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Abstract

This paper addresses the problem of commu-
nity detection in networked data that com-
bines link and content analysis. Most ex-
isting work combines link and content infor-
mation by a generative model. There are
two major shortcomings with the existing ap-
proaches. First, they assume that the prob-
ability of creating a link between two nodes
is determined only by the community mem-
berships of the nodes; however other fac-
tors(e.g. popularity) could also affect the link
pattern. Second, they use generative mod-
els to model the content of individual nodes,
whereas these generative models are vulner-
able to the content attributes that are irrele-
vant to communities. We propose a Bayesian
framework for combining link and content in-
formation for community detection that ex-
plicitly addresses these shortcomings. A new
link model is presented that introduces a ran-
dom variable to capture the node popularity
when deciding the link between two nodes;
a discriminative model is used to determine
the community membership of a node by its
content. An approximate inference algorithm
is presented for efficient Bayesian inference.
Our empirical study shows that the proposed
framework outperforms several state-of-the-
art approaches in combining link and content
information for community detection.

1 Introduction

Community detection is an important task in ana-
lyzing networked data and it has found applications
in a number of domains, such as citation network,
online blog network, and the World Wide Web. In
this paper, we focus on the problem of combining link

and content information for effective community detec-
tion. Here, the link information refers to the connec-
tions/relationships between nodes in a network. The
content information refers to the attributes that de-
scribe the properties of individual nodes, where such
content information varies from networks to networks.
For example, in a citation network, the content of each
article is represented by a vector of word histograms;
in a co-authorship network, the content is the demo-
graphic or affiliation information of individual authors.
Our goal is to combine link and content information
to identify salient communities in a network.

Several approaches are proposed recently for commu-
nity detection that combine link and content infor-
mation. Most of these approaches integrate link in-
formation with content information by a generative
model. First, they assume that the probability of cre-
ating a link between two nodes is determined only by
the community memberships of the nodes. It is well
known that other factors such as popularity of nodes
could also significantly affect the probability of creat-
ing links between nodes. Second, in most existing ap-
proaches, generative probabilistic models are used to
model the content of individual nodes. However, some
of the attributes in content may be irrelevant to the
community membership assignments. For instance, in
citation network, some words in the content of an arti-
cle are irrelevant to the topic of the article. Therefore
these approaches that model contents by a generative
approach could be vulnerable to irrelevant attributes.

We propose a Bayesian framework to effectively in-
tegrate link information and content information for
community detection that explicitly addresses these
two shortcomings:

• A new link model is presented that considers the
popularity of nodes while modeling the link infor-
mation. As a result, the probability of creating a
link between two nodes is jointly decided by their
community memberships as well as their popular-
ities.



• A discriminative model is introduced to model the
community memberships of nodes by their con-
tents. Therefore irrelevant attributes will be fil-
tered out by the discriminative model.

The rest of the paper is organized as follows. Section 2
reviews the related work for combining link and con-
tent analysis for community detection. The proposed
Bayesian framework is presented in Section 3 and an
efficient algorithm for Bayesian inference is presented
Section 4. Section 5 presents the results of our empir-
ical studies on two paper citation networks. Section 6
concludes this work.

2 Related Work

Most probabilistic models for combining link and con-
tent information are based on topic models. To estab-
lish the correspondence of terminology between these
models and our model, we note that a topic in topic
model corresponds to a community in the paper, topic
mixtures correspond to community memberships, and
documents correspond to nodes.

In one of the first efforts to combine link information
and content information, Cohn and Hoffman [4] com-
bined the PLSA model [7] with PHITS model [3]. It
models the link information by a PHITS model, and
the content information by a PLSA model. These two
models are integrated together by the variables of com-
munity memberships that are shared by both models.
One shortcoming of this model is that it did not cap-
ture the topic relation between citing documents and
cited documents. We refer to this combined model as
PHITS-PLSA model.

Later on Erosheva et al. [5] extended the LDA model
to combine link information and content infromation.
It essentially provides a full Bayesian treatment for the
PHITS-PLSA model by introducing a Dirichlet prior
for topic mixtures. We refer to this model as LDA-
Link-Content model.

Recently, Nallapati et al. [11] proposed two combined
models. The first model, referred to as Pairwise
Link-LDA, combines the mixed membership stochas-
tic block model [1] with the LDA model. To generate a
link from document i to document j, it first samples a
topic variable for each of the two documents, and then
generates the link by a Bernolli distribution whose suc-
cess rate depends on the memberships of both docu-
ments. One major limitation of this model is that it
has to model the presence and absence of links by a
Bernoulli distribution. It is well known that many fac-
tors, other than community membership, could result
in the absence of a link. The second model in their
work, named as Link-PLSA-LDA model, modifies the

LDA-Link-Content model. It assumes that the link
structure is a bipartite graph with all links emerging
from the set of citing documents and pointing to the
set of cited documents. It adopts the same generative
process for the citing documents as LDA-Link-Content
and a PLSA-like model for the cited documents.

Another related work is the latent topic model for hy-
pertext by Gruber et al. [6]. It is built upon the LDA
model. In this model, the generation of a link depends
on the words in the citing document. When generating
a link from a word to documents, instead of generating
the target document from a topic-specific distribution
over documents, it first samples the target document
from a multinomial distribution, and then samples a
topic for the the target document. A link is created
only when the target document and the word share
the same topic.

Besides probabilistic models, several non-probabilistic
methods are proposed for combing link and content.
Zhu et al. [16] used a matrix-factorization method to
induce a new representation of documents from the
combination of content and link. The combination of
link and content analysis is also studied in the frame-
work of data fusion [15].

3 A Bayesian Framework for

Community Detection

We denote by V = {1, · · · , n} the nodes in a network,
and by Li = {j1, · · · , jNi

} the set of links starting
from node i where jℓ is the ending node for the ℓth
link from node i. L =

⋃
i Li includes all the links

in the network, and N = |L| =
∑n

i=1Ni represents
the total number of links. We denote by xi ∈ R

d the
content vector for node i, where d is the number of
attributes. X = (x1, . . . , xn) is matrix of size d × n
that includes the content of all nodes. Unlike most ex-
isting work on combining content and link information
that chooses to model Pr(L, X), we propose to model
Pr(L|X) with no generative process on the contentsX .
The key advantage of this choice is that the proposed
model can fit the content information by a discrimi-
native model, thus alleviating the impact of irrelevant
attributes. In order to model Pr(L|X), we first sam-
ple the community variables z for individual nodes by
a discriminative model based on the contents X ; the
sampled community variables z will then be combined
with the popularity of nodes, denoted by t, to create
the links between nodes. Below we will describe these
two procedures.



3.1 A Discriminative Model for Content
Analysis

We model the community memberships of nodes based
on their contents by a discriminative model. For
each node i, we first compute its community activa-
tion functions yk(xi) = wT

k xi, k = 1, . . . ,K, where
wk is the weight vector for community k, and K is
the number of communities. We then compute the
probability of assigning node i to community k as

γik =
exp(yik)∑
l exp(yil)

. The community variable z that

relates to node i will follow the multinomial distri-
bution Mult(γi1, . . . , γiK). Such a model that uses
logistic multinomial has been widely used (e.g., [10]
and [2]). We can also specify a Gaussian prior for
each wk by wk ∼ N (0, λ−1

k I). Note that by assign-
ing small weights to irrelevant attributes of content
and large weights to the informative ones, the discrim-
inative model presented above will be resilient to the
noises(i.e., irrelevant attributes) in contents.

We generalize the above linear discriminative model
into a nonlinear model by exploring the Gaussian Pro-
cesses. In particular, we assume the community acti-
vation function yk(x) follows a Gaussian Process, i.e.,
for any set of points x1, · · · , xn, the evaluation of y(x)
on these points jointly follows a Gaussian distribution.
We denote by the vector yk = (y1k, . . . , ynk) the eval-
uation of yk(x) at x1, . . . , xn. It follows a Gaussian
distribution N (0, Ck), where Ck ∈ R

n×n is the covari-
ance matrix specified for community k, whose elements
Ck(i, j) = Ck(xi, xj) : R

d × R
d → R is some function

on the content of node i and node j.

3.2 Popularity Driven Link Model

We consider the problem of modeling link ℓi from node
i to node j. Given the community membership γik

computed by the discriminative model, we first sam-
ple a community variable for node i associated with
link ℓi, denoted by zi

ℓ. zi
ℓ ∈ {1, · · · ,K} follows the

multinomial distribution by zi
ℓ ∼ Mult(γi1, · · · , γiK).

Unlike the existing work that assumes links are deter-
mined only by the community memberships of nodes,
we introduce random variable ti, i = 1, . . . , n to rep-
resent the popularity of each node. A node with high
popularity is on average more likely to be linked by
the other nodes than a node with a lower popularity.
Our assumption is that the probability of creating a
link ℓi from node i to node j is determined by two fac-
tors: (a) whether or not both nodes belong to the same
community, and (b) the popularity of the ending node
j. Based on this assumption, we model Pr(ℓi = j|zi

ℓ),
the probability of creating a link from node i to node
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Figure 1: Graphical representation of the generative
process for the proposed framework.

j given the community variable zi
ℓ, as follows

Pr(ℓi = j|zi
ℓ) =

tjγjzi
ℓ∑

j′ tj′γj′zi
ℓ

=
tj exp(yjzi

ℓ
)/
∑

k exp(yjk)
∑

j′ tj′ exp(yj′zi
ℓ
)/
∑

k exp(yj′k)
(1)

Due to the computational reason, we simplify Pr(ℓi =
j|zi

ℓ) as follows

Pr(ℓi = j|zi
ℓ) =

tj exp(yjzi
ℓ
)

∑
j′ tj′ exp(yj′zi

ℓ
)

(2)

We see that the link model in equation (2) approxi-
mates equation (1) by assuming that

∑
l exp(yjl) is the

same for all node j. Finally, we assume that popular-
ity ti is sampled from a Gamma distribution Gam(a, b)
where a and b are the hyper-parameters.

3.3 Unified Model for Link and Content
Analysis

Below we summarize the generative process for the
proposed model that integrates link and content infor-
mation for community detection. For the discrimina-
tive model on the content, we rely on the non-linear
model with Gaussian Processes.

1. For each node i = 1, · · · , n, draw ti ∼ Gam(a, b)
2. For each community k, draw yk ∼ N (0, Ck)
3. Compute community memberships γik =

exp(yik)/[
∑

l exp(yil)]
4. For each node i = 1, · · · , n

(a) for each link ℓ = 1, · · · , Ni, draw zi
ℓ ∼

Mult(γi1, · · · , γiK)
(b) draw the target node j from

Mult(λi
1,ℓ, · · · , λ

i
n,ℓ) where λi

j,ℓ =

tj exp(yjzi
ℓ
)/
∑

j′

tj′ exp(yj′zi
ℓ
)

Figure 1 shows the graphical representation for the
proposed unified framework.



4 An Approximate Algorithm for

Bayesian Inference

In this section, we present an approximate algorithm
for the Bayesian inference of the proposed model, with
the focus on using the Gaussian Process as the prior for
yk. We introduce the notations T = {t1, · · · , tn}, Z =
{zi

1, · · · , z
i
Ni
, i = 1, · · · , n}, Y = {yk, k = 1, · · · ,K} to

represent the hidden variables for all the nodes in the
network. The key to Bayesian inference in our model is
to derive the posterior distribution Pr(Y |L, X). It re-
quires computing the marginal distribution Pr(L|X) =∑

Z

∫
dTdY Pr(L, T, Z, Y |X), which is in general in-

tractable. We thus approximate the Bayesian Infer-
ence by a variational inference. In the following, we
omit the conditional variables X in probability nota-
tions.

First, we have the joint distribution Pr(L, T, Z, Y ) ex-
pressed as follows:
Pr(L, T, Z, Y )

=

n∏

i=1

Ni∏

ℓ=1

Pr(ℓi = jℓ|z
i
ℓ, T, Y ) Pr(zi

ℓ|Y )
∏

i

Pr(ti)
∏

k

Pr(yk)

=

n∏

i=1

∏

j∈Li

Pr(ℓi = j|zi
j , T, Y ) Pr(zi

j|Y )
∏

i

Pr(ti)
∏

k

Pr(yk)

=

n∏

i=1

∏

j∈Li

∏

k

(
tj exp(yjk)∑
j′ tj′ exp(yj′k)

exp(yik)∑
l exp(yil)

)zi
jk

×
∏

i

Gam(ti|a, b)
∏

k

N (yk|0, Ck)

In the above, we slightly abuse the notation by replac-
ing zi

ℓ with zi
j . Both random variables refer to the

community to which node i is assigned for the link ℓi.
We also introduce the random variable zi

jk = I(zi
j = k)

where I(x) outputs one when the boolean variable x
is true and zero otherwise.

The following lemma provides a lower bound of
log Pr(L, T, Z, Y ).

Lemma 1. The log Pr(L, T, Z, Y ) is lower bounded as
follows:

log Pr(L, T, Z, Y ) ≥ log p(L, T, Z, Y, η, τ)

=
∑

i,j∈Li

∑

k

zi
jk

(
log tj + yjk + yik

+1 −
1

ηk

∑

j′

tj′ exp(yj′k) − log ηk

+1 −
1

τi

∑

l

exp(yil) − log τi

)

+
∑

j

logGam(tj |a, b) +
∑

k

logN (yk|0, Ck)

where η = (η1, · · · , ηK), τ = (τ1, · · · , τn) are the vari-
ational parameters.

The above lemma follows directly from − log x ≥ 1−x.

In variational inference, we approximate the poste-
rior of Pr(T, Z, Y |L) by a factorized distribution of
q(T )q(Z)q(Y ), and bound the marginal probability
Pr(L) as

log Pr(L) ≥
∑

Z

∫
dTdY q(T )q(Z)q(Y ) log

p(L, T, Z, Y, η, τ)

q(T )q(Z)q(Y )

(3)
The optimal solution of q(T ), q(Z) and q(Y ) is ob-
tained by maximizing the above lower bound by al-
ternating optimization. In the following, we present
the solution to each of the three approximated poste-
rior distributions given the other two distributions are
fixed.

With fixed q(Z) and q(Y ), the optimal solution to q(T )
is computed by

logq(T ) = EZ,Y log p(L, T, Z, Y, η, τ) + c

where c is an appropriate normalization constant.
With the details omitted, the explicit form of q(T )
is given by

q(T ) =
∏

j

q(tj) =
∏

j

Gam(tj |ãj, b̃j)

where

ãj = a+
∑

i∈I(j)

∑

k

E[zi
jk]

b̃j = b+
∑

k

∑

(i′,j′∈Ei)

E[zi′

j′k]
E[exp(yjk)]

ηk

where I(j) denotes the set of nodes that are linked to
node j.

With fixed q(T ) and q(Y ), the optimal solution to q(Z)
is computed by

log q(Z) = ET,Y log p(L, T, Z, Y, η, τ) + c

and the explicit form of q(Z) is given by

q(Z) =
∏

i

∏

j∈Ei

Mult(zi
j|ψ

i
j1, · · · , ψ

i
jK)

where

ψi
jk ∝

exp

(
E[yjk] + E[yik] −

∑
j′ E[tj′ ]E[exp(yj′k)]

ηk
− log ηk

)



With fixed q(T ) and q(Z), the solution to q(Y ) is com-
puted by

log q(Y ) = ET,Z log q(L, T, Z, Y, η, τ) + c

However, due to the exponential terms in
log q(E , T, Z, Y ) about Y, we cannot have a closed
solution for q(Y ). Instead, we assume a Gaussian
factorization of q(Y ) by q(Y ) =

∏
k N (yk|mk,Σk)

and maximize the lower bound in (3) with regard to
mk and Σk, i.e.,

max
q(Y )

ET,Z,Y log p(L, T, Z, Y, η, τ)−

∫
dY q(Y ) log q(Y )

(4)
The algorithm for this maximization problem is given
in the Appendix.

Finally, we note that the solution of q(Z), q(T ), and
q(Y ) depend on the variational parameters η, τ . We
can take a variational EM algorithm to solve this prob-
lem. In the variational E-step, we compute q(T ), q(Z)
and q(Y ) given η, τ ; in the variational M-step, we es-
timate η and τ by maximizing the lower bound in (3),
i.e.,

max
η,τ

ET,Z,Y log p(E , T, Z, Y, η, τ)

The optimal solution of η, τ can be shown as

ηk =
∑

j′

E[tj′ ]E[exp(yj′k)]

τi =
∑

l

E[exp(yil)]

Once we obtain the posterior distribution q(Y ) =∏
k N (yk|mk,Σk), the marginal distribution of each

yik is also a Gaussian distribution with q(yik) =
N (yik|mik,Σk,ii), where mik is the ith element in mk,
and Σk,ii is the ith diagonal element of Σk. γik, the
probability of assigning a node i to community k is
computed as

γik =

∫
exp(yik)∑
l exp(yil)

N (yik|mik,Σk,ii)dyi1 · · · dyiK

which can be computed by a sampling method or
approximated by the Extended MacKay approach[8]
given by:

γik ∼
exp(κ(Σk,ii)mik)∑

l exp(κ(Σl,ii)mil)

where κ(x) = 1/
√

1 + πx/8.

5 Experiments

In this section, we present the empirical study results
by comparing our model with several state-of-the-art
approaches. We first describe the data sets, the met-
rics, and the baselines used for the evaluation.

5.1 Data Sets

In the experiments, we used two paper citation net-
works, namely Cora Data Set, and Citeseer Data Set.

Cora Data Set is a subset of the larger Cora ci-
tation data set [9] collected by Lise Getoor’s research
group. This data set has been widely used for clas-
sification, clustering, and studies of combining link
and content. It contains 2708 scientific publications
that are classified into seven machine learning areas.
These articles are linked by a total of 5429 citations to
form the citation network. Each paper corresponds to
a node and is described by a 0/1-valued word vector
indicating the absence/presence of the corresponding
word. The number of unique words is 1433.

Citeseer Data Set is a subset of the larger Cite-
seer data set1 also collected by Lise Getoor’s research
group. The Citeseer data set consists of 3312 scientific
publications and 4732 links. Each publication classi-
fied into one of the six topics is described by a 0/1
valued word vector. The dictionary consists of 3703
unique words.

For the number of communities, i.e. K, without further
evidence, we set K to be the number of class labels in
the ground truth. For Cora data set, K is set to 7
because papers are labeled as one of the seven classes;
for Citeseer data set, K is set to 6 since papers are
classified as one of the six topics.

5.2 Metrics

We use three metrics for evaluation where these met-
rics are commonly used in clustering and community
detection. These metrics are normalized mutual in-
formation(NMI), pairwise F-measure(PWF), modular-
ity(Modu). NMI and PWF are computed with the
ground truth of community labels, and Modu is com-
puted without the ground truth of the community la-
bels(i.e., class or topic). Modularity is a commonly
used metric in social network analysis to evaluate
methods for community detection. It measures the
goodness of a community structure in terms of links,
which can be used as an evidence for the performance
of our link model. We emphasize that although mod-
ularity is not an ideal evaluation metric, it makes it
possible for us to compare our work to the existing
ones since it is such a widely used metric.

With the ground truth of community labels for each
node, we can form the true community structure V =
{V1, . . . , VK}, where Vk contains the set of nodes that
are in the kth community. Assume the community

1http://citeseer.ist.psu.edu/



structure given by the algorithms is represented by
V ′ = {V ′

1 , . . . , V
′
K}, then the mutual information be-

tween the two is defined as

M̂I(V, V ′) =
∑

Vi,V ′

j

p(Vi, V
′
j ) log

p(Vi, V
′
j )

p(Vi)p(V ′
j )

and the normalized mutual information is defined by

NMI(V, V ′) =
M̂I(V, V ′)

max(H(V ), H(V ′))

where H(V ) and H(V ′) are the entropies of the par-
titions V and V ′. The higher the normalized mutual
information, the closer the partition is to the ground
truth.

To compute the pairwise F-measure, let T denote the
set of node pairs that have the same label, S denote
the set of node pairs that are assigned to the same
community, |T | denote the cardinality of set T . The
pairwise F-measure is computed from the pairwise pre-
cision and recall, as the following

precision = |S
⋂
T |/|S| recall = |S

⋂
T |/|T |

PWF =
2 × precision× recall

precision+ recall

The higher the PWF, the better is the partition.

Modularity is proposed by Newman et al. [13] for mea-
suring community partitions. For a given community
partition V = {V1, . . . , VK}, the modularity is defined
as

Modu(V ) =
∑

k

[
Cut(Vk, Vk)

Cut(V, V )
−

(
Cut(Vk, V )

Cut(V, V )

)2
]

where Cut(Vi, Vj) =
∑

p∈Vi,q∈Vj
wpq. As stated in [13],

modularity measures how likely a network is gener-
ated due to the proposed community structure versus
generated by a random process. Therefore, a higher
modularity value indicates a community structure that
better explains the observed network.

5.3 Baselines

The following baselines are used in our evaluation:

PHITS-PLSA is the model proposed by Cohn et
al. [4]. The community membership of each node for
this model is given by the topic mixture of each paper
document. We run this algorithm until the difference
of log-likelihood between consecutive steps is within
10−8. The combination coefficient of α is tuned to
obtain the optimal NMI and PWF.

LDA-Link-Content is the mixed membership model
proposed by Erosheva et al. [5]. The community mem-
bership of each node is given by the mean of posterior
for the topic mixture of corresponding document. We
run the variational EM algorithm for this model until
the difference of the lower bound of the log-likelihood
is within 10−8.

Link-Content-Factorization(LCF) is the approach
based on matrix factorization proposed by Zhu et
al. [16]. In the method, a new low-dimensional rep-
resentation of each document is computed from the
content and link information. K-means algorithm is
then applied to the derived representation to get the
communities. The parameters in the method are tuned
to obtain the optimal NMI and PWF.

Spectral Clustering with fused kernel This base-
line is motivated by the data fusion method for clus-
tering [15]. We compute a kernel from the content and
then we combine this kernel matrix with the adjacent
matrix derived from the link structure in a linear man-
ner. This combined matrix is then used as a new simi-
larity matrix for spectral clustering. The spectral clus-
tering method used is the Normalized Cut algorithm
presented in [14]. A RBF kernel is used to construct
the similarity matrix for content. The parameters in
RBF kernel, and the combination coefficient are tuned
to obtain the optimal NMI and PWF. We refer to the
algorithm as NCUT.

Finally, for the purpose of presentation, we refer our
model as the Combined Popularity-driven Link model
and Discriminative Content model(C-PLDC). The
hyperparameters a, b for the Gamma prior of t are
set to very lower values to enforce an uninformative
prior (a = b = 10−3). The covariance matrix we
used for all communities are the same. We present
results for RBF covariance matrix, which is given as
Ck(i, j) = θ exp(−‖xi − xj‖2/2σ2). The parameters
for the covariance matrix are tuned to maximize the
lower bound of the log-likelihood. To prevent numeri-
cal problems, we add a noise level or “jitter” term νδi,j
to the covariance function as recommended by [12],
where ν is set to 10−5. The variational EM algo-
rithm is run until the difference of the lower bound
of the log-likelhood is within 10−8. The final commu-
nity memberships are computed by Extended MacKay
approach.

The results for Cora and Citeseer data sets are shown
in Tables 1 and 2, respectively. We can see that our
model performs better than other baselines. In order
to verify if the introduction of popularity is necessary
for modeling links, we include the results of our model
by setting the popularity of all nodes to a constant 1,
denoted by C-PLDC(t=1). It is clear that the pro-



posed framework with popularity driven link model
performs noticeably better than the one without pop-
ularity. In addition, comparing to the four baseline
methods, we observe that C-PLDC(t=1), the proposed
model without modeling popularity, performs signifi-
cantly better than the baseline models. Since the key
component of C-PLDC(t=1) is to model content infor-
mation by a discriminative analysis, this comparison
further confirms that the introduction of discrimina-
tive model for content analysis is beneficial for com-
munity detection. Finally, we show in Figure 2(a)
and 2(b) the change in NMI(similar results for PWF
and Modu) when we vary the parameters σ2 and θ
in computing the covariance matrix. We also include
in the two figures the change in lower bound of the
log-likelihood function computed by the proposed ap-
proximate algorithm. It is interesting to observe that
both curves are consistent with each other in overall
trends, which makes it possible to determine the opti-
mal parameter for σ2 and θ.

Table 1: Evaluation on Cora dataset
Algorithm NMI PWF Modu
PHITS-PLSA 0.3140 0.3526 0.3956
LDA-Link-Content 0.3587 0.3969 0.4576
LCF 0.2421 0.2780 0.2802
NCUT 0.2444 0.3062 0.3703
C-PLDC(t=1) 0.4294 0.4264 0.5877
C-PLDC 0.4887 0.4638 0.6160

Table 2: Evaluation on Citeseer dataset
Algorithm NMI PWF Modu
PHITS-PLSA 0.1188 0.2596 0.3863
LDA-Link-Content 0.1920 0.3045 0.5058
LCF 0.1416 0.2621 0.3090
NCUT 0.1592 0.2957 0.4280
C-PLDC(t=1) 0.2303 0.3340 0.5530
C-PLDC 0.2756 0.3611 0.5582
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Figure 2: NMI and lower bound of log-likelihood vs.
σ2 and θ. (a) fix θ = 1, change σ2; (b) fix σ2 = 5,
change θ

6 Conclusion

In this paper, we present a new Bayesian framework to
combine link and content for community detection in
networked data. Unlike most probabilistic models of
combining link and content by a generative process on
link and content, we propose a discriminative model on
the content which is extended to the Gaussian Process.
To more accurately model the link, we introduce new
variables to capture the popularity of nodes. Empirical
studies show that our model significantly outperforms
other state-of-the-art approaches. For future work, we
may consider other types of network data rather than
citation networks presented in the paper; we would
also compare our model to other models on the link
prediction accuracy.
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Appendix: Computation of q(Y )

In this appendix, we present an efficient algorithm to
solve the problem as in (4). We assume q(Y ) can be
factorized as q(Y ) =

∏
k N (yk|mk,Σk). By noting

that E[yik] = mik, E[exp(yik)] = exp(mik + Σk,ii/2),
the problem in equation (4) is reduced to:

max
mk,Σk

∑

k

pT
k mk −

∑

k

qT
k exp(mk + sk/2)

+
∑

k

1

2

[
log

|Σk|

|Ck|
+ n− Tr(C−1

k Σk) − mT
kC

−1
k mk

]

where

pik =
∑

j∈I(i)

E[zj
ik] +

∑

j∈Ei

E[zi
jk]

qik =

∑
(i′,j′∈Ei)

E[zi′

j′k]E[ti]

ηk
+

∑
j∈Ei,l

E[zi
jl]

τi
sik = Σk,ii

Since mk is coupled with Σk, below we describe a co-
ordinate descent algorithm for updating mk and Σk

iteratively.

By fixing Σk, our problem for mk becomes

max
mk

∑

k

pT
k mk −

∑

k

q̂T
k exp(mk) −

1

2
mT

kC
−1
k mk

where q̂k = qk · exp(sk/2). This is a convex optimiza-
tion problem, and can be solved efficiently by Newton-
Raphson method. In particular, we compute the gra-
dient and Hessian matrix as

gk = pk − q̂k · exp(mk) − C−1
k mk

Hk = −Wk − C−1
k

where Wk is diagonal matrix with Wk,ii =
q̂ik exp(mik). mk is updated as mk = mk + H−1

k gk,
i.e.,

mk = mk+(Wk+C−1
k )−1(pk−q̂k ·exp(mk)−C−1

k mk)

The matrix inverse Wk + C−1
k can be computed effi-

ciently by the inversion lemma, i.e.,

(Wk + C−1
k )−1 = Ck − CkW

1/2
k B−1

k W
1/2
k Ck

where Bk = I+W
1/2
k CkW

1/2
k is guaranteed to be well-

conditioned. Let vk = Wkmk+pk−q̂k ·exp(mk), then
the update formula can be written as

mk = Ck(vk −W
1/2
k B−1

k W
1/2
k Cvk) = Ckuk

Another benefit is that we can calculate mkC
−1
k mk =

mT
k uk without computing C−1

k .

By fixing mk, the problem for Σk becomes

max
Σk

−q̃T
k exp(sk/2) +

1

2

[
log

|Σk|

|Ck|
− Tr(C−1

k Σk)

]

where q̃k = qk · exp(mk). To simplify our com-
putation, we assume that Σk share the same eigen-
vectors as Ck. Let (σki,vki), i = 1, . . . , n be the
eigenvalues and eigenvectors of matrix Ck. We then
have Σk =

∑
i λkivkiv

T
ki where λki is the combination

weight that needs to be optimized. The related opti-
mization problem becomes

max
λk

−q̃T
k

exp(τk ◦ λk) +
1

2
eT log(λk) −

1

2
eT (λk./σk)

where τk = (|vk1|22, . . . , |vkn|22), log(λk) =
(log(λk1), . . . , log(λkn)), and λk./σk =
(λk1/σk1, . . . , λkn/σkn). This problem is again a
convex optimization problem and can be solved
efficiently by Newton-Raphson method.


