Tighter Linear Program Relaxations for High Order Graphical
Models

Daniel Tarlow*
Microsoft Research
Cambridge, UK

Elad Mezuman*
Hebrew University
Jerusalem, Israel

Abstract

Graphical models with High Order Potentials
(HOPs) have received considerable interest in
recent years. While there are a variety of ap-
proaches to inference in these models, nearly
all of them amount to solving a linear pro-
gram (LP) relaxation with unary consistency
constraints between the HOP and the indi-
vidual variables. In many cases, the resulting
relaxations are loose, and in these cases the
results of inference can be poor. It is thus de-
sirable to look for more accurate ways of per-
forming inference. In this work, we study the
LP relaxations that result from enforcing ad-
ditional consistency constraints between the
HOP and the rest of the model. We address
theoretical questions about the strength of
the resulting relaxations compared to the re-
laxations that arise in standard approaches,
and we develop practical and efficient mes-
sage passing algorithms for optimizing the
LPs. Empirically, we show that the LPs
with additional consistency constraints lead
to more accurate inference on some challeng-
ing problems that include a combination of
low order and high order terms.

1 Introduction

Graphical models are an excellent tool for expressing
models that arise in a wide variety of domains in-
cluding computational biology, natural language pro-
cessing, and computer vision. A long-standing re-
search challenge is to expand the range of problems
that can be expressed with graphical models such that
learning and inference can be performed efficiently.
Recently, there has been a resurgence of interest in
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Figure 1.1: We show that LP-based message passing
in graphical models with high order potentials (HOPs)
is likely to be poor when the HOP communicates via
a single-variable interface as in (a). Communicating
with a subset of edges of the same model leads to much
better results. For example, in (b), it is provably exact.

high order potentials (HOPs), which generally refer
to modeling components that have tractable struc-
ture that is not revealed by looking at the graphical
structure of the model. These approaches are rooted
in earlier work on graphical models like Pearl’s poly-
tree algorithm (Pearl, 1988), noisy-OR interactions
(Heckerman, 1989), and context specific independen-
cies (Boutilier et al., 1996). Their recent popularity
has been fueled by the availability of efficient routines
for using HOPs within modern linear program (LP)-
based message passing algorithms such as dual de-
composition (Komodakis et al., 2007), MPLP (Glober-
son and Jaakkola, 2007), and convex belief propaga-
tion (Weiss et al., 2007). Recent works such as (Tar-
low et al., 2010) attempt to categorize general classes
of HOP and give efficient algorithms for using them
within message passing algorithms. There are many
specific applications, such as using HOPs in an image
segmentation task to jointly optimize over the appear-
ance model and segmentation (Vicente et al., 2009).

Despite the success that has been achieved with mes-
sage passing algorithms and HOPs, nearly all of the
approaches are equivalent to a particular LP relax-
ation (Koller and Friedman, 2009). In addition, sev-
eral other approaches to dealing with HOPs, such as
reducing them to low order models, equate to the same
relaxation. We expand on these equivalences in Sec. 4.



The main goal of this paper is to show that the LP re-
laxation resulting from the standard approach is weak,
and to propose an alternative that maintains many
of the same desirable computational efficiencies while
leading to more accurate inference.

The paper proceeds as follows. We begin by estab-
lishing the ubiquity of the relaxation that we term the
unary consistency LP, showing that many approaches
to dealing with HOPs are equivalent to this relaxation.
Having established this, we go on to show that the
unary consistency relaxation is quite weak. We pro-
vide several examples and some analysis to help under-
stand when this is the case and why it fails. Next, we
introduce a family of LPs that provide tighter relax-
ations than the standard relaxation, but (as we show)
still admit efficient algorithms for optimizing them.
We provide theoretical analysis of these LPs, showing
when they are provably tight.

We then turn to practical concerns and show that our
tighter LPs can often be efficiently solved using stan-
dard message-passing algorithms: the main difference
is that the nodes corresponding to the higher order po-
tential now receive and send messages that are func-
tions of pairs of variables, not just singletons. This
makes the message-passing more involved but we iden-
tify special cases of HOPs for which the message com-
putation is still tractable. We also show how to use the
messages to compute tighter bounds on the MAP and
how to choose which pairs of variables should be added
in a way that is guaranteed to tighten the bound. We
illustrate the performance of our method on both syn-
thetic models and real image segmentation problems.

2 DMotivating Examples

To begin, we will establish notation, then consider two
concrete examples that illustrate the looseness of the
standard LP relaxation for dealing with HOPs.

Notation and Preliminaries We let an energy
function over n discrete variables x = {z1,...,z,} be
defined as follows. Given a graph G = (V,€) with n
vertices, there are potentials 8;(z;), 0;;(x;, z;) for each
vertex and each edge in the graph, respectively, and
one HOP over all the variables, 6,(x). We wish to
find the minimum energy configuration (alternatively
the mazimum a posteriori (MAP) assignment):

x* — argmgnzei(xi)—i—z 0ij(x;, 25)+0a(x). (2.1)
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This is an integer program that is NP hard to solve
in general. The LP relaxation approach works in two
stages. First, the integer program is converted into
a linear program with the same solution, but which

requires exponentially many constraints to express the
domain. Then the linear program is relaxed by outer
bounding the domain to yield the LPg below. For
more background on LP relaxations, we recommend
Wainwright and Jordan (2008), Koller and Friedman
(2009) and Sontag et al. (2010).

We now review the standard LP relaxation approach
to approximating Eq. 2.1. The relaxation maintains
three types of distributions: over single variables, over
pairs of variables, and over all of z. All three are con-
strained to agree on their singleton marginals. The
singleton, pairwise and HOP terms are then replaced
by their expectation according to the corresponding
distributions. We call this approach the Unary Con-
sistency LP and denote it by LPy. The resulting op-
timization problem is

LPy (Unary Consistency LP)
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where we omit for space (as we will throughout)
the additional constraints that g variables are non-
negative and sum to 1, and some of the quantifications
(e.g., ij € £ and the values of z; in the last constraint).
As we show in Sec. 4, this relaxation is commonly used
because it can be solved efficiently for several families
of HOPs.

Introductory Examples We start with two sim-
ple instances of MAP problems with tractable HOP
for which the standard approach fails. In both cases
the factor graph (Fig. 1.1a) consists of a simple chain
and a cardinality-based potential which is amenable
to the techniques described in (Tarlow et al., 2010) for
solving LPy. Unfortunately, the relaxation is loose,
which is manifested in a fractional solution that has
better objective than the original integer program so-
lution. This means the relaxation is inaccurate, and,
more importantly, it prevents us from finding a good
solution to the original problem.

In both examples z; € {0,1} and the model is a chain
with an even number of nodes and attractive pairwise

potentials of the form 6; ;41 = (2 8) (where ¢ > 0).

1. Finding the 2nd best assignment (Fromer and
Globerson, 2009) using an exclusion factor. If we
add a local potential that favors the binary vari-

ables being off: 6; = ( 0 € )T with € > 0, then



clearly the best assignment is x = ﬁ We add
an exclusion potential to exclude this assignment:
0a(x) = 0o when x = 0 and 0 otherwise. and
now the MAP of the problem with the high-order
potential is the second best assignment in the orig-
inal problem. Assuming ¢ > ¢, the 2" best is
x = 1 with an energy of ne. However, the LPy
solution has a value of € and corresponds to the
n=1 1 )ﬁ

following fractional optimum: ¢; = ( 2=+ 1

n—1

Qii+1 = 8 for all the as-

T n

9), and gq(x) = 1

n
signments in which exactly one variable is on.

2. Partitioning graphs using average-cut (Mezuman
and Weiss, 2012). Here the HOP prefers assign-
ments with similar number of off and on variables:
Oa(x) = =X |x| - (n — |x|). The optimal inte-
gral solution is to break the chain in the middle
with value of ¢ — A(%)?, but the LPy solution

has a value of —A(%)? and is again fractional:

0.5 05 0
g = (0'5>, Gijit1 = ( 0 0'5>, and ¢q(x) = 37

for all M = (7:;2) assignments that have n/2 ones.

Notice that the LP solution is not only fractional, but
is in fact also completely "tied”: its solution gives us
no hint as to the true MAP.

3 Related work

Applications of High Order Potentials HOPs
can be used to incorporate nonlocal structure into a
model. In recent years, there have been many works
that incorporate these types of interactions. They
are particularly useful for modelling highly structured
global interactions like those that arise in models
for parsing sentences (Smith and Eisner, 2008; Koo
et al., 2010; Martins et al., 2010), in models for im-
age segmentation to enforce connectivity constraints
(Nowozin and Lampert, 2009) or higher order smooth-
ness (Kohli et al., 2007; Gould, 2011), and in models of
textures to encourage soft pattern matching (Rother
et al., 2009). They arise when “collapsing” certain
models, like in (Vicente et al., 2009), where optimiz-
ing out an image segmentation appearance model leads
to an energy function over segmentations that has
high order terms. They have also been used to solve
balanced graph partitioning problems (Mezuman and
Weiss, 2012) and to enforce constraints over latent
variable activations in e.g., Restricted Boltzmann Ma-
chines (Swersky et al., 2012).

Tighter Linear Program Relaxations The
canonical works on tightening LP relaxations us-
ing message-passing come from Sontag et al. (2008);

Werner (2008) and Komodakis and Paragios (2008),
and were followed up in several works, such as Batra
et al. (2011); Sontag et al. (2012). As discussed in
Sontag (2010), at their core, these approaches can be
viewed as searching in similar ways for additional con-
sistency constraints to enforce such that adding them
to the LP leads to a tighter relaxation. While the gen-
eral approach is applicable in the LP relaxations with
HOPs that we consider here, there are computational
challenges that must be addressed in order to do this
search efficiently. We develop the needed methods in
this work. ~ We note that while Werner (2008) dis-
cusses HOPs in the context of the max-sum diffusion
algorithm and the class of LPs that we study here can
be expressed within the framework presented there,
the final suggestion for working with HOPs is to use
the unary consistency LP, and a proof is provided that
if the model is submodular and the HOP is submodu-
lar, then the LP is tight.

Fromer and Globerson (2009) deal with the case of
excluding a single joint assignment. We will show
that the baseline they consider, Santos, is equivalent
to unary consistency, and that their method (which
leads to tight relaxations on trees) is a special case of
our method. Thus, we can get an equally tight relax-
ation by using the approach proposed in this paper.
Another special case of note where tighter HOP relax-
ations have been discussed is Komodakis and Paragios
(2009). There, they employ a merging strategy for
dealing with several pattern-based HOPs, in that they
show that patterns along rows and columns of a grid
can be combined into a single HOP where messages
can still be computed efficiently. However, after this
merging, only unary consistency is enforced. For the
purposes of this paper, we assume throughout that if
any tractability-preserving merging of HOPs is possi-
ble, it has already been done.

4 Unary Consistency Linear Programs

Many existing methods for inference with HOPs are
equivalent to LPy. We highlight some of these below.

Message Passing with the standard Factor
Graph Perhaps the most common method for solv-
ing MAP inference in graphical models with HOPs is
to build the factor graph and pass messages between
variables and factors. For certain higher-order poten-
tials, the messages between the variable nodes and the
HOP node can be calculated efficiently (Tarlow et al.,
2010).

Different works use somewhat different update
schemes. One option is to use loopy belief propaga-
tion (Yedidia et al., 2005). However, there are typi-



cally no performance guarantees in this case (e.g., no
convergence results or optimality certificates). A dif-
ferent class of structurally similar algorithms retain
the message-passing flavor of BP while also giving an
optimality certificate (Globerson and Jaakkola, 2007;
Werner, 2007; Kolmogorov, 2006; Komodakis et al.,
2010; Sontag et al., 2010; Weiss et al., 2007). These
can all be shown to be solving LPy.

Simplification with Auxiliary Variables An al-
ternative strategy for dealing with certain HOPs is to
create auxiliary variables in such a way as to reduce
the problem to a pairwise problem, and then solve the
pairwise problem using the standard pairwise LP re-
laxation. Here, we study the strength of the LP re-
laxations that result from this strategy. For example,
Kohli et al. (2009), Gould (2011), and Rother et al.
(2009) all follow this or a closely related approach.

The approach proceeds as follows. Start with a HOP
and some unary and pairwise potentials:

- Zei(xi) + Zeij(xi7xj) +0,(x).

Next, introduce an auxiliary variable z such that min-
imizing it out leaves the energy over x unchanged.
Namely, min, 0, ,(z,x) = 6,(x). We then have:

X) = Inzlnz 91(331) + Z HU(J)“ l‘j) + QZ@(Z, X).
i ij

Finally, it often holds that given 2z, the HOP
becomes fully factorized, i.e., min,0,,(z,x) =
min; ), 0.;(z,x;), so that E(x) is given by:

mzinz 91(.%‘1)—}—2 Qij(xi, $j)+z 9“‘(2’, .’I?Z').
[ 7 i

At this point, the minimization over x can be done
jointly with the minimization over z using the follow-
ing LP relaxation, which we call LPyeq:

(4.1)

(4.2)

LPred

mqin Z(EQi [0(z:)]+Eq.,[02:(2, 2:)]) + ZE%‘ [0 (i, z;)]
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Zqz'j(zi,l'j) = qi(z) Z%‘j(xiaxj) = q;(z;) (4.3)
> qui(zmi) = qi(m) D quilzmi) = :(2)

This relaxation seems quite different from LPj. How-
ever, we have the surprising result that they are in fact
equivalent (the proof is in the appendix).

(4.4)

Proposition 1. The relazations LPy and LPyeq are
equivalent. Namely, they have the same objective
value, and there is a mapping between their optima.

In the case that more than one auxiliary variable is
created by the pairwise transformation, the unary con-
sistency LP will be at least as tight as the reduced LP,
but they are no longer equal in general. A corollary
of this analysis is that if the pairwise transformation
introduces only submodular pairwise terms (and the
pairwise part of the model is submodular), then the
unary consistency LP is tight. This is closely related
to (but less general than) the result proved in (Werner,
2008).

Exclusion Potentials and the Santos Inequal-
ity A special case of HOP model that has received
significant attention is where a model is modified so
as to exclude a single joint assignment x* (e.g., the
first introductory example). In this context, several
LP relaxations have been proposed (e.g., Fromer and
Globerson, 2009). It is thus interesting to ask which of
these is equivalent to LPyp. It turns out that LPy cor-
responds to an LP with no ¢, (x) variables, but rather
a single constraint (in addition to the pairwise consis-
tency constraints): > . ¢;(xf) < n — 1, which was first
suggested in Santos Jr (1991). Intultlvely, it states
that at most n — 1 of the variables can agree with
the assignment x*. The proof of the equivalence to
LPy is straightforward and follows from the charac-
terization of the assignment excluding polytope for an
empty graph, and its relation to the Santos inequality
(see Fromer and Globerson, 2009).

5 Tighter Linear Programs

In this section, we introduce the family of tighter LP
relaxations that are the focus of this work, and we
study their theoretical properties. We begin by defin-
ing a family of LPs that are tighter relaxations than
LPy, and then we will prove a tightness result.

Let S C & be a subset of the edges in G, and define
V(S) to be the set of variables that appear in at least
one edge in S. We can then define an LP that enforces
consistency between the HOP and the edges in S, while
maintaining unary consistency with variables in V —

V(S):

LPg (Partial Edge Consistency LP)
mlHZE 0(:)] + Y Bay, 1055 (w1, 25)] + Bq, [ (x)]
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At one extreme, when S = (), LPg is equal to LPy. At
the other extreme, consistency is enforced between the
HOP and all edges, yielding the following simplified
LP, which will be of special interest:

LP¢ (Full Edge Consistency LP)
manqu (@:)] + Z Eg., 05 (i, 25)] + Eq, [0 (x)]
eV ije€

s.t. Zq” x, xj) = q;(x;)

T4

Z%] xzvxj = qi(7i)
Y tax) = qij(xi,xj)

x:x(i)=wz;,x(j)=x;

Vij e &

5.1 Strength of LP¢

We begin with the simple observation that LP¢ is al-
ways tight.

Proposition 2. LP¢ is tight.

Proof. Since with all the pairwise constraints the ex-
pectation of #; and 0;; under g, is the same as under
g; and g;;, respectively, LP¢ is equivalent to

minEy [0a(x) + 0(x;) + 0;5(xi, x;)].

q

(5.1)

This LP has an integer solution (i.e., it is tight) be-
cause it is always better to put all the g, mass on the
best assignment than to divide it. O

Thus, the space of LP relaxations that can be con-
structed as LPg for some choice of edge set S range
from the standard but weak LPgy to the tight LP¢.
This justifies our focus on this family of LPg.

6 Optimization with Message Passing

As we reviewed earlier, LPy can be solved by a variety
of message-passing algorithms operating on the stan-
dard factor graph, where factor nodes communicate
with individual variable nodes. Similarly, it is easy to
show that the same algorithms can solve LPg when
they are applied on a modified factor graph where the
node corresponding to the HOP communicates with
pairs of nodes which correspond to edges in S (see
Fig. 1.1b). The key question is the complexity of cal-
culating the messages to and from the HOP. We now
identify cases where these messages can be computed
efficiently.

We begin by recalling the dual of LPg. The dual vari-
ables are 0;j(x;,x;) for ij € S (which we interpret as
messages between the factor « and the edges in S) and
0;i(x;) for i € V (messages between the factor o and

singletons). The dual problem is to maximize B(¢), a
lower bound on the MAP:

§) = er;m éf(xl)—i—z ;mmn éfj(xi, xj)—l—mwin 0° (x),
i ig

(6.1)
where #° is a reparameterization of the original energy

function:
96( Z 0ij (@i, xj) — Z 0i(x;

ijeS i€V-=V(S)

Expressions for éf(xl),ﬂfj (x;,x;) are similar (Sontag
et al., 2010). Most message passing approaches for
solving this problem iteratively update ¢ to increase
the bound. All these message update schemes require
solving min,, 69 (x) for arbitrary values of §, or calcu-
lating its min-marginals (see Sontag et al., 2010, for
a thorough review of such approaches). For general
0, (x) this is of course difficult. Below we highlight
some cases where it is tractable, and therefore LPg

can be solved efficiently with message passing.

e Low tree-width S graphs with cardinality-based
potentials. When 6,,(x) is a cardinality potential
(ie., Oo(x) = f(>, i), where f(-) is some ar-
bitrary function) and S is a tree-structured sub-
set of edges, then this is closely related to one of
the problems considered by (Tarlow et al., 2012).
There, it was shown that messages to and from
the HOP can be calculated by performing exact
inference on an augmented tree graph with com-
plexity that is at most O(n?). This result is easily
extended to the case where S forms a low tree-
width graph and the messages can be computed
exactly in a time that is exponential in the tree-
width of S.

e Low tree-width S graphs with Pattern HOPs.
Another HOP that has received interest are
the pattern potentials of (Rother et al., 2009).
Here, the potentials are of the form 6,(x) =
mingeq1,. .k} D, w :CZ where each real-valued

vector w(’“) can be thought of as encoding a pat-

tern that is desirable to match. This potential is
actually quite simple to work with, by noting that
min, 6% (x) is equivalent to:

mln Zw —Z(Sij(xi,x] Z 5 (x;)

ijeS eV-VY(S
From here, it is clear that the argmin or the
min-marginals can be computed by constructing
a junction tree over S, then solving K different
problems where for problem k, the unary poten-
tials have been modified by w(¥), then taking the
elementwise minima.



A simple corollary of the above discussion is that
whenever the graphical model has low tree-width and
the HOP is either cardinality-based or a pattern HOP
then LP¢ can be efficiently computed. In particular,
for the two motivating examples discussed in the intro-
duction, running message-passing on the factor graph
shown in Fig. 1.1b can be performed efficiently and is
guaranteed to provide the MAP.

7 Choosing a Tractable Edge Set

When the graph has high tree-width, we cannot effi-
ciently solve LP¢, and a natural question is how to
choose a subset of edges S such that LPg is as tight
as possible, but can still be solved in practice. For the
HOPs we consider, this will be the case as long as S
has low tree-width (see Sec. 6).

As mentioned earlier, this problem has been stud-
ied generally in several works, including Sontag et al.
(2008), Werner (2008) and Komodakis and Paragios
(2009). When trying to adapt these approaches to
models with HOPs that are based on LPg, the general
methodology stays the same, but as with the message
updates, computational challenges arise. Specifically,
the above methods are all based around finding addi-
tional consistency constraints to add that are guaran-
teed to improve B(¢). In our context, the motivation
is the following Lemma:

Lemma 1. Suppose we have solved the dual of LPg
with some set of edges S. If there exists an edge (i, ) ¢
S for which there is no overlap between the minimizing
assignments of 0;; and the minimizing assignments of
O, then defining T = {SU(4,j)} we have LPg < LPp
(i.e. adding that edge to S will lead to a strictly tighter
LP relazation).

The proof follows from using the reparameterization
given by the dual variables of LP g to construct a valid
reparameterization for the dual of LPr and the dual
value will be strictly higher. Existing methods are
often based on similar reasoning (e.g., this is essentially
the same result that appears in Werner (2008) in the
discussion of cutting planes).

Sequentially Adding Edges using Weak Cycle
Agreement (WCA) Recall that our goal is to find
a low tree-width S such that LPg is as tight as pos-
sible. Motivated by Lem. 1 we use the following pro-
cedure for approximating such a set. Start with an
edge set, S, with tree-width one. Then, keep adding
edges as long as the tree-width stays small. The edges
added are those that satisfy the condition in Lem. 1
and hence result in strict increase of the LP objective.
In what follows we provide additional details.

To obtain the initial tree we follow a simple heuristic.
Calculate weights w;; = max(6;;) — min(¢;;) for each
edge, and find the spanning tree .S with the maximum
overall weight. The rationale is that edges with close
to uniform potentials (i.e., low w;;) are more likely to
be consistent with the HOP.

Next, we add K edges in each iteration using the
following procedure. Run LPg to convergence, and
find the set of M assignments that minimize the
HOP term of the reparameterization: {x™}M_, =
argminy 0, (x). As long as M is small—as we found
it is in practice—this can be done efficiently by fol-
lowing all back-pointers when decoding from the junc-
tion tree structures used for computing message up-
dates. Next, for each edge ij € £\ S whose addition
to S does not violate the maximum tree-width, we
compute its weak cycle agreement (WCA) measure:
minym O (2", ") — ming, o, 0;;(vi, v;). By Lem. 1,
addition of any edge with WCA > 0 will give a tighter
relaxation. If many edges have WCA > 0, we add the
one with the greatest WCA value. Before adding the
next K — 1 edges, we move the reparameterized edge
potential into the HOP, recompute the argmins over
0., then update the WCAs. Notice that the WCA
measure relates to the weak tree agreement (WTA)
measure from Tarlow et al. (2011). We do not use the
WCA to select the starting set of edges because we
have found that in many times after LPy converges,
the WCA of all the edges is equal to zero, i.e., there
is no single edge whose addition to S will tighten the
bound. This rarely happens when S is non-empty.

8 Experimental Results

We conducted three sets of experiments over graphical
models with different kinds of cardinality HOPs. The
first extends the first example in Sec. 2 and shows ex-
perimentally that LPy does not find the MAP solution
in many simple cases. The second compares our edge
selection criterion from Sec. 7 with other possible cri-
teria and shows it is superior to them. The last set of
experiments was done over images from the Berkeley
segmentation dataset (Martin et al., 2001) and shows
we can often find the optimal average-cut (NP-hard
problem in the general case) by solving LP g with a low
tree-width set of edges. The first set of experiments
was done on a relatively small problem which allowed
us to use a commercial LP solver (Mosek). Since the
goal of this experiment was to understand LPy we
preferred using it and avoid possible difficulties when
solving the dual problem. The other two experiments
were solved using message passing with convex belief
propagation, as described in (Weiss et al., 2007, 2011),
applied to LPg. We built our junction-tree code on
top of the UGM package (Schmidt, 2012).
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Figure 8.1: LPy Hamming ball exclusion. The 2nd best mode of a tree model with attractive pairwise potentials
(\) is rarely found when using only unary consistency constraints (LPp). We conducted the experiments for
several radiuses of hamming balls (k). Using our suggested method it can always be found exactly and efficiently.

Hamming Ball Exclusion When finding M-best
modes (Batra et al., 2012), it is desirable to have dis-
similarity measures that do not factorize into a sum
of pixel dissimilarities, e.g., to represent the notion
of dissimilar enough, where as long as an assignment
is at least Hamming distance k away, we are equally
happy. In this case, the constraint of Fromer and
Globerson (2009) is no longer applicable, so the strat-
egy suggested by Batra et al. (2012), is to add a
HOP enforcing this constraint, then solving LPy. We
know from our theoretical analysis that LPy cannot
solve all instances of this problem. Here, we empir-
ically study how bad the relaxation becomes (mea-
sured by the integrality gap) as the strength of pair-
wise potentials is varied. We generated random trees

over 10 variables with attractive pairwise potentials
0 (xi, ) = 0 A
1] 19 J A O
dom preference to be off (0;(1) ~ U[0,1]); thus the
MAP assignment is all zeros. We add an exclusion fac-
tor which allows only assignments which are at least
k Hamming distance away: 6,(x) = oo if |z| < k and
0 otherwise. Fig. 8.1 shows the percent of integral
solutions and the average integrality gap (out of 100
experiments) for different k’s and A's . Notice that
while LPy fails in finding the MAP for this problem,
the tree-width of LPg here is one and thus we can
solve it efficiently and exactly.

, and unary potentials with ran-

Sequentially Adding Edges We compare the im-
provements in the dual bound that result from using
different criteria for choosing edges to add to S and
then solving LPg. The first criterion is our suggested
WCA method, and the second is the potential weight
heuristic, both of which are described in Sec. 7. The
third criterion is simply adding random edges (RND1
and RND2). We conducted experiments over several
4-connected 7x7 grid, with random pairwise potentials.
The HOP is average-cut, 0,(x) = =X - |x| - (n — |x]),

where A is chosen such that the optimal energy will
be zero, and 61(0) = oo to break the symmetry. We
did not limit the tree-width in this experiment. Fig-
ure 8.2 shows the improvement in the bound after each
edge addition to the starting tree. Clearly the WCA
criterion is better than the other two baselines.

Image Segmentation using super-pixels Fi-
nally, we construct average-cut problems for 40 images
from the Berkeley segmentation dataset (Martin et al.,
2001) and attempt to solve them using LPg and the
WCA measure for choosing S. We used the proce-
dure described in (Mezuman and Weiss, 2012) to find
a setting of A\ such that solving LP¢ would verify the
optimality of the average-cut. We used SLIC super-
pixels (Achanta et al., 2012) using the implementa-
tion of (Mueller, 2012). We chose SLIC parameters
to get approximately 100 equally sized superpixels.
The pairwise potentials (affinities between pixels) were
computed using intervening contours (Leung and Ma-
lik, 1998) (implementation provided by (Cour et al.,
2010)).

When choosing S, we limited the tree-width to be at
most six (the average tree-width of the full graph is
13). We add edges in batches of eight after the previ-
ous LPg was solved (i.e., the BP converged). Via this
procedure we provably found the optimal solution in
34 out of the 40 images. For 2 images the optimum
was found when S was of tree-width of 2, for 13 when
S was of tree-width 3, and for 10, 5 and 4 images when
S was of tree-width of 4, 5 and 6, respectively. Our
solution improved the standard spectral solution in 38
out of 40 problems, with an average improvement in
the objective of 70%. Fig. 8.4 shows the maximal dual
bound achieved during message passing across sets of
edges with different tree-widths. To keep the plot clean
we show it only for the 25 images for which the LPg
was tight with tree-width at most four.
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Figure 8.2: Sequentially adding edges. Comparison of the improvement in the dual bound after sequential edge

addition using different criteria.

9 Discussion

Recent years have shown a resurgence of interest
in higher-order potentials for graphical models with
a growing number of specific potentials for which
message-passing algorithms can be applied efficiently.
In this paper we have shown that many of these meth-
ods are based on a particular linear programming re-
laxation and highlighted the weakness of that relax-
ation. We suggested a family of tighter relaxations
which result in a practical new strategy that can yield
significantly improved accuracy. The computational
cost incurred for this increased accuracy is exponen-
tial in the tree-width of the consistency sets S, but
empirically we see that substantial gains in accuracy
can be achieved with relatively small tree-width.

One challenge for the cardinality HOP is scaling up
to bigger problems. Regardless of the tree-width,
there is a computational cost to the message com-
putations that is quadratic in the number of vari-
ables in the model. When we apply our approach
to large problems (e.g., images where individual pix-
els are variables), this cost becomes a bottleneck. A
strategy that we would like to investigate is to use
Fast Fourier Transforms near the zero-temperature
limit to compute approximate max-marginals, or to
investigate other algorithms for fast approximate max-
convolution. Throughout, we assumed that the vari-
ables are binary and that the energy decomposes to
unary and pairwise potentials with a single HOP. Ex-
tensions to the 3rd or 4th order cliques that are com-
monly used in computer vision would be straightfor-
ward by enforcing consistency between the HOP and
all these cliques, and the assumption of binary vari-
ables can be removed so long as the HOP computa-
tions can be done tractably. For the case of multi-
ple HOPs in the model, while there are open ques-
tions about some of the specifics (e.g., should different
HOPs be constrained to choose the same sets of edges
or not?), the same basic approach that we presented

here is also applicable, and we believe it to be a good
choice. Finally, we have shown how to efficiently com-
pute message updates for two classes of HOPs. An
open question and a new computational challenge is
to discover other cases where messages can similarly
be computed efficiently.
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A Proof that LPjy = LP,q

PRIMAL LP; < PRIMAL LP,eq Copy the so-

lution from LP eq into LPy for the variables that cor-
[ 420 (2250)

2 a2

distribution over x and z that has q,;(z, z;) as its pair-

wise marginals, because this corresponds to the Bethe
approximation on a tree-structured graph (in this case,
a star around z), which is exact. Unary consistency
in LPy is satisfied because

GRS ZH”“ Garv)  (a)

x:x(i)=xz; x:x(1)=z;

> iz i) = qili).

respond, and set ¢, (x) = , which is a

(A.2)

The objective of LPy is less than or equal to the ob-
jective at LPyeq, because 6, (x) = min; ), 0.,(z, x;):

3 (00 () (A.3)

Z Z H q“ - x’ mZOm (z,25) (AA)
< ZZ Hl’ q“ = ‘”’“” Zom 1) (A.5)
= Z Z G2, 24)05 (2, 7). (A.6)
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Figure 8.3: Image Segmentation example run. (a) In-
put image. (b) Suboptimal solution found by the com-
monly used spectral method. (¢) The global optimum,
which is found and verified by our algorithm. (d) The
dual bound of convex BP versus iteration of message
passing. Jumps occur when edges are added to S.

DUAL LPy > DUAL LP,.q Here we take a dual
solution from LP.eq and construct a dual objective
for LPy that is greater than or equal to the DUAL, .4
objective. For a given setting of dual variables § and
7, the duals for LPy (DUALy) and LPyeq (DUAL,..q),
respectively, are as follows:

DUAL, 4

Zmln Z 8i(xi) + vai ()] (A.7)
JEN(3)

+ Z min [0 (i, ;) = 0ji(w:) = 0 ()]

i) — 7zi(xi) - ’le(z)]
DUAL,
Z min[6; (z;) +
+ Z min [0 (2i, 2;) — 6ji(2s) — dij(25)]

Z% ;)]

ST 65i(i) + vilx)]

JEN(d)

(A.8)
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Figure 8.4: Lower bounds achieved by our algorithm
versus the standard LPg bound (“unary”) on average-
cut image segmentation problems at various tree-
widths of S, ranging from 1 to 4 (“TW-1" to “TW-47).
In all cases the optimal integral energy is 0, so when
the lower bound reaches 0 we have provably reached
the optimum.

Now copy the § messages from DUAL, .4 to DUALy.
In DUALyg, set v;(x;) = 7.i(z;). Then the difference
in the dual objectives between Eq. A.8 and Eq. A.7 is
only in the terms involving z or a.. Focusing on the z
terms from Eq. A.7:

Z g}}g{l[em(z, xi) — Vzi(Ti) — viz(2)] + mzin[z i (2)]

" (A9)

< Iillxn Z[in(zv T5) — Yzi (@) — Viz(2)] + lein[z Yiz(2)]
Z "(A.10)
<min Z[ezi(szi) = Vzi(@s)] (A.11)
(A.12)

- Z%(%)]a

which shows that the dual objective for LPy is greater
than or equal to the dual objective for LPyeq with this
choice.

So we have DUALy > DUAL,.; and PRIMAL
LPred > PRIMAL LP@ . Since strong duality for LPs
gives DUAL@ PRIMAL LPy and DUAL,.q = PRI-
MAL LPyeq, this implies that the two LPs have the
same solution value and are thus equally tight.
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