilities for the infor-
mation variables of the next decision needs to be modified.

When a decision stage is considered for expansion, we con-
sider whether the decision variable, Di, recalls anything
from the past. If it does, then the cliques hosting these re-
called variables along with the clique, clq0, that hosts the
first information variable for Di are identified. Then we
devise a message-passing scheme that sets evidence for the
cliques of the recalled variables and passes messages to-
wards the clique, clq0. To perform these message propaga-
tions, we use a set of temporary potentials, one assigned for
each clique and separator, which are initialized to the clique
potentials obtained from the initial collection and distribu-
tion process of the join tree at the beginning of this process.
For our example, when the first information variable, ns1,
for d1 is about to be expanded, we set evidence to the clique
(0, 1, 6, 7, 8) with the current state of d0, and pass in the di-
rection of the clique (7, 8, 9). Once the clique (7, 8, 9) re-
ceives this message, it sets its current potential to this newly
obtained potential. The rest of the information variable ex-
pansion process follows the incremental join tree evalua-
tion method proposed in [24]. When backtracking from
a decision, we backtrack to the clique hosting the last in-
formation variable expanded for the previous expanded de-
cision. The space requirement for our join tree evaluation
approach is O(N) if N is the space required for the evalu-
ation approach proposed in [24].

After the AND nodes of {ns0, es0, ss0, ws0} are generated
for this example, we need to generate the OR node d0 and
corresponding upper bounds. The subset of information
variables for a decision di is used to compute the upper
bound for di. In our example, we do not need to set the
states of {ns0, es0, ss0, ws0} as evidence during the com-
putation of expected utility values for d0 because the states
of the information variables for d0 are not remembered for
future decisions. In summary, the basic idea for handling
information forgetting in a LIMID is to only send a mes-
sage to a future decision for calculating probabilities and
utility values if the message contains information variables
that are remembered by the future decision.

3.3 Optimality of the algorithm

It is not difficult to prove that our AND/OR graph search
algorithm finds an optimal strategy. If we do not merge OR
nodes, we have an AND/OR tree, and so we first show that
the strategy found by an AND/OR tree search is optimal.

Lemma 1 A DFBnB AND/OR tree search algorithm finds
an optimal strategy for a LIMID.

Proof: Since all the possible policies for each decision node
are examined by the search, it must converge to an optimal
strategy once the search ends. 2

We then argue that merging OR nodes preserves optimality.

Theorem 1 A DFBnB AND/OR graph search algorithm
finds an optimal strategy for a LIMID.

Proof: Since the subgraphs below any OR nodes that rep-
resent the same decision scenario are identical and have the
same utility, merging the OR nodes preserves optimality. 2

4 Experimental evaluation

We tested the performance of our algorithm in solving
the maze problem described in Section 2.2, as well as a
classic finite-horizon DEC-POMDP, and several randomly-
generated LIMIDs. Experiments were performed on a Win-
dows PC with a Pentium i3 processor and 3GB of RAM.

Tables 1, 2 and 3 show all results in the same format.
The column labeled “(d, c, u)” gives the number of deci-
sion nodes, chance nodes, and utility nodes, respectively,
in the LIMID, and the column labeled “SG” gives the size
of the optimal strategy graph measured as the total number
of AND and OR nodes it contains. The remaining columns
measure the efficiency of the search algorithm. The column
labeled “Pruned” gives the number of times a branch of the
AND/OR graph was pruned in solving the LIMID, the col-
umn labeled “Merged” gives the number of times two OR
nodes were merged, and the column labeled “Time” gives
the time needed to solve the problem.

(d, c, u) SG Pruned Merged Time
(2, 14, 1) 495 124 528 109ms
(3, 20, 1) 951 364 2112 421ms
(4, 26, 1) 1407 688 4224 952ms
(5, 32, 1) 1, 863 2, 848 18, 480 4s
(6, 38, 1) 2, 319 9, 412 61, 776 17s
(7, 44, 1) 2, 775 25, 768 168, 960 53s
(8, 50, 1) 3, 231 90, 400 593, 472 3m30s
(9, 56, 1) 3, 687 309, 184 2, 027, 520 13m21s

(10, 62, 1) 4, 143 1, 058, 908 6, 939, 504 50m17s

Table 1: Results for maze navigation LIMID.

4.1 Maze navigation

Table 1 shows results for the maze navigation problem of
Section 2.2 when the number of stages is varied from two
through ten. The LIMIDs for this problem satisfy the reg-
ularity assumption (there is one decision node per stage),
but not the no-forgetting assumption (observations are not
remembered after the current stage). Of the total number of
branches pruned, approximately 40% are pruned based on
bounds; the remaining 60% are pruned because the proba-
bility of the branch is zero.

4.2 Multi-agent tiger behind door

Table 2 shows results for a finite-horizon DEC-POMDP
that represents cooperative multiagent decision making un-
der uncertainty [12]. In this problem, there are two doors,
one on the left and one on the right, and two agents. Behind
one door is a tiger and behind the other is treasure. Each
agent has a choice of three actions: it can open a door on the
left or right, or it can listen for the tiger. If an agent hears
the tiger behind one of the doors, the tiger is actually there
with probability 0.85. At each stage, the agents must each
choose an action without knowing what the other agent will
choose; thus the regularity assumption is not satisfied. Each
agent remembers its previous actions and observations, but
is unaware of the other agent’s observations. The agents
receive better rewards if they coordinate their actions: the
reward for opening the door with treasure is greater is both
agents open the door together, and the penalty for opening
the door with the tiger is less severe if they open that door
together. There is a small cost for the listen action.

(d,c,u) SG Pruned Merged Time
(4, 6, 2) 15 12 6 15ms
(6, 9, 3) 39 35 24 62ms

(8, 12, 4) 87 737 576 530ms
(10, 15, 5) 351 9, 529 6, 984 7s
(12, 18, 6) 1, 599 42, 559 31, 602 49s
(14, 21, 7) 4, 047 288, 516 214, 170 5m31s
(16, 24, 8) 10, 023 2, 328, 571 1, 763, 904 53m21s

Table 2: Results for multi-agent tiger LIMID.

Table 2 shows results for this problem when the number
of stages is varied from two through eight. Our algorithm
solves the problem optimally for eight stages in less than an
hour. The provably optimal solution reported in [18] is for
up to four stages, found by dynamic programming [3]. For
this search problem, there are no zero-probability branches.
All branches are pruned based on bounds.

4.3 Randomly-generated LIMIDs

We also tested our algorithm on a set of randomly-
generated LIMIDs. The LIMIDs were created to have be-
tween 10 and 20 stages, with one decision node, one utility
node, and between 3 and 6 chance nodes per stage. For
each stage, half (and at least 2) of the nodes are selected
to be information variables of the decision variable. The
utility function for each stage is a function of the decision
variable and two randomly-selected random variables from
that stage, and potentially the decision variable from the
previous stage. Once nodes are generated for all stages, we
generate additional informational arcs as follows. For the
decision variable of each stage k beginning from the second
stage and continuing until the last stage, we add informa-
tional arcs from half (and at least 2) of the information vari-
ables of the previous stage, selected randomly. This method
of adding informational arcs ensures that the no-recalling-
forgotten-information rule is satisfied. When adding arcs,
we make sure that chance nodes with no children become
the information variables for the decision node first so that
there are no barren nodes. Each random and decision vari-
able has from 2 to 4 states, and the probabilities for the ran-
dom nodes are assigned from an uniform probability distri-
bution. The utility values range from −20 to 20.

Table 3 only shows results for a selection of LIMIDs for
which the treewidth of the relaxed LIMID does not exceed
12. The LIMIDs solved are larger than those for the maze
and tiger problems. For these randomly-generated LIM-
IDs, not all previous actions are remembered, which ap-
pears to make both duplicate detection and probabilistic in-
ference using the incremental join tree algorithm faster.

(d,c,u) SG Pruned Merged Time
(10, 46, 10) 33, 463 8, 538 167, 154 34s
(10, 44, 10) 14, 785 1, 475 17, 817 4s
(11, 47, 11) 16, 866 6, 501 153, 436 50s
(12, 60, 12) 27, 318 14, 333 111, 629 33s
(13, 64, 13) 32, 087 7, 220 103, 560 2m34s
(13, 60, 13) 39, 052 11, 958 1, 231, 516 16m26s
(13, 65, 13) 36, 040 11, 366 183, 664 49s
(15, 70, 15) 28, 080 14, 546 997, 728 3m26s
(16, 72, 16) 31, 525 25, 736 1, 023, 012 6m13s
(18, 84, 18) 50, 306 21, 582 524, 416 4m5s
(19, 88, 19) 130, 168 7, 286 140, 952 46s
(20, 84, 20) 25, 012 16, 147 232, 175 1m12s

Table 3: Results for randomly-generated LIMIDs.

4.4 Comparison to variable elimination

The state-of-the-art exact algorithm for solving LIMIDs is
a recently-developed variable elimination algorithm called
Multiple Policy Updating (MPU) [11, 10]. Although it
is not possible to draw definite conclusions about rela-
tive performance without direct comparison, we can make
some general comments. Like our branch-and-bound al-
gorithm, the MPU algorithm avoids solving redundant de-
cision scenarios by caching and reusing intermediate re-
sults. Our algorithm also uses bounds to prune decision
scenarios before they are evaluated, however, and can prune
zero-probability branches that represent impossible sce-
narios, and that may give it some advantage, similar to
the advantage that the depth-first branch-and-bound algo-
rithm for solving traditional IDs has over other ID algo-
rithms [24]. In reporting results for their variable elimi-
nation algorithm, Maua et al. [11, 10] report that it solves
randomly-generated LIMIDs with up to 1064 strategies and
a treewidth bounded by 10. Our branch-and-bound algo-
rithm solves randomly-generated LIMIDs with up to 10152

strategies and a treewidth of up to 27. (The multi-agent
tiger LIMID has 1088 possible strategies and a treewidth of
38. The 10-stage maze problem has 10156 possible strate-
gies. The 7-stage maze LIMID has a treewidth of 31; we
could not compute the treewidth for more stages than that.)
Whereas the scalability of the MPU algorithm is limited by
the treewidth of the LIMID, the scalability of the branch-
and-bound algorithm appears to be limited by the (usually
smaller) treewidth of the relaxed LIMID, which is used to
compute bounds and probabilities. In future work, we hope
to better characterize the relative performance of these two
approaches.

5 Conclusion

We have described a branch-and-bound AND/OR graph
search algorithm that finds optimal strategies for LIMIDs,
building on earlier work on solving traditional IDs using
branch-and-bound search. The approach is especially ef-
fective for IDs that represent multistage decision problems.

The branch-and-bound approach performs well even
though the bounds used in our implementation are quite
simple. (They are equivalent to assuming perfect infor-
mation.) The bounds can likely be significantly improved,
allowing more pruning and faster search. We plan to im-
plement improved bounds and evaluate the approach on a
wider range of test problems. Our approach to determining
the context of a decision node and merging duplicate OR
nodes is also simple, and could potentially be improved,
and it may also be possible to find more compact represen-
tations of an optimal strategy.

Acknowledgments This research is partially supported
by NSF grants IIS-0953723 and IIS-1219114.

References

[1] C. P. de Campos and Q. Ji. Strategy selection in influ-
ence diagrams using imprecise probabilities. In Pro-
ceedings of the 24th Conference on Uncertainty in Ar-
tificial Intelligence (UAI-08), pages 121–128, 2008.

[2] R. Dechter and R. Mateescu. AND/OR search spaces
for graphical models. Artificial Intelligence, 171(2-
3):73–106, 2007.

[3] E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dy-
namic programming for partially observable stochas-
tic games. In Proceedings of the 19th National Con-
ference on Artificial Intelligence (AAAI-04), pages
709–715, 2004.

[4] M. C. Horsch and D. Poole. An anytime algorithm
for decision making under uncertainty. In Proceed-
ings of the 14th Annual Conference on Uncertainty in
Artificial Intelligence (UAI-98), 1998.

[5] R. A. Howard and J. E. Matheson. Influence dia-
grams. In R. A. Howard and J. E. Matheson., editors,
The Principles and Applications of Decision Analysis,
pages 719–762, Menlo Park, CA, 1981.

[6] F. Jensen, F. V. Jensen, and S. L. Dittmer. From in-
fluence diagrams to junction trees. In Proceedings of
the 10th Conference on Uncertainty in Artificial Intel-
ligence (UAI-94), pages 367–373, 1994.

[7] F. V. Jensen and T. D. Nielsen. Bayesian Networks
and Decision Graphs, chapter 10, page 358. Springer
Science+Business Media, LLC, New York, 2 edition,
2007.

[8] S. L. Lauritzen and D. Nilsson. Representing and
solving decision problems with limited information.
Management Science, 47(9):1235–1251, 2001.

[9] R. Marinescu. A new approach to influence diagrams
evaluation. In Proceedings of the 29th SGAI Interna-
tional Conference on Artificial Intelligence (AI-2009),
pages 107–120, 2009.

[10] D. Mauá, C. de Campos, and M. Zaffalon. Solving
limited memory influence diagrams. Journal of Arti-
ficial Intelligence Research, 44:97–140, 2012.

[11] D. D. Mauá and C. P. de Campos. Solving decision
problems with limited information. In Advances in
Neural Information Processing Systems 24: Proceed-
ings of the 25th Annual Conference on Neural Infor-
mation Processing Systems (NIPS-11), 2011.

[12] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and
S. Marsella. Taming decentralized POMDPs: To-
wards efficient policy computation for multiagent

settings. In Proceedings of the 18th International
Joint Conference on Artificial Intelligence (IJCAI-
03), pages 705–711, 2003.

[13] T. D. Nielsen and F. V. Jensen. Well-defined decision
scenarios. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages
502–511, 1999.

[14] D. Nilsson and M. Hohle. Computing bounds on ex-
pected utilities for optimal policies based on limited
information. Technical Report 94, Danish Informatics
Network in the Agricultural Sciences, 2001.

[15] S. M. Olmsted. On representing and solving decision
problems. PhD thesis, Stanford University, 1983.

[16] R. Qi and D. L. Poole. A new method for influ-
ence diagram evaluation. Computational Intelligence,
11:498–528, 1995.

[17] H. Raiffa and R. Schlaifer. Applied Statistical Deci-
sion Theory. MIT Press, Cambridge, 1961.

[18] S. Seuken and S. Zilberstein. Memory-bounded dy-
namic programming for DEC-POMDPs. In Proceed-
ings of the 20th International Joint Conference on
Artificial Intelligence (IJCAI-07), pages 2009–2015,
2007.

[19] R. Shachter. Evaluating influence diagrams. Opera-
tions Research, 34:871–882, 1986.

[20] R. Shachter and M. Peot. Decision making using
probabilistic inference methods. In Proceedings of
the 8th Conference on Uncertainty in Artificial Intel-
ligence (UAI-92), pages 276–283, 1992.

[21] R. D. Shachter. Efficient value of information com-
putation. In Proceedings of the 15th Conference on
Uncertainty in Artificial Intelligence (UAI-99), pages
594–601, 1999.

[22] J. E. Smith, S. Holtzman, and J. E. Matheson. Struc-
turing conditional relationships in influence diagrams.
Operations Research, 41:280–297, April 1993.

[23] C. Yuan and E. A. Hansen. Efficient computation of
jointree bounds for systematic MAP search. In Pro-
ceedings of 21st International Joint Conference on
Artificial Intelligence (IJCAI-09), 2009.

[24] C. Yuan, X. Wu, and E. A. Hansen. Solving mul-
tistage influence diagrams using branch-and-bound
search. In Proceedings of the 26th Conference on
Uncertainty in Artificial Intelligence (UAI-10), pages
691–700, 2010.

